Memory Hierarchy

CS 282 — KAUST — Spring 2010

Slides by:
Mikko Lipasti
Muhamed Mudawar

Memory Hierarchy

e Memory
— Just an “ocean of bits”
— Many technologies are available
e Key issues
— Technology (how bits are stored)
— Placement (where bits are stored)
— Identification (finding the right bits)
— Replacement (finding space for new bits)
— Write policy (propagating changes to bits)
e Must answer these regardless of memory type

© 2005 Mikko Lipasti

CS 282 - Computer Architecture & Organization

Types of Memory

Type Size Speed | Cost/bit
Register <1KB <lns |$$$$
On-chip SRAM |8KB-16MB |<10ns |$$$
DRAM 64MB - 1TB |<100ns |$

Flash 64MB - 32GB |< 100us |c

Disk 40GB-1PB |<20ms |~0

© 2005 Mikko Lipasti

Memory Hierarchy

CAPACITY

/{gm&

On-Chip
SRAM

Off-Chip
SRAM

DRAM

SPEED and COST >

<

Flash/Disk

© 2005 Mikko Lipasti

CS 282 - Computer Architecture & Organization

Processor-Memory Performance Gap

CPU: 55% per year

1000 T T
Moore’s Law
[B)
© 100 [S
% Processor-Memory
= Performance Gap:
5 (grows 50% per year)
g e S
[<5)
o V _g—a—=8
DRAM: 7% per year
1
OIHIN'mlvILO'&OII\'OOICDIO'HINI(‘O'#ILO'QII\IOO'OIO
00 00 VWOV O OO
DO OO OO OO OO OO OO O OO
A A A A A A A A A A A A A A A A AN

e 1980 — No cache in microprocessor
e 1995 — Two-level cache on microprocessor

Why Memory Hierar

e Bandwidth:

chy?

1.0inst |1lfetch 4B 0.4Dref 8B | 3Gcycles
BW = x| = X - x x
cycle inst Ifetch inst Dref sec
_ 21.6GB
sec

e Capacity:

— 1+GB for Windows PC to multiple
e Cost:

— (TB x anything) adds up quickly

TB

e These requirements appear incompatible

© 2005 Mikko Lipasti

CS 282 - Computer Architecture & Organization

Why Memory Hierarchy?

e Fast and small memories

— Enable quick access (fast cycle time)

— Enable lots of bandwidth (1+ L/S/I-fetch/cycle)
e Slower larger memories

— Capture larger share of memory

— Still relatively fast
e Slow huge memories

— Hold rarely-needed state

— Needed for correctness

e All together: provide appearance of large, fast
memory with cost of cheap, slow memory

© 2005 Mikko Lipasti

Why Does a Hierarchy Work?

e Locality of reference
— Temporal locality
Reference same memory location repeatedly

— Spatial locality
Reference near neighbors around the same time

e Empirically observed
— Significant!
— Even small local storage (8KB) often satisfies
>90% of references to multi-MB data set

© 2005 Mikko Lipasti

CS 282 - Computer Architecture & Organization

Typical Memory Hierarchy

Temporal Locali

. . *Keep recently referenced
e Registers are at the top of the hierarchy itemps at higﬁer levels

— Typical size <1 KB Spatial Locality
*Bring neighbors of recently

— Access time < 0.5 ns referenced to higher levels

Level 1 Cache (8 — 64 KB) _
— Access time: 0.5-1ns Microprocessor

L2 Cache (512KB - 8MB)
— Access time: 2-10ns

Main Memory (1 - 2 GB) | L2 Cache |

— Access time: 50 — 70 ns % N 5 %
. emor’ us =
e Disk Storage (> 200 GB) - 4 @
) . | Memory ‘
— Access time: milliseconds
1/0 Bus

‘ Magnetic Disk ‘

Four Key Issues

e Placement
— Where can a block of memory go?

e Identification
— How do | find a block of memory?

e Replacement
— How do | make space for new blocks?

e Write Policy
— How do | propagate changes?

© 2005 Mikko Lipasti

CS 282 - Computer Architecture & Organization

© 2005 Mikko Lipasti

e Address Range
— Exceeds cache capacity

e Map address to finite capacity
— Called a hash
— Usually just masks high-order bits

® Direct-mapped
— Block can only exist in one location
— Hash collisions cause problems
— Must check tag (identification)

Index
Gy

Offset /

Placement

Memory Placement Comments

Type

Registers | Anywhere; | Compiler/programmer

Int, FP, SPR | manages
Cache Fixed in H/W | Direct-mapped,
(SRAM) set-associative,
fully-associative
DRAM Anywhere O/S manages
Disk Anywhere O/S manages
11
© 2005 Mikko Lipasti
Block Size

Placement paess

SRAM Cache

Tag & Data Out

32-bit Address

Tag

Index

Offset

12

CS 282 - Computer Architecture & Organization

Tag

Identification wes

(11

. . Hit
® Fully-associative @@ el

— Block can exist anywhere
— No more hash collisions
e /dentification

— How do | know | have the
right block?

SRAM Cache

CETETTTT |

— Called a tag check Offset
Must store address tags I Data Out
Compare against address 32-bit Address

e Expensive!
— Tag & comparator per block

Tag Offset

© 2005 Mikko Lipasti

Placement Address SRAM (Cache

. . Index
e Set-associative Ha@@ a Tags a Data Blocks
— Block can be ina
locations

— Hash collisions:

Up to a still OK
e /dentification = 3
. N\
— still perform tag check |rg |6 Y v
. \&
— However, only a in A_F‘_V
Offset
parallel l
32-bit Address
Data Out
Tag Index |Offset
© 2005 Mikko Lipasti

CS 282 - Computer Architecture & Organization

Placement and Identification

32-bit Address

Tag Index [Offset
Portion Length Purpose
Offset o=log,(block size) Select word within block
Index i=log,(number of sets) | Select set of blocks
Tag t=32-0-i ID block within set

e Consider: <BS=block size, S=sets, B=blocks>
— <64,128,128>: 0=6, i=7, t=19: direct-mapped (S=B)
— <64,32,128>: 0=6, =5, t=21: 4-way S-A (S=B / 4)
— <64,1,128>: 0=6, i=0, t=26: fully associative (S=1)
e Total size =BSx B =BS xS x (B/S)

© 2005 Mikko Lipasti

15

Replacement

e Cache has finite size
— What do we do when it is full?
e Analogy: desktop full?
— Move books to bookshelf to make room

® Same idea:
— Move blocks to next level of cache

© 2005 Mikko Lipasti

16

CS 282 - Computer Architecture & Organization

Replacement

e How do we choose victim?
— Verbs: Victimize, evict, replace, cast out
e Several policies are possible
— FIFO (first-in-first-out)
— LRU (least recently used)
— NMRU (not most recently used)
— Pseudo-random (yes, really!)
e Pick victim within set where a = associativity
— If a <=2, LRU is cheap and easy (1 bit)
- If a> 2, it gets harder
— Pseudo-random works pretty well for caches

17

© 2005 Mikko Lipasti

Write Policy

e Replication in memory hierarchy

— 2 or more copies of same block
Main memory and/or disk
Caches

e What to do on a write?
— Eventually, all copies must be changed
— Write must propagate to all levels

18
© 2005 Mikko Lipasti

CS 282 - Computer Architecture & Organization

Write Policy

e Easiest policy: write-through
e Every write propagates directly through hierarchy
— Write in L1, L2, memory?
e Why is this a bad idea?
— Very high bandwidth requirement
— Remember, large memories are slow
e Popularin real systems only to the L2
— Every write updates L1 and L2
— Beyond L2, use write-back policy

© 2005 Mikko Lipasti

19

Write Policy

e Most widely used: write-back

e Maintain state of each line in a cache
— Invalid — not present in the cache
— Clean — present, but not written (unmodified)
— Dirty — present and written (modified)

e Store state in tag array, next to address tag
— Mark dirty bit on a write

e On eviction, check dirty bit
— If set, write back dirty line to next level
— Called a writeback or castout

© 2005 Mikko Lipasti

20

CS 282 - Computer Architecture & Organization

10

Write Policy

e Complications of write-back policy
— Stale copies lower in the hierarchy

— Must always check higher level for dirty copies before
accessing copy in a lower level

e Not a big problem in uniprocessors
— In multiprocessors: the cache coherence problem

e |/0 devices that use DMA (direct memory access)
can cause problems even in uniprocessors
— Called coherent I/O

— Must check caches for dirty copies before reading main
memory

© 2005 Mikko Lipasti

21

Write Miss Policy

e \What happens on a write miss?
o Write Allocate:
— Allocate new block in cache
— Write miss acts like a read miss, block is fetched and
updated
e No Write Allocate:
— Send data to lower-level memory
— Cache is not modified
e Typically, write back caches use write allocate
— Hoping subsequent writes will be captured in the cache
e Write-through caches often use no-write allocate

— Reasoning: writes must still go to lower level memory

22

CS 282 - Computer Architecture & Organization

11

Caches and Performance

e Caches

— Enable design for common case: cache hit

Pipeline tailored to handle cache hits efficiently

Cache organization determines access latency, cycle time
— Uncommon case: cache miss

Stall pipeline

Fetch from next level

— Apply recursively if multiple levels

e What is performance impact?

23
© 2005 Mikko Lipasti

Cache Misses and Performance

e Miss penalty
Detect miss: 1 or more cycles

Find victim (replace line): 1 or more cycles
Write back if dirty

Request line from next level: several cycles

Transfer line from next level: several cycles
(block size) / (bus width)

Fill line into data array, update tag array: 1+ cycles
Resume execution
® |n practice: 6 cycles to 100s of cycles

24
© 2005 Mikko Lipasti

CS 282 - Computer Architecture & Organization

12

Cache Miss Rate

e Determined by:
— Program characteristics

Temporal locality
Spatial locality
— Cache organization
Block size, associativity, number of sets
e Measured:
— In hardware
— Using simulation
— Analytically

25
© 2005 Mikko Lipasti

Cache Misses and Performance

e How does this affect performance?
e Performance = Time / Program

Instructions Cycles Time
- == X .
Program Instruction Cycle
(code size) (CPI) (cycle time)
e Cache organization affects cycle time
— Hit latency

e Cache misses affect CPI

26
© 2005 Mikko Lipasti

CS 282 - Computer Architecture & Organization

13

Memory Stall Cycles

e The processor stalls on a Cache miss
— When fetching instructions from the Instruction Cache (I-cache)
— When loading or storing data into the Data Cache (D-cache)
Memory stall cycles = Combined Misses x Miss Penalty

e Miss Penalty: clock cycles to process a cache miss

Combined Misses = I-Cache Misses + D-Cache Misses
I-Cache Misses = I-Count x 1-Cache Miss Rate
D-Cache Misses = LS-Count x D-Cache Miss Rate
LS-Count (Load & Store) = I-Count x LS Frequency

e Cache misses are often reported per thousand instructions

27

Memory Stall Cycles Per Instruction

e Memory Stall Cycles Per Instruction =
Combined Misses Per Instruction x Miss Penalty
e Miss Penalty is assumed equal for I-cache & D-cache
e Miss Penalty is assumed equal for Load and Store
e Combined Misses Per Instruction =
I-Cache Miss Rate + LS-Frequency x D-Cache Miss Rate
e Therefore, Memory Stall Cycles Per Instruction =
I-Cache Miss Rate x Miss Penalty +
LS-Frequency x D-Cache Miss Rate x Miss Penalty

28

CS 282 - Computer Architecture & Organization

14

Example on Memory Stall Cycles

e Consider a program with the given characteristics
Instruction count (I-Count) = 106 instructions

30% of instructions are loads and stores

D-cache miss rate is 5% and I-cache miss rate is 1%

Miss penalty is 100 clock cycles for instruction and data caches

Compute combined misses per instruction and memory stall cycles
e Combined misses per instruction in I-Cache and D-Cache
— 1% + 30% x 5% = 0.025 combined misses per instruction
— Equal to 25 misses per 1000 instructions
e Memory stall cycles

— 0.025 x 100 (miss penalty) = 2.5 stall cycles per instruction
— Total memory stall cycles = 108 x 2.5 = 2,500,000

29

CPU Time with Memory Stall Cycles

CPU Time = I-Count X CPlyemorysians X Clock Cycle

C:PIMemorySta\IIs = CPIPerfectCache + Mem Stalls per Instruction
® CPlogecicache = CPI for ideal cache (no cache misses)
® CPlyemonystais = CPlin the presence of memory stalls

e Memory stall cycles increase the CPI

30

CS 282 - Computer Architecture & Organization

15

Example on CPI with Memory Stalls

e A processor has CPI of 1.5 without any memory stalls
— Cache miss rate is 2% for instruction and 5% for data
— 20% of instructions are loads and stores
— Cache miss penalty is 100 clock cycles

e What is the impact on the CPI1?
e Answer: Instruction data

A A
ls ~

Mem Stalls per Instruction = 0.02x100 + 0.2x0.05x100 = 3

CPlyemorystas = 1.5 + 3 = 4.5 cycles per instruction

CI:)IMemoryStaIIs/ CPIPerfectCache = 45/15=3
Processor is 3 times slower due to memory stall cycles

31

Improving Cache Performance

e Average Memory Access Time (AMAT)
AMAT = Hit time + Miss rate * Miss penalty
e Used as a framework for optimizations

e® Reduce the Hit time

— Small & simple caches, avoid address translation for indexing

@ Reduce the Miss Rate

— Larger cache size, higher associativity, and larger block size

e Reduce the Miss Penalty

— Multilevel caches, give priority to read misses over writes 5,

CS 282 - Computer Architecture & Organization

16

Small and Simple Caches

e Hit time is critical: affects the processor clock cycle
— Fast clock rate demands small and simple L1 cache designs
e Small cache reduces the indexing time and hit time
— Indexing a cache represents a time consuming portion
— Tag comparison also adds to this hit time
e Direct-mapped overlaps tag check with data transfer
— Associative cache uses additional mux and increases hit
time
e Size of L1 caches has not increased much
— L1 caches are the same size on Alpha 21264 and 21364
— Same also on UltraSparc Il and Ill, AMD K6 and Athlon

— Reduced from 16 KB in Pentium Il to 8 KB in Pentium 4
33

Classifying Misses: 3 C’s [Hill]
e Compulsory Misses or Cold start misses

— First-ever reference to a given block of memory

— Measure: number of misses in an infinite cache model

— Can be reduced with pre-fetching
e Capacity Misses

— Working set exceeds cache capacity

— Useful blocks (with future references) displaced

— Good replacement policy is crucial!

— Measure: additional misses in a fully-associative cache
e Conflict Misses

— Placement restrictions (not fully-associative) cause useful blocks
to be displaced

— Think of as capacity within set
— Good replacement policy is crucial!

— Measure: additional misses in cache of interest
34

CS 282 - Computer Architecture & Organization

17

Classifying Misses — cont’d

Compulsory misses are independent of cache size

Miss Rate Very small for long-running programs

Capacity misses decrease as
capacity increases

14%

1-way
12%
2-way

Conflict misses decrease as
associativity increases

10%
4-way

8%
8-wal .

Y Data were collected using
Capacity LRU replacement

Compulsory

6%

4%

2%

1 2 4 8 16 32 64 128KB

35

Six Basic Cache Optimizations

1. Larger block size to reduce miss rate

2. Larger caches to reduce miss rate

3. Higher associativity to reduce miss rate
4. Multilevel caches to reduce miss penalty

5. Give priority to read misses over writes to
reduce miss penalty

6. Avoiding address translation for indexing
the cache

36

CS 282 - Computer Architecture & Organization

18

Larger Block Size

e Simplest way to reduce miss rate is to increase block size

e However, it increases conflict misses if cache is small

D506 e e e eeaneas Increased Conflict Misses

Reduced

20% 1 Compulsory —----------- e K 64-byte
° Misses blocks are
§ 16% (B - TN e —e— common in
" L1 caches
7] —a— 16K
= 1006 rerereme e
= .\.\/ 128-byte
o o e block are
— . . . common in
—— 256K
o ?:ﬂ:g:gzﬁ L2 caches

8 £ Block Size (bytes) 37

Larger Size and Higher Associativity

® |Increasing cache size reduces capacity misses
e It also reduces conflict misses
— Larger cache size spreads out references to more blocks
e Drawbacks: longer hit time and higher cost
e Larger caches are especially popular as 2" level caches
e Higher associativity also improves miss rates

— Eight-way set associative is as effective as a fully associative

38

CS 282 - Computer Architecture & Organization

Multilevel Caches

e Top level cache should be kept small to

— Keep pace with processor speed | 1-cache || D-cache |
e Adding another cache level . 4
Unified L2 Cache ‘
— Can reduce the memory gap T
— Can reduce memory bus loading | Main Memory |

e Local miss rate
— Number of misses in a cache / Memory accesses to this cache
— Miss Rate, , for L1 cache, and Miss Rate, , for L2 cache

e Global miss rate
Number of misses in a cache/Memory accesses generated by CPU
Miss Rate, , for L1 cache, and

Miss Rate, ; x Miss Rate, , for L2 cache s

Multilevel Cache Policies

e Multilevel Inclusion
— L1 cache data is always present in L2 cache
— Amissin L1, but a hit in L2 copies block from L2 to L1
— AmissinLland L2 brings a block into L1 and L2
— A write in L1 causes data to be written in L1 and L2
— Typically, write-through policy is used from L1 to L2
— Typically, write-back policy is used from L2 to main memory
To reduce traffic on the memory bus
— A replacement or invalidation in L2 must be propagated to L1

40

CS 282 - Computer Architecture & Organization

20

Multilevel Cache Policies — cont'd

e Multilevel exclusion
— L1 data is never found in L2 cache — Prevents wasting space
— Cache miss in L1, but a hit in L2 results in a swap of blocks
— Cache miss in both L1 and L2 brings the block into L1 only
— Block replaced in L1 is moved into L2
— Example: AMD Opteron
e Same or different block size in L1 and L2 caches
— Choosing a larger block size in L2 can improve performance
— However different block sizes complicates implementation
— Pentium 4 has 64-byte blocks in L1 and 128-byte blocks in L2

41

Multilevel Caches and CPI

CPI = CPlpypecacne + 2, PeENAILY, x MPI,

=1

e Penalty, is miss penalty at each of 77levels of cache
e MPI, is miss rate per instruction at each cache level

e Miss rate specification:
— Misses Per Instruction: easy to incorporate in CPI
— Misses Per Reference: must convert to per instruction

Local: misses per local reference

Global: misses per ifetch or load or store

42
© 2005 Mikko Lipasti

CS 282 - Computer Architecture & Organization

21

Cache Performance Example

e Assume following:
— CPlpgrtectcache = 1-15 (if no cache misses)
— L1 instruction cache: hit rate = 98% per instruction
— L1 data cache: hit rate = 96% per instruction
— Shared L2 cache: local miss rate = 40% per reference
— L1 miss penalty of 8 cycles

— L2 miss penalty of:
10 cycles latency to request word from memory
2 cycles per 16B bus transfer, 4x16B = 64B block transferred
Hence 8 cycles transfer plus 1 cycle to fill L2
Total L2 miss penalty = 10+8+1 = 19 cycles

© 2005 Mikko Lipasti

43

Cache Performance Example

CPI = CPl oy pencacne + 2, PeENAItY, x MPI,

1=1

CPI =115+

8cycles ><(O.OZmiss .\ 0.04missj
miss inst inst
19cycles 0.40miss 0.06ref
+———x X ——
miss ref inst
19cycles y 0.024miss

miss Inst
=1.15+0.48+0.456 = 2.086

=1.15+0.48+

© 2005 Mikko Lipasti

a4

CS 282 - Computer Architecture & Organization

22

Cache Misses and Performance

e CPl equation

— Only holds for misses that cannot be overlapped with
other activity
— Store misses often overlapped
Place store in store queue
Wait for miss to complete
Perform store
Allow subsequent instructions to continue in parallel
— Modern out-of-order processors also do this for loads

Cache performance modeling requires detailed modeling of
entire processor core

© 2005 Mikko Lipasti

45

Give Priority to Read Misses over Writes

e Write buffer:

— Decouples CPU write from the memory bus writing
e \Write-through: all stores are sent to write buffer

— Eliminates processor stalls on writes until buffer is full
o \Write-back: modified blocks are written when replaced

— Write buffer used for evicted blocks to be written back
e Write buffer content should be checked on a read miss

— Let the read miss continue if there is no conflict, given
read misses priority over writes

Cache Lower
Processor Level
—
Write Buffer

46

CS 282 - Computer Architecture & Organization

23

Avoid Address Translation for indexing

e Modern systems use virtual memory

Virtual Addresses are generated by programs
e \We can use the virtual address to index the cache

— While translating the virtual address to a physical address

Virtual Cache is addressed by a virtual address

— Address translation and cache indexing are done in parallel

Physical Cache is addressed by a physical address

However, virtual caches cause problems

— Page level protection should be checked

— Cache flushing and Process identifier tag (PID)

— Aliasing: 2 virtual addresses mapping to same physical address

More on Block Replacement

e How do we choose victim?
— Verbs: Victimize, evict, replace, cast out
e Several policies are possible
FIFO (first-in-first-out)
LRU (least recently used)
NMRU (not most recently used)
Pseudo-random (yes, really!)
® Pick victim within set where a = associativity
— If a <=2, LRU is cheap and easy (1 bit)
— If a > 2, it gets harder
— Pseudo-random works pretty well for caches

48
© 2005 Mikko Lipasti

CS 282 - Computer Architecture & Organization

24

Optimal Replacement Policy?

[Belady, IBM Systems Journal, 1966]
e Evict block with longest reuse distance

— i.e. Block to replace is referenced farthest in future
— Requires knowledge of the future!

e Can’t build it, but can model it with trace
— Process trace in reverse

— [Sugumar&Abraham] describe how to do this in
one pass over the trace with some lookahead
(Cheetah simulator)

e Useful, since it reveals opportunity

© 2005 Mikko Lipasti

49

Random and FIFO Replacement

e Number of blocks to choose from a set = a blocks

® Random replacement
— Candidate block is randomly selected
— One counter for all sets: incremented on every cycle
— Log,(a) bit Counter: counts fromOtoa—-1
— On a cache miss replace block specified by counter
® First In First Out (FIFO) replacement
Replace oldest block in set

One counter per set: specifies oldest block to replace

Log,(a) bit counter per set

Counter is incremented on a cache miss

50

CS 282 - Computer Architecture & Organization

25

Least-Recently Used

e For a=2, LRU is equivalent to NMRU
— Single bit per set indicates LRU/MRU
— Set/clear on each access

e For a>2, LRU is difficult/expensive
— Timestamps? How many bits?

Must find min timestamp on each eviction

— Sorted list? Re-sort on every access?

e List overhead: a x log,(a) bits per set
— Shift register implementation

51
© Shen, Lipasti

Practical Pseudo-LRU

=
v
5
%

N[> < [PX]|E|[O]|m|]-

e Rather than true LRU, use binary tree

e Each node records which half is older/newer
e Update nodes on each reference

e Follow older pointers to find LRU victim

52

CS 282 - Computer Architecture & Organization

26

Practical Pseudo-LRU In Action

’ | JYXZBCFA

- : 011: PLRU

B | Block B is here
: : 110: MRU

A block is here

z

Partial Order Encoded in Tree:

[z<a|[v<x|[B<c|J<E | e
i_x/
A>F Z

53

Practical Pseudo-LRU

Refs: J,Y,X,Z,B,C,F,A

] |
j - : 011: PLRU

5 | Block B is here
% —

T 110: MRU
% A =T block is here

z |

e Binary tree encodes PLRU partial order
— At each level point to LRU half of subtree
e Each access: flip nodes along path to block
e Eviction: follow LRU path
e Overhead: (a-1) bits per set

54

CS 282 - Computer Architecture & Organization

27

LRU Shortcomings

e Streaming data/scans: X, Xy, ..., X,
— Effectively no temporal reuse
e Thrashing: reuse distance > a
— Temporal reuse exists but LRU fails
e All blocks march from MRU to LRU
— Other conflicting blocks are pushed out
e For n>a no blocks remain after scan/thrash
— Incur many conflict misses after scan ends
® Pseudo-LRU sometimes helps a little bit

55

LRU Insertion Policy: LIP

e Memory-intensive: working set > cache size

— Cache block goes from MRU to LRU without
receiving any cache hit

® Insert new blocks into LRU, not MRU position
— Qureshi et al. ISCA 2007

e Dynamic Insertion Policy: DIP (Adaptive)
— Use set dueling to decide LIP vs. traditional LRU
— 1 (or a few) set uses LIP vs. 1 that uses LRU
— Compare hit rate for sets

— Set policy for all other sets to match best set
56

CS 282 - Computer Architecture & Organization

28

Not Recently Used (NRU)

e Keep NRU state in 1 bit/block
— Bitis set to 0 when installed (assume reuse)
— Bitis set to 0 when referenced (reuse observed)
— Evictions favor NRU=1 blocks
— If all blocks are NRU=0
Eviction forces all blocks in set to NRU=1
Picks one as victim

Can be pseudo-random, or rotating, or fixed left-to-right
e Simple, similar to virtual memory clock algorithm
e Provides some scan and thrash resistance
— Relies on “randomizing” evictions rather than strict LRU order

e Used by Intel Itanium, Sparc T2

57
© Shen, Lipasti

CS 282 - Computer Architecture & Organization

29

