
CSCI 447 – Fall 2003

Scanner Generation with Lex

Professor: Muhammed Mudawwar
Due Date: Wednesday, October 22, 2003

Problem:

Write a Lex specification and use the Lex (flex) generator to construct a lexical analyzer for a
language with the following lexical properties.

Lexical Conventions:

1. Single line comments begin with // (slash-slash) and end with the end of line.
Multiple-line comments are surrounded by /* and */. Comments cannot be nested and
are ignored.

2. Blanks, tabs, and newlines are white space and should be ignored.

3. The following keywords are reserved: and, bool, char, const, else, false, function, if,
int, mod, not, or, real, record, return, true, var, while Keywords are NOT case
sensitive.

4. Identifiers should begin with a letter or underscore, followed by zero or more letters,
digits, or underscores. Identifiers can be of any length and are NOT case sensitive.

5. The token intconst corresponds to an unsigned integer constant, which is a sequence of
one or more digits. The token realconst corresponds to an unsigned real constant with
at least one digit before and one digit after the decimal point, and with an optional
exponent. The token charconst corresponds to a single character constant enclosed by
single quotes. The following C escape sequences are permissible. '\n', '\t', '\\',
'\0', '\'', and '\"' are the newline, tab, backslash, single quote, and double quote
characters respectively. Other sequences should be rejected. The token boolconst
corresponds to true and false.

6. The token strconst corresponds to a string literal. String literals are surrounded by
double quotes. A string literal can be of any length, but should not span multiple lines.
C escape sequences can be used within a string literal.

7. The token relop corresponds to the following operators: = <> < <= > >=

8. The token addop corresponds to the following addition operators: + -

9. The token mulop corresponds to the following multiplication operators: * / mod

10. Other tokens that should be recognized are: () [] { } . , ; : :=

Tables for Reserved Words, Identifier Names, and Literals

Use a table for the reserved words and lookup this table after matching an identifier. A hash
function should be defined for the initialization and for the lookup of the table. The hash
table may have more (unused) entries than the number of reserved words. The reserved words
and their corresponding tokens should be entered into this table. Keywords should be
converted to lowercase to simplify the lookup.

A second table (name table) should be used to enter identifier names. Only the first
occurrence of an identifier name should be entered. Look up the table first to decide whether
an identifier name should be entered. Hashing techniques should be used also for the fast
lookup and insertion into this table. Identifier names should be converted to lower case before
entering them to simplify the lookup.

A third table should be used to enter all literals. This table is very similar to the name table.
Only one instance of a literal should be entered. Again, hashing techniques should be used
here for the fast lookup and insertion. A string literal should be stripped from the extra quotes

and backslashes before entering it. Integer and real literals should be entered as numbers,
rather than strings. Character literals should be entered as characters, and Boolean literals,
false and true, should be entered as such.

Error Handling
Write regular expressions to handle erroneous tokens. For instance, you will need regular
expressions for non-terminated string literals ending with a newline character, for real
constants with no digits appearing before or after the decimal point, and for character literals
containing more than one character. Print meaningful error messages for these lexical errors,
but return correct tokens. Error messages should indicate the line number and the character
position.

Token Attributes
You should keep track of the line number and character position of each token as an attribute.
For identifiers, a pointer to a name table entry is required. For literals, a pointer to a literal
table entry is also required. For operators, a unique number identifying the operator is also
needed as an attribute.

Output
The output is a list of tokens, lexemes, and corresponding line and position numbers. Error
messages should appear in the proper place indicating the line and character at which the
error has occurred. The contents of the literal and name tables should be dumped at the end of
the output file.

Main Function
The main function should accept the names of an input file and an output file specified on the
command line. For example, if the executable file is called scan then one should type the
following on a command line: scan infile outfile. The main function should call the
yylex function repeatedly until the end-of-file token (token 0) is returned.

What you should submit

1. A disk containing all your source files and executable file.

2. A report in which you discuss the regular expressions, their actions, the reserved word
table, the identifier table, the literal table, the hash function, and other details important to
your solution. Test inputs and outputs should also be appended to your report.

Grading
Your grade will be divided into the following components:

1. Correctness and output
2. Lex file, regular expressions, documentation of code
3 Hashing of reserved words, and implementation of identifier and literal tables
4 Error handling and reporting
5 Report

