
The American University in Cairo
Computer Science Department
CS 447 Final Exam – Spring 1999

Professor : Muhammed Mudawwar Date : June 1st, 1999
 Duration : 2 hours

1. (10 pts) Answer the following:

 a) Discuss two approaches of entering record field names in a symbol table.
 b) Discuss two symbol table implementations to handle scopes in a block-structured

language.

2. Consider the following ambiguous grammar for expressions:

Expr → Expr or Expr
Expr → Expr and Expr
Expr → Expr relop Expr
Expr → Expr addop Expr
Expr → Expr multop Exp
Expr → not Expr
Expr → (Expr)
Expr → intconst
Expr → realconst
Expr → boolconst
Expr → id

Where relop represents one of the six relational operators "=", "<>", "<", "<=", ">", and
">=", addop represents "+" and "-", and multop represents "*" and "/".

a) (10 pts) Write a Yacc specification for the above grammar. Eliminate the ambiguity

using the operator precedence and associativity rules assuming that the or operator
has the least precedence and the not operator has the highest precedence.

b) (5 pts) In Yacc, is it possible to place operators with different associativity (left, right,
and non-associative) at the same precedence level? Explain why such specification is
allowed or disallowed?

c) (10 pts) Expressions are sometimes translated into Postfix notation. Add action rules
to the above Yacc specification to translate expressions into postfix notation. For
example, (a or b < c + a / d) * c translates into a b c a d / + < or c *. The postfix
expression should be a string attribute to the non-terminal Expr.

3. Consider the following grammar:

(0) S' → S $
(1) S → ID := A ;
(2) A → ID := A
(3) A → E
(4) E → E + P
(5) E → P
(6) P → ID
(7) P → (A)

a) (10 pts) construct the LR(0) Finite State Machine of the above grammar.
b) (7 pts) construct the LR(0) action and goto parsing tables. Is the grammar LR(0)?
c) (6 pts) construct the SLR(1) action and goto parsing tables. Is the grammar SLR(1)?

d) (7 pts) Using the SLR(1) table of part (c), trace the parse of ID := ID := ID + (ID) ; $
by showing the content of the parse stack, remaining input and parser action at each
step.

4. Consider the following LL(1) grammar G:

 1: E → F R Q
 2: Q → + F R Q
 3: Q → λ
 4: R → * F R
 5: R → λ
 6: F → (E)
 7: F → id

 a) (10 pts) Calculate the Predict sets for all productions and construct the LL(1) parsing
table for grammar G. Use the production numbers specified above.

 b) (8 pts) Write a recursive descent parser for grammar G. Four parsing routines are
required. Assume the existence of a match routine, and a lookahead token.

 c) (7 pts) Using a nonrecursive predictive parser, show the parsing of the input string
id*(id+id)$. At each step show the content of the stack, remaining input, and parser
action.

5. a) (4 pts) Show a DFA that corresponds with ((a | b)* (c | d)+) | aabb

 b) (6pts) Show a DFA and write a regular expression for matching a Pascal-like
comment delimited by (* and *). Individual *'s and)'s may appear in the comment
body, but the pair *) may not.

