
Virtual MemoryVirtual Memory

Muhamed Mudawar

CS 282 KAUST Spring 2010CS 282 – KAUST – Spring 2010

Computer Architecture & Organization

Virtual Memory Concepts
What is Virtual Memory?

Uses disk as an extension to memory system

Main memory acts like a cache to hard diskMain memory acts like a cache to hard disk

Each process has its own virtual address space

 Page: a virtual memory block

 Page fault: a memory miss
Page is not in main memory  transfer page from disk to memory

 Address translation:
CPU and OS translate virtual addresses to physical addresses

 Page Size:
Size of a page in memory and on disk

 Typical page size = 4KB – 16KB

Virtual Memory CS 282 – KAUST Slide 2

Virtual Memory Concepts
 A program’s address space is divided into pages

 All pages have the same fixed size (simplifies their allocation)

P 1Program 1
virtual address space

main memory

P 2

Pages are either in main

memory or on in secondary

storage (hard disk)

Program 2
virtual address space

Virtual Memory CS 282 – KAUST Slide 3

Issues in Virtual Memory
 Page Size

Small page sizes ranging from 4KB to 16KB are typical today

 Large page size can be 1MB to 4MB (reduces page table size)a ge page s e ca be to (educes page tab e s e)

Recent processors support multiple page sizes

 Placement Policy and Locating Pages
 Fully associative placement is typical to reduce page faults

Pages are located using a structure called a page table

Page table maps virtual pages onto physical page frames

 Handling Page Faults and Replacement Policyg g p y
Page faults are handled in software by the operating system

Replacement algorithm chooses which page to replace in memory

Write Policy
Write-through will not work, since writes take too long

 Instead, virtual memory systems use write-back

Virtual Memory CS 282 – KAUST Slide 4

Three Advantages of Virtual Memory
 Memory Management:

Programs are given contiguous view of memory

Pages have the same size simplifies memory allocationPages have the same size  simplifies memory allocation

Physical page frames need not be contiguous

Only the “Working Set” of program must be in physical memory

Stacks and Heaps can grow
 Use only as much physical memory as necessary

 Protection:
Different processes are protected from each otherp p

Different pages can be given special behavior (read only, etc)

Kernel data protected from User programs

Protection against malicious programs

 Sharing:
Can map same physical page to multiple users “Shared memory”

Virtual Memory CS 282 – KAUST Slide 5

Page Table and Address Mapping

Page offsetVirtual page number

Virtual address

Page table register

31 30 29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

Page Table maps
virtual page numbers
to physical frames

Page Table Register
contains the address
of the page table

Page offsetVirtual page number

Physical page numberValid

Page table

20 12

p y

Virtual page number
is used as an index

Virtual Memory CS 282 – KAUST Slide 6

Page offsetPhysical page number

Physical address

If 0 then page is not
present in memory

18

29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

into the page table

Page Table Entry
(PTE): describes the
page and its usage

Page Table – cont’d
 Each process has a page table

 The page table defines the address space of a process

Address space: set of page frames that can be accessedAddress space: set of page frames that can be accessed

Page table is stored in main memory

Can be modified only by the Operating System

 Page table register
Contains the physical address of the page table in memory

Processor uses this register to locate page table

 Page table entry
Contains information about a single page

Valid bit specifies whether page is in physical memory

Physical page number specifies the physical page address

Additional bits are used to specify protection and page use
Virtual Memory CS 282 – KAUST Slide 7

Size of the Page Table

 One level table is simplest to implement

Virtual Page Number 20 Page Offset 12

 One-level table is simplest to implement

 Each page table entry is typically 4 bytes

With 4K pages and 32-bit virtual address space, we need:

232/212 = 220 entries × 4 bytes = 4 MB

With 4K pages and 48-bit virtual address space, we need:

248/212 = 236 entries × 4 bytes = 238 bytes = 256 GB !

 Cannot keep whole page table in memory!

 Most of the virtual address space is unused

Virtual Memory CS 282 – KAUST Slide 8

Reducing the Page Table Size
 Use a limit register to restrict the size of the page table

 If virtual page number > limit register, then page is not allocated

Requires that the address space expand in only one direction

 Divide the page table into two tables with two limits

One table grows from lowest address up and used for the heap

One table grows from highest address down and used for stack

Does not work well when the address space is sparse

 Use a Multiple-Level (Hierarchical) Page Table

Allows the address space to be used in a sparse fashion

Sparse allocation without the need to allocate the entire page table

Primary disadvantage is multiple level address translation

Virtual Memory CS 282 – KAUST Slide 9

Multi-Level Page Table
Virtual Address

p1 p2 offset
01112212231

Level 1
Page Table

Root of the Current
Page Table

p1

p2

(Processor
Register)

10-bit
L1 index

10-bit
L2 index

Virtual Memory CS 282 – KAUST Slide 10

Page Table

Level 2
Page Tables

Data Pages

page in primary memory
page in secondary memory

Register)

PTE of a nonexistent page

Variable-Sized Page Support
Virtual Address

p1 p2 offset
01112212231 4 MB

page

Level 1
P T bl

Root of the Current
Page Table

p1

p2

(Processor
Registe)

10-bit
L1 index

10-bit
L2 index

Virtual Memory CS 282 – KAUST Slide 11

Page Table

Level 2
Page Tablespage in primary memory

large page in primary memory
page in secondary memory
PTE of a nonexistent page

Register)

Data Pages

Hashed Page Table

Hashed Page TableVPN offset
Virtual Address

hash
index

Base of Table

+ PA of PTEPID VPN PID PPN link

 One table for all processes
 Table is only small fraction of memory

Virtual Memory CS 282 – KAUST Slide 12

VPN PID PPN
 Table is only small fraction of memory

Number of entries is 2 to 3 times number of
page frames to reduce collision probability

 Hash function for address translation
Search through a chain of page table entries

Handling a Page Fault
 Page fault: requested page is not in memory

 The missing page is located on disk or created

 P i b ht f di k d P t bl i d t d Page is brought from disk and Page table is updated

 Another process may be run on the CPU while the first process

waits for the requested page to be read from disk

If no free pages are left, a page is swapped out

 Pseudo-LRU replacement policy

 Reference bit for each page each page table entryp g p g y

 Each time a page is accessed, set reference bit =1

 OS periodically clears the reference bits

Page faults are handled completely in software by the OS

 It takes milliseconds to transfer a page from disk to memory

Virtual Memory CS 282 – KAUST Slide 13

Write Policy
Write through does not work

 Takes millions of processor cycles to write disk

Write back

 Individual writes are accumulated into a page

 The page is copied back to disk only when the page is replaced

 Dirty bity

 1 if the page has been written

 0 if the page never changed

Virtual Memory CS 282 – KAUST Slide 14

TLB = Translation Lookaside Buffer
 Address translation is very expensive

Must translate virtual memory address on every memory access

Multilevel page table, each translation is several memory accesses

 Solution: TLB for address translation

Keep track of most common translations in the TLB

 TLB = Cache for address translation

CPU

Core
TLB Cache Main

Memory

VA PA miss

hit
data

Virtual Memory CS 282 – KAUST Slide 15

Translation Lookaside Buffer
TLB hit: Fast single cycle translation

TLB miss: Slow page table translation

VPN offset

V R W D VPN PPN

virtual address

(VPN = virtual page number)

TLB miss: Slow page table translation

Must update TLB on a TLB miss

Virtual Memory CS 282 – KAUST Slide 16

physical address PPN offsethit?

(PPN = physical page number)

Address Translation & Protection
Virtual Address Virtual Page No. (VPN) offset

Kernel/User Mode

Physical Address

Address
Translation

Physical Page No. (PPN) offset

Protection
Check

Exception?

Read/Write

Virtual Memory CS 282 – KAUST Slide 17

Every instruction and data access needs address translation and
protection checks

Check whether page is read only, writable, or executable

Check whether it can be accessed by the user or kernel only

Handling TLB Misses and Page Faults
 TLB miss: No entry in the TLB matches a virtual address

 TLB miss can be handled in software or in hardware

 Lookup page table entry in memory to bring into the TLB

 If page table entry is valid then retrieve entry into the TLB

 If page table entry is invalid then page fault (page is not in memory)

 Handling a Page Fault

 Interrupt the active process that caused the page fault

 Program counter of instruction that caused page fault must be saved

 Instruction causing page fault must not modify registers or memory

 Transfer control to the operating system to transfer the page

Restart later the instruction that caused the page fault

Virtual Memory CS 282 – KAUST

Handling a TLB Miss
 Software (MIPS, Alpha)

 TLB miss causes an exception and the operating system
walks the page tables and reloads TLB

A privileged addressing mode is used to access page tables

 Hardware (SPARC v8, x86, PowerPC)

A memory management unit (MMU) walks the page tables
and reloads the TLBand reloads the TLB

 If a missing (data or PT) page is encountered during the
TLB reloading, MMU gives up and signals a Page-Fault
exception for the original instruction. The page fault is
handled by the OS software.

Virtual Memory CS 282 – KAUST Slide 19

Address Translation Summary

TLB
Look p

hardware
hardware or software
software

Restart instruction

Lookup

Page Table
Walk

Protection
Check

miss hit

the page is
 memory  memory denied permitted

Virtual Memory CS 282 – KAUST Slide 20

Update TLBPage Fault
(OS loads page)

Physical
Address
(to cache)

 memory  memory p

Protection
Fault

SEGFAULT

TLB, Page Table, Cache Combinations

TLB Page Table Cache Possible? Under what circumstances?

Hit Hit Hit Yes – what we want!

Hit Hit Miss

Miss Hit Hit

Miss Hit Miss

Miss Miss Miss

Yes – although the page table is not
checked if the TLB hits

Yes – TLB miss, PA in page table

Yes – TLB miss, PA in page table, but
data is not in cache

Yes – page fault (page is on disk)

Virtual Memory CS 282 – KAUST Slide 21

Miss Miss Miss

Hit Miss Hit/Miss

Miss Miss Hit

Yes page fault (page is on disk)

Impossible – TLB translation is not
possible if page is not in memory

Impossible – data not allowed in cache if
page is not in memory

Address Translation in CPU Pipeline

PC
Inst
TLB

Inst.
Cache D Decode E M

Data
TLB

Data
Cache W+

Software handlers need restartable exception on page fault

Handling a TLB miss needs a hardware or software mechanism to refill TLB

Need mechanisms to cope with the additional latency of a TLB

TLB miss? Page Fault?
Protection violation?

TLB miss? Page Fault?
Protection violation?

Virtual Memory CS 282 – KAUST Slide 22

p y

 Slow down the clock

 Pipeline the TLB and cache access

 Virtual address caches

 Parallel TLB/cache access

Physical versus Virtual Caches
 Physical caches are addressed with physical addresses

Virtual addresses are generated by the CPU

Add t l ti i i d hi h i th hit tiAddress translation is required, which may increase the hit time

 Virtual caches are addressed with virtual addresses

Address translation is not required for a hit (only for a miss)

CPU

Core
TLB Main

Memory

VA PA (on miss)

Cache
hit

data

Virtual Memory CS 282 – KAUST Slide 23

Physical versus Virtual Caches

CPU Physical
CacheTLB Primary

Memory
VA

PA

Alternative: place the cache before the TLB

CPU

VA

Virtual
Cache

PA
TLB

Primary
Memory

 one-step process in case of a hit (+)
 cache needs to be flushed on a context switch unless

process identifiers (PIDs) included in tags (-)
 Aliasing problems due to the sharing of pages (-)
maintaining cache coherence (-)
Virtual Memory CS 282 – KAUST Slide 24

Drawbacks of a Virtual Cache
 Protection bits must be associated with each cache block

Whether it is read-only or read-write

 Flushing the virtual cache on a context switch

 To avoid mixing between virtual addresses of different processes

Can be avoided or reduced using a process identifier tag (PID)

 Aliases

Different virtual addresses map to same physical address

Sharing code (shared libraries) and data between processes

Copies of same block in a virtual cache

 Updates makes duplicate blocks inconsistent

Can’t happen in a physical cache

Virtual Memory CS 282 – KAUST Slide 25

Aliasing in Virtual-Address Caches
VA1

Page Table

Data Pages VA1 1st Copy of Data at PA

Tag Data

VA2

PA VA2 2nd Copy of Data at PA

Two virtual pages share
one physical page

Virtual cache can have two
copies of same physical data.
Writes to one copy not visible
to reads of other!

Virtual Memory CS 282 – KAUST Slide 26

General Solution: Disallow aliases to coexist in cache
OS Software solution for direct-mapped cache

VAs of shared pages must agree in cache index bits; this
ensures all VAs accessing same PA will conflict in direct-
mapped cache

Address Translation during Indexing
 To lookup a cache, we can distinguish between two tasks

 Indexing the cache – Physical or virtual address can be used

Comparing tags Physical or virtual address can be usedComparing tags – Physical or virtual address can be used

 Virtual caches eliminate address translation for a hit
However, cause many problems (protection, flushing, and aliasing)

 Best combination for an L1 cache
 Index the cache using virtual address

 Address translation can start concurrently with indexing

 The page offset is same in both virtual and physical address

 Part of page offset can be used for indexing  limits cache size

Compare tags using physical address

 Ensure that each cache block is given a unique physical address

Virtual Memory CS 282 – KAUST Slide 27

Concurrent Access to TLB & Cache

VPN L bVA Index

TLB Direct-map Cache
2L blocks
2b-byte block

PPN Page Offset

=
hit?

DataPhysical Tag
Tag

PA

k

Virtual Memory CS 282 – KAUST Slide 28

Index L is available without consulting the TLB
cache and TLB accesses can begin simultaneously

Tag comparison is made after both accesses are completed

Cases: L ≤ k-b, L > k-b (aliasing problem)

hit?

Problem with L1 Cache size > Page size

VPN a k – b bVA

Virtual Index = L bits

L1 cache
Direct-map

TLB

PPN ? Page Offset

Tag

PA

= hit?

PPN Data

PPN Data

VA1

VA2

k

Virtual Memory CS 282 – KAUST Slide 29

Virtual Index now uses the lower a bits of VPN
VA1 and VA2 can map to same PPN
Aliasing Problem: Index bits = L > k-b
Can the OS ensure that lower a bits of VPN are same in PPN?

Tag

Anti-Aliasing with Higher Associativity
Set Associative Organization

VPN a L = k-b bVA
Virtual
Index2a

TLB 2L blocks

PPN Page Offset

=
hit?

Tag

Physical Tag

PA

k 2L blocks

=

Tag

Virtual Memory CS 282 – KAUST Slide 30

hit?

Data

Physical Tag
2a

Using higher associativity: cache size > page size
2a physical tags are compared in parallel
Cache size = 2a x 2L x 2b > page size (2k bytes)

Anti-Aliasing via Second Level Cache

L1
Instruction
Cache

Memory

Usually a common L2 cache backs up both

CPU

L1 Data
Cache

Cache Unified L2
Cache

RF Memory

Memory

Memory

Virtual Memory CS 282 – KAUST Slide 31

Usually a common L2 cache backs up both
Instruction and Data L1 caches

L2 is typically “inclusive” of both Instruction and
Data caches

Anti-Aliasing Using L2: MIPS R10000

VPN a k – b bVA
L-bit index L1 cache

Direct-map

TLB

PPN Page Offset
Tag

PA

= hit?

PPN Data

PPN Data

VA1

VA2

k

 Suppose VA1 and VA2 (VA1  VA2) both map to

Virtual Memory CS 282 – KAUST Slide 32

Direct-Mapped L2

PPN Data
same PPN and VA1 is already in L1, L2

 After VA2 is resolved to PA, a collision will be
detected in L2.

 VA1 will be purged from L1 and L2, and VA2 will
be loaded  no aliasing !

TLB Organization
 TLB keeps track of recently accessed pages

Virtual and Physical page numbers

Valid, Dirty, and Reference bits

Access bits: whether page is read-only or read-write

PID: process ID – which process is currently using TLB entry

 Some Typical Values for a TLB

 TLB size = 16 – 512 entries

Small TLBs are fully associative, while big ones are set-associative

Hit time = 0.5 – 1 clock cycle

 TLB Miss Penalty = 10 – 100s clock cycles

Miss Rate = 0.01% – 1%

Virtual Memory CS 282 – KAUST Slide 33

Examples on TLB Parameters
Intel P4 AMD Opteron

1 TLB for instructions 2 TLBs for instructions (L1 and L2)

1 TLB for data

Both TLBs are 4-way set associative

Both use ~LRU replacement

Both have 128 entries

TLB misses are handled in hardware

2 TLBs for data (L1 and L2)

Both L1 TLBs are fully associative

Both L1 TLBs have 40 entries

Both L1 TLBs use ~LRU replacement

Both L2 TLBs are 4-way set associative

Both L2 TLBs have 512 entries

Both L2 LTBs use round-robin LRU

TBL misses are handled in hardware

Virtual Memory CS 282 – KAUST Slide 34

Putting It All Together: AMD Opteron
L1 TLB: 40 entries
Fully Associative
L2 TLB: 512 entries
4-way Set Associative

Virtual Memory CS 282 – KAUST Slide 35

VA = 48 bits
PA = 40 bits
L1: 64KB, 64-byte blocks
2-way set associative, LRU
Virtual index, Physical tag
L2: 1MB, 64-byte blocks
16-way set associative, PLRU

AMD Opteron Memory Hierarchy
 AMD Opteron has an exclusion policy between L1 and L2

Block can exist in L1 or L2 but not in both

Better use of cache resources

Both the D-cache and L2 use write-back with write-miss allocation

 L1 cache is pipelined, latency of hit is 2 clock cycles

 Miss in L1 goes to L2 and to memory controller
 Lower the miss penalty in case the L2 cache misses

 L1 cache is virtually indexed and physically tagged

 O i h t ll t h k f li i L1 On a miss, cache controller must check for aliases in L1
 23 = 8 L1 cache tags per way are examined for aliases in parallel

during an L2 cache lookup.

 If it finds an alias, the offending block is invalidated.

 Victim Buffer: used when replacing modified blocks
Virtual Memory CS 282 – KAUST Slide 36

Virtual Memory CS 282 – KAUST Slide 37

