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Abstract

The era of parallel computing for the masses is here, butngrit
correct parallel programs remains far more difficult thariting
sequential programs. Aside from a few domains, most pagalite
grams are written using a shared-memory approach.mémory
model,which specifies the meaning of shared variables, is at the
heart of this programming model. Unfortunately, it has ined
a tradeoff between programmability and performance, asdaha
guably been one of the most challenging and contentious amea
both hardware architecture and programming language fag@eci
tion. Recent broad community-scale efforts have finally tec
convergence in this debate, with popular languages suchwas J
and C++ and most hardware vendors publishing compatible-mem
ory model specifications. Although this convergence is anditic
improvement, it has exposed fundamental shortcomingsrireicu
popular languages and systems that prevent achievingstuan\of
structured and safe parallel programming.

This paper discusses the path to the above convergencarthe h
lessons learned, and their implications. A cornerstondisfdon-

vergence has been the view that the memory model should be a

contract between the programmer and the system - if the anogr
mer writes disciplined (data-race-free) programs, theéesyswill
provide high programmability (sequential consistencyj parfor-
mance. We discuss why this view is the best we can do withcurre
popular languages, and why it is inadequate moving forwafel.
then discuss research directions that eliminate much afdheern
about the memory model, but require rethinking popular Igra
languages and hardware. In particular, we argue that phtaii-
guages should not only promote high-level disciplined nigdaut
they should als@nforcethe discipline. Further, for scalable and
efficient performance, hardware should be co-designeckded-
vantage of and support such disciplined models. The inatzes
of the state-of-the-art and the research agenda we outiveedeep
implications for the practice, research, and teaching ofyntam-
puter science sub-disciplines, spanning theory, softvearé hard-
ware.

1. Introduction

Most parallel programs today are written using threads hadesl
variables. Although there is no consensus on parallel progring
models, there are a number of reasons why threads remaitgpopu
Threads were already widely supported by mainstream dpgrat
systems well before the dominance of multicore, largelyabse
they are also useful for other purposes. Direct hardwarpatifor
shared-memory potentially provides a performance adgantag.,

by implicitly sharing read-mostly data without the spacertnead

of complete replication. The ability to pass memory refesmn
among threads makes it easier to share complex data sesactur
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Finally, shared-memory makes it far easier to selectivahaftelize
application hot spots without complete redesign of datacsires.

The memory model, or memory consistency model, is at the
heart of the concurrency semantics of a shared-memory gmogr
or system. It defines the set of values that a read in a proggam i
allowed to return, thereby defining the basic semantics afegh
variables. It answers questions such as: Is there enougthi®mn
nization to ensure a thread’s write will occur before anoghead?
Can two threads write to adjacent fields in a memory location a
the same time? Must the final value of a location always be éne o
those written to it?

The memory model defines an interface between a program and
any hardware or software that may transform that progragn, the
compiler, the virtual machine, or any dynamic optimizet)sinot
possible to meaningfully reason about either a prograntt@urin
a high-level, bytecode, assembly, or machine languagea)ypart
of the language implementation (including hardware) withan
unambiguous memory model.

A complex memory model makes parallel programs difficult
to write, and parallel programming difficult to teach. An dye
constraining one may limit hardware and compiler optimaat
severely reducing performance. Since itis an interfacpenty, the
memory model decision has a long-lasting impact, affeqbioiga-
bility and maintainability of programs. Thus, a hardwarehétec-
ture committed to a strong memory model cannot later forsake
for a weaker model without breaking binary compatibilitpdaa
new compiler release with a weaker memory model may require
rewriting source code. Finally, memory model related denssfor
a single component must consider implications for the réshe
system. A processor vendor cannot guarantee a strong h@&dwa
model if the memory system designer provides a weaker model;
a strong hardware model is not very useful to programmersgusi
languages and compilers that provide only a weak guarantee.

Nonetheless, the central role of the memory model has of-
ten been downplayed. This is partly because formally specjf
a model that balances all desirable properties of prograsima
ity, performance, and portability has proven surprisingiynplex.

At the same time, informal, machine-specific descriptiora/ed
mostly adequate in an era where parallel programming waddhe
main of experts and achieving the highest possible perfocama
trumped programmability or portability arguments.

In the late 1980s and 1990s, the area received attentiomprim
ily in the hardware community, which explored many appreasch
with little consensus [2]. Commercial hardware memory nhdée
scriptions varied greatly in precision, including casesafplete
omission of the topic and some reflecting vendors’ reluctaioc
make commitments with unclear future implications. Altgbuhe
memory model affects the meaning of every load instructioev-



ery multithreaded application, it is still sometimes relegl to the
“systems programming” section of the architecture manual.

Part of the challenge for hardware architects was the lack of
clear memory models at the programming language level —st wa
unclear what programmers expected hardware to do. Although
hardware researchers proposed approaches to bridge fth[8]ga
widespread adoption required consensus from the software c
munity. Before 2000, there were a few programming enviramsie
that addressed the issue with relative clarity (cf. [37(it,the most
widely used environments had unclear and questionabléfigaec
tions [29, 9]. Even when specifications were relatively clézey
were often violated to obtain sufficient performance [9hded to
be misunderstood even by experts, and were difficult to teach

Since 2000, we have been involved in efforts to cleanly $peci
programming-language-level memory models, first for Javd a
then C++, with efforts now underway to adopt similar models f

Initially X=Y=0
RedThread | Blue Thread
X =1; Y =1;
rl =Y; r2 = X;

Figure1l. Core of Dekker’s Algorithm. Caml =r2 =07

Execution 1| Execution 2| Execution 3
X=1; Y =1; X =1;

rl =Y; r2 = X; Y =1;

Y =1; X =1; rl =Y;
r2 = X; rl =1Y; r2 = X;
IIr1==0 lr1==1 Ir1==1
/[ r2 == /[ r2 == /[ r2==

Figure2. Some executions for Figure 1

C and other languages. In the process, we had to address issue

created by hardware that had evolved without the benefit tdax ¢
programming model. This often made it difficult to recondiie
need for a simple and usable programming model with that for
adequate performance on existing hardware.

Today, the above languages and most hardware vendors hav
published (or plan to publish) compatible memory model Bpec
cations. Although this convergence is a dramatic improveroeer
the past, it has exposed fundamental shortcomings in oal-par
lel languages and their interplay with hardware. After diesaof
research, it is still unacceptably difficult to describe wialue a
load can return without compromising modern safety guaesor
implementation methodologies. To us, this experience hedent
clear that solving the memory model problem will require @ si
nificantly new and cross-disciplinary research directmrpfarallel
computing languages, hardware, and environments as a whole

This paper discusses the path that led to the current cozvesg
in memory models, the fundamental shortcomings it expceed,
the implications for future research. The central role @f them-
ory model in parallel computing makes this paper relevantaoy
computer science sub-disciplines, including algorithaysplica-
tions, languages, compilers, formal methods, softwar@eeging,
virtual machines, runtime systems, and hardware. For ifitact
ers and educators, the paper provides a succinct summahge of t
state-of-the-art of this often ignored and poorly undeydttopic.
For researchers, the paper outlines an ambitious, cresgplinary
agenda towards resolving a fundamental problem in paradiel-

puting today — what value can a shared variable have and how to

implement it?

2. Sequential Consistency

A natural view of the execution of a multithreaded prograrerep
ating on shared variables is as follows. Each step in theutxec
consists of choosing one of the threads to execute, and ten p
forming the next step in that thread’s execution (as didtatethe
thread’s program text, gsrogram ordej. This process is repeated
until the program as a whole terminates. Effectively, theceion
can be viewed as taking all the steps executed by each traedd,
interleaving them in some way. Whenever an object (i.e ae
field, or array element) is accessed, the last value storttetob-
ject by this interleaved sequence is retrieved.

For example, consider Figure 1, which gives the core of Dekke
mutual exclusion algorithm. The program can be executedby i
terleaving the steps from the two threads in many ways. Hoyma
each of these interleavings is a total order over all thesspesp-
formed by all the threads, that is consistent with the pnogoader
of each thread. Each access to a shared variable “seesStipeita
value stored to that variable in the interleaving.

Figure 2 gives three possible executions that togethestilite
all possible final values of the non-shared variaklesandr2. Al-
though many other interleavings are also possible, it ipnesible

éhat bothr1 andr2 are 0 at the end of an execution; any execution

must start with the first statement of one of the two threaals the
variable assigned there will later be read as one.

Following Lamport [24], an execution that can be understood
as such an interleaving is referred to sequentially consistent
Sequential consistency gives us the simplest possibleingpéor
shared variables, but suffers from several related flaws.

First, sequential consistency can be expensive to implerfen
Figure 1, a compiler might, for example, reorder the two pete
dent assignments in the red thread, since scheduling lcatis e
tends to hide the load latency. In addition, modern proagssalb
most always use a store buffer to avoid waiting for storesoto-c
plete, also effectively reordering instructions in eacte#id. Both
the compiler and hardware optimization make an outcomet gf=
0 andr2 == 0 possible, and hence may result in a non-sequentially-
consistent execution. Overall, reordering any pair of sses, read-
ing values from write buffers, register promotion, commai-s
expression elimination, redundant read elimination, andywther
hardware and compiler optimizations commonly used in wtes-
sors can potentially violate sequential consistency [2].

There is some work on compiler analysis to determine when
such transformations are unsafe (e.g., [34]). Compileygiever,
often have little information about sharing between thseadak-
ing it expensive to forego the optimizations, since we wdade to
forego them everywhere. There is also much work on speualsti
performing these optimizations in hardware, with rollbackde-
tection of an actual sequential consistency violation.(§1§, 14]).
However, these ideas are tied to specific implementatidmiqoes
(e.g., aggressive speculation support), and vendors reaverally
been unwilling to commit to those for the long term (espégial
given non-sequentially consistent compilers). Thus, mastware
and compilers today do not provide sequential consistency.

Second, while sequential consistency may seem to be the sim-
plest model, itis not sufficiently simple and a much less uigafo-
gramming model than commonly imagined. For example, it only
makes sense to reason about interleaving steps if we know wha
those steps are. In this case, they are typically individoaimn-
ory accesses, a very low-level notion. Consider two threadsur-
rently assigning values of 100,000 and 60,000 to the shanealte
X on a machine that accesses memory 16 bits at a time. The final
value ofX in a “sequentially consistent” execution may be 125,536
if the assignment of 60,000 occurred between the bottom @md t
half of the assignment of 100,000. At a somewhat higher Jefi
implies the meaning of even simple library operations ddpem
the granularity at which the library carries out those opiers.
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More generally, programmers do not reason about corrextnes bit integer is used for synchronization purposes, it shawdtibe

of parallel code in terms of interleavings of individual meny
accesses, and sequential consistency does not preventozcomm
sources of concurrency bugs arising from simultaneoussacite
the same shared data (e.g., data races). Even with sedwamtia
sistency, such simultaneous accesses can remain danganols
should be avoided, or at least explicitly highlighted. Redyon
sequential consistency without such highlighting bothcolbss the
code, and greatly complicates the implementation’s job.

3. Data-Race-Free
We can avoid both of the above problems by observing that:

e The problematic transformations (e.g., reordering acsess

unrelated variables in Figure 1) never change the meaning of

single-threaded programs, but do affect multithreadednarms
(e.g., by allowing bothr1 andr2 to be0 in Figure 1).

¢ These transformations are detectable only by code thatsllo
two threads to access the same data simultaneously in ¢enflic
ing ways; e.g., one thread writes the data and another reads i

Programming languages generally already prosidehroniza-
tion mechanisms, such as locks, or possibly transactional mgmor
for limiting simultaneous access to variables by differémeads.

If we require that these be used correctly, and guaranteeestg|
consistency only if no undesirable concurrent accessgsrasent,
we avoid the above issues.

We can make this more precise as follows. We assume the lan-

guage allows distinguishing between synchronization adthary
(non-synchronization or data) operations (see below). &yettsat
two memory operationsonflictif they access the same memory
location (e.g., variable or array element), and at leasi®aavrite.

We say that a program (on a particular input) allovesaga race
if it has a sequentially consistent execution (i.e., a progordered
interleaving of operations of the individual threads) iniethtwo
conflicting ordinary operations execute “simultaneotsfar our
purposes, two operations execute “simultaneously” if tbegur
next to each other in the interleaving and correspond t@mifft
threads. Since these operations occur adjacently in tedeaving,
we know that they could equally well have occurred in the o
order; there are no intervening operations to enforce tteror

To ensure that two conflicting ordinary operations do not-hap
pen simultaneously, they must be ordered by interveningleyn
nization operations. For example, one thread must reledgeka
after accessing a shared variable, and the other threacacmsite
the lock before its access. Thus, it is also possible to defata
races as conflicting accesses not ordered by synchromizasas
done in Java. These definitions are essentially equivaledsy].

A program that does not allow a data race is said to be dag-rac
free. Thedata-race-freemodel guarantees sequential consistency
only for data-race-free programs [3, 1]. For programs thiaiva
data races, the model does not provide any guarantees.

The restriction on data races is not onerous. In additiondkd
for avoiding data races, modern programming languagesaine
also provide a mechanism, such as Javakatile variables, for
declaring that certain variables or fields are to be usedyiuocliso-
nization between threads. Conflicting accesses to suchblas
may occur simultaneously — since they are explicitly idédi as
synchronizatior{vs. ordinary), they do not create a data race.

To write Figure 1 correctly under data-race-free, we nesegbi
identify the shared variablesandY as synchronization variables.
This would require the implementation to do whatever is ssagy
to ensure sequential consistency, in spite of those simedias
accesses. It would also obligate the implementation torertiat
these synchronization accesses are performed indivisftdy32-

visibly accessed as two 16-bit halves.

This “sequential consistency for data-race-free progteaaps
proach alleviates the problems discussed with pure seiqlieah-
sistency. Most important hardware and compiler optimaragicon-
tinue to be allowed for ordinary accesses — care must be faken
marily at the explicitly identified (infrequent) synchraation ac-
cesses since these are the only ones through which suchizgptim
tions and granularity considerations affect program autoFur-
ther, synchronization-free sections of the code appeaxdéoute
atomically and the requirement to explicitly identify coment ac-
cesses makes it easier for humans and compilers to undeéthean
code. This is described in more detail in, for example [11].

Data-race-free does not give the implementation a blariket |
cense to perform single-threaded program optimizatiomsalr-
ticular, optimizations that amount to copying a sharedalsd to
itself; i.e., introducing the assignmest= x, wherex might not
otherwise have been written, generally remain illegal. sSEhare
commonly performed in certain contexts [9], but should ret b

Although data-race-free was formally proposed in 1990 if3],
did not see widespread adoption as a formal model in industry
til recently. We next describe the evolution of industry ratscto a
convergent path centered around data-race-free, the emestgprt-
comings of data-race-free, and their implications for therfe.

4. Industry Practice and Evolution
4.1 Hardware Memory Models

Most hardware supports relaxed models that are weaker #tan s
quential consistency. These models take an implementation
performance-centric view, where the desirable hardwatieniga-
tions drive the model specification [2]. Typical driving opiza-
tions relax the program order requirement of sequentiakisen
tency. For example, Sparc’'s TSO guarantees that a threais m
ory accesses will become visible to other threads in progmater,
except for the case of a write followed by a read. Such models
additionally provide fence instructions to enable progmaars to
explicitly impose orderings that are otherwise not guaradi e.g.,
TSO programmers may insert a fence between a thread’s wdte a
read to ensure the execution preserves that order.

Such a program-orderings + fences style of specificatioimis s
ple, but many subtleties make it inadequate [1, 2]. Firss, style
implies that a write is an atomic or indivisible operatiomittpe-
comes visible to all threads at once. As Figure 3 illustratesv-
ever, hardware may make writes visible to different threatdsif-
ferent times through write buffers and shared caches. jharating
such optimizations increases the complexity of the memargleh
specification. Thus, the full TSO specification, which irpmates
one of the simplest atomicity optimizations, is much mox®ined
than the simple description above. PowerPC implements ampre
gressive forms of the optimization, with a specificatiort tr@om-
plex and difficult to interpret even for experts. The x86 doenta-
tion from both AMD and Intel was ambiguous on this issue; niece
updates now clarify the intent, but remain informal.

Second, in well-written software, a thread usually reliesyn-
chronization interactions to reason about the orderingsibity
of memory accesses on other threads. Thus, it is usuallyitver
to require that two program ordered accesses always becisme v
ible to all threads in the same order or a write appears atomic to
all threads regardless of the synchronization among the thréad
stead, itis sufficient to preserve ordering and atomicity among
mutually synchronizing threads. Some hardware implentienis
attempt to exploit this insight, albeit through ad hoc teqghbes,
thereby further complicating the memory model.
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Initially X=Y=0

Core 1l Core 2 Core 3 Core 4

X = 1; Y =1; rl = X; 3=,
fence; fence;
r2 =Y; rd = X;

Canr1=1,r2=0,r3=1,r4 =0, violating write atomicity?

Figure 3. Hardware may not execute atomic or indivisible writes.
Assume a fence imposes program order. Assume core 3’s aad cor
4's caches have X and Y. The two writes generate invalidation
for these caches. These could reach the caches in a diffendet
giving the result shown and a deduction that X’s update aclath
before and after Y's.

Initially X=Y=0

Core 1l Core 2

rl = X; r2 = Y;

if (ri==1) if (Y==1)
Y =1; X =1;

Isr1=r2=1 allowed?

@)
Initially X=Y=0

Core 1 Core 2
rl = X; r2 =Y;
Y = r1; X =12;

Isr1=r2 =42 allowed?

(b)

Figure 4. Subtleties with (a) control and (b) data dependences.
It is feasible for core 1 to speculate that its read of X wilke sk
and speculatively write Y. Core 2 similarly writes X. Bothacs
now return 1, creating a “self-fulfilling” speculation or edusality
loop.” Within a single core, no control dependences areaténl
since the speculation appears correct; however, mostarogers
will not expect such an outcome (the code is in fact data-fieeme
since no sequentially consistent execution contains a da).
Part (b) shows an analogous causal loop with data deperglence
Core 1 may speculate X is 42 (e.g., using value predictioedas
on previous store values) and (speculatively) write 42 WhtGore

2 reads this and writes 42 into X, thereby proving the speicuia
right and creating a causal loop that generates a value (#)fe
thin-air. Fortunately, no processor today behaves this matythe
memory model specification needs to reflect this property.

Third, modern processors perform various forms of speicuat
(e.g., on branches and addresses) which can result in sarule
complex interactions with data and control dependencesiuas
trated in Figure 4. Incorporating these considerations jimegise
way adds another source of complexity to program-order ¢een
style specifications. As we discuss in Section 4.2.1, pedfoisnal-
ization of data and control dependences is a fundamentéabs
to providing clean high-level memory model specificaticodaty.

In summary, hardware memory model specifications have often
been incomplete, excessively complex, and/or ambiguoasgn
to be misinterpreted even by experts. Further, since hasdmad-
els have largely been driven by hardware optimizations; tave
often not been well-matched to software requirements/tiegun
incorrect code or unnecessary loss in performance (Se¢t8)n

4.2 High-Level Language Memory Models

Ada was perhaps the first widely used high-level programrging
guage to provide first class support for shared-memory lghral
programming. Although Ada’s approach to thread synchiation
was initially quite different from both that of the earlierega de-
sign and most later language designs, it was remarkablynadda

in its treatment of memory semantics [37]. It used a styldlaimo
data-race-free, requiring legal programs to be well-symeized;
however, it did not fully formalize the notion of well-synamnized
and left uncertain the behavior of such programs.

Subsequently, until the introduction of Java, mainstreao p
gramming languages did not provide first-class supportiieads,
and shared-memory programming was mostly enabled thraugh |
braries and APIs such as Posix threads and OpenMP. Previols w
describes why the approach of an add-on threads librarytismo
tirely satisfactory [9]. Without a real definition of the gnam-
ming language in the context of threads, it is unclear what-co
piler transformations are legal, and hence what the progrenis
allowed to assume. Nevertheless, the Posix threads speicific
indicates a model similar to data-race-free, althoughetlaee sev-
eral inconsistent aspects, with widely varying interpiietes even
among experts participating in standards committee désons.
The OpenMP model is also unclear and largely based on a flush
instruction that is analogous to fence instructions in herg mod-
els, with related shortcomings.

421 TheJavaMemory Model

Java provided first class support for threads with a chapiecit
ically devoted to its memory model. Pugh showed that thisehod
was hard to interpret and badly broken — common compiler opti
mizations were prohibited and in many cases the model gave am
biguous or unexpected behavior [29]. In 2000, Sun appoiated
expert group to revise the model through the Java community p
cess [30]. The effort was coordinated through an open nggliét
that attracted a variety of participants, representingllvare and
software and researchers and practitioners.

It was quickly decided that the Java memory model must pro-
vide sequential consistency for data-race-free programigre
volatile accesses (and locks from synchronized methodsremd
itors) were deemed synchronization.

However, data-race-free is inadequate for Java. Since i§ava
meant to be a safe and secure language, it cannot alloweayhite-
havior for data races. Specifically, Java must support stedicode
running as part of a trusted application and hence must tenit-
age done by a data race in the untrusted code. Unfortuntitelyp-
tions of safety, security, and “limited damage” in a multithded
context were not clearly defined. The challenge with defirirey
Java model was to formalize these notions in a way that mihyma
affected system flexibility.

Figure 4(b) illustrates these issues. The program has a data
race and is buggy. However, Java cannot allow its reads torret
values out-of-thin-air (e.g., 42) since this could cleadynpromise
safety and security. It would, for example, make it impokesio
guarantee that similar untrusted code cannot return a padstat
it should not have access to. Such a scenario appears ttevéoip
reasonable causality expectation and no current procpesduces
it. Nevertheless, the memory model must formally prohibitts
behavior so that future speculative processors also atoid i

Prohibiting such causality violations in a way that doesaist
prohibit other desired optimizations turned out to be saipgly
difficult. Figure 5 illustrates an example that also appé&axsolate
causality, but is allowed by the common compiler optimizatof
redundant read elimination. After many proposals and fierye
of spirited debate, the current model was approved as the bes
compromise. This model allows the outcome of Figure 5, bait no
that of Figure 4(b). Unfortunately, this model is very complwas
known to have some surprising behaviors, and has recendly be
shown to have a bug. We provide intuition for the model belod a
refer the reader to [26] for a full description.

Common to both Figures 4(b) and 5 are writes that are executed
earlier than they would be with sequential consistency. &xtan-
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Initially X=Y=0
Original code
Thread 1 Thread 2

rl =X 3=Y
r2 = X X=r3
if (r1 == r2)

Y=1
After compiler transformation|
Thread 1 Thread 2
Y=1 3=Y
rl =X X=r3
r2 =ri
if (true);

Is r1=r2=r3=1 allowed?

Figure 5. Redundant read elimination may appear as a causality
violation, but must be allowed. For thread 1, the compileuldo
eliminate the redundant read of X, replacing r2=X with r2=rl1
This allows deducing that r1==r2 is always true, making thgev

of Y unconditional. Then the compiler may move the write to
before the read of X since no dependence is violated. Seiquent
consistency would allow both the reads of X and Y to return 1 in
the new but not the original code. This outcome for the oggin
code appears to violate causality since it seems to requsadfa
justifying speculative write of Y.

ples differ in that for the speculative write in the latter<Y), there

is somesequentially consistent execution where it is executeal (th
execution where both reads of X return 0). For Figure 4(t8relis

no sequentially consistent execution where Y=42 could oddus
notion of whether a speculative writsuld occur in some well-
behaved execution is the basis of causality in the Java madel
the definition ofwell-behaveds the key source of complexity.

The Java model tests for the legality of an execution by “com-
mitting” one or more of its memory accesses at a time — lggalit
requires all accesses to commit (in any order). Committingise
early (before its turn in program order) requires it to odow well-
behaved execution where (informally) (1) the already cottadi
accesses have similar synchronization and data raceoreatps
in all previously used well-behaved executions and (2) thbe-
committed write is not dependent on a read that returns ltgeva
from a data race. These conditions ensure that a future de¢a r
will never be used to justify a speculative write which cotlién
later justify that future data race.

A key reason for the complexity in the Java model is that it is
not operational — an access in the future can determine whtta
current access is legal. Further, many possible futureutixets
must be examined to determine this legality. The choice tifréu
(well-behaved) executions also gives some surprisingltsesim
particular, as discussed in [26], if the code of one threédaiimed”
in (concatenated with) another thread, then the inlinece azah
produce more behaviors than the original. Thus, threadindi
is generally illegal under the Java model (even if there aye n
synchronization and deadlock related considerationg)réwtice,
the prohibited optimizations are difficult to implement athés is
not a significant performance limitation. The behavior, beer, is
non-intuitive, with other implications — it occurs becassene data
races in the original code may no longer be data races in lineéh
code. This means that when determining whether to commiita wr
early, aread in a well-behaved execution has more choicesum
values than before (since there are fewer data races)tingsin
new behaviors.

More generally, increasing synchronization in the Java ehod
can actually result in new behaviors, even though more spach
nization conventionally constrains possible executi®ezently, it
has been shown that, for similar reasons, adding seemingly i

evant reads or removing redundant reads sometimes candidso a
new behaviors, and that the above properties have moreisens
plications than previously thought [33]. In particularns® opti-
mizations that were intended to be allowed by the Java maéel a
in fact prohibited by the current specification.

It is unclear if current hardware or JVMs implement the above
optimizations and therefore violate the current Java maddet-
tainly the current specification is much improved over thginal.
Regardless, the situation is still far from satisfactoiiyst: clearly,
the current specification does not meet its desired interagf
ing certain common optimizing transformations preseragmm
meaning. Second, its inherent complexity and the new obtens
make it difficult to prove the correctness of any real systéhird,
the specification methodology is inherently fragile — srohtinges
usually result in hard-to-detect unintended consequences

The Java model was largely guided by an emergent set of test
cases [30], based on informal code transformations tha¢ wer
were not deemed desirable. While it may be possible to fixdke J
model, it seems undesirable that our specification of nmué@ded
program behavior would rest on such a complex and fragilefou
dation. Instead, Section 6 advocates a fundamental rétigirof
our approach.

422 TheC++ Memory Model

The situation in C++ was significantly different from JaveneT
language itself provided no support for threads. None#iselidey
were already in widespread use, typically with the additdra
library-based threads implementation, such as pthred@jofzhe
corresponding Microsoft Windows facilities. Unfortunigtéhe rel-
evant specifications, for example the combination of the C-br
standard with the Posix standard, left significant unceties about
the rules governing shared variables [9]. This made it wide
compiler writers precisely what they needed to implemesstlited
in very occasional failures for which it was hard to assigani
to any specific piece of the implementation and, most impadista
made it difficult to teach parallel programming since even ¢k-
perts were unable to agree on some of the basic rules, such as
whether figure 4(a) constitutes a data race. (Correct andVeey
Motivated by these observations, we began an effort in 2005
to develop a proper memory model for C++. The resulting &ffor
eventually expanded to include the definitionagbmic (synchro-
nization, analogous to Javalatile) operations, and the threads
API itself. It is part of the current Committee Draft [22] foine
next C++ revision. The next C standard is expected to corgain
very similar memory model, with very similartomic operations.
This development took place in the face of increasing ddait t
a Java-like memory model relying on sequential consistdacy
data-race-free programs was efficiently implementable amm
stream architectures, at least given the specificationkbai@at the
time. Largely as a result, much of the early discussion fedum
the tension between the following two observations, botiluth
we still believe to be correct given existing hardware:

e A programming language model weaker than data-race-free is
probably unusable by a large fraction of the programming-com
munity. Earlier work [10] points out, for example, that even
thread library implementors often get confused when it come
to dealing explicitly with memory ordering issues. Substn
effort was invested in attempts to develop weaker, but compa
rably simple and usable models. We do not feel these were suc-
cessful.

e On some architectures, notably on some PowerPC implementa-
tions, data-race-free involves substantial implemeniatiost.
(In light of modern (2009) specifications, the cost on others
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notably x86, is modest, and limited largelydeomic (C++) or
volatile (Java) store operations.)

tion store followed by a synchronization load; thus this liempen-
tation does not prevent the incorrect outcome for Figure 1.
This may be addressed by translating a synchronizatioa &tor

This resulted in a compromise memory model that supports an ordinary store instruction followed by an expensive érihe

data-race-free for nearly all of the language. Howewekmic
data types also provide low-level operations with expliogm-
ory ordering constraints that blatantly violate sequént@nsis-
tency, even in the absence of data races. The low-level tpesa
are easily identified and can be easily avoided by non-expert
grammers. (They require an expligiégmory_order_ argument.)
But they do give expert programmers a way to write very cdiyefu
crafted, but portable, synchronization code that apprestie per-
formance of assembly code.

sole purpose of this fence is to prevent reordering of thetsyo:
nization store with a subsequesynchronizatiodoad. In practice,
such a synchronization load is unlikely to follow closelyoegh
(Dekker's algorithm is not commonly used) to really conistitae
hardware. But the only available fence instruction constrall
memory reordering around it, including that involving ordiy
data accesses, and thus overly constrains the hardwaretté be
solution would involve distinguishing between two flavofdamds
and stores (ordinary and synchronization), roughly aldmglines

Since C++ does not support sand-boxed code execution, theof Itanium's1d.acq andst.rel [21]. This, however, requires a

C++ draft standard can and does leave the semantics of agpnogr
with data races completely undefined, effectively makingrio-
neous to write such programs. As we point out in [12], this &as
number of, mostly performance-related, advantages, attelrlve-
flects existing compiler implementations.

In addition to the issues raised in Section 5, it should bedhot
that this really only pushes Java’s issues with causalityammuch
smaller and darker corner of the specification; exactly tmes
issues arise if we rewrite Figure 4(b) with Catomic variables
and use low-levelemory_order_relaxed operations. Our current
solution to this problem is simpler, but as inelegant as éva dne.
Unlike Java, it affects a small number of fairly esotericdity calls,
not all memory accesses.

As with the Java model, we feel that although this solution in
volves compromises, it is an important step forward. It dleas-
tablishes data-race-free as the core guarantee that enagyam-
mer should understand. It defines precisely what constitaata
race. It finally resolves simple questions such ast.H andx.b
are assigned simultaneously, is that a data race? (No,sutlieg
are part of the same contiguous sequence of bit-fields.) Bygdo
S0, it clearly identifies shortcomings of existing comgslénat we
can now begin to remedy.

4.3 Reconciling Language and Hardware M odels

Throughout this process, it repeatedly became clear thaému
hardware models and supporting fence instructions ara aftbest

a marginal match for programming language memory modeits, pa
ticularly in the presence of Jawalatile fields or C++atomic
objects. It is always possible to implement such synchaiiin

change to the instruction set architecture, usually a difffgropo-
sition.

We suspect the current situation makes the fence instruc-
tion more expensive than necessary, in turn motivating -addi
tional language-level complexity such as C++ low-levelnaits
orlazySet () in Java.

5. LessonsLearned

Data-race-free provides a simple and consistent modehfeatls
and shared variables. We are convinced that it is the bestinmd
day to target during initial software development. Unfogtely, its
lack of any guarantees in the presence of data races and toisma
with current hardware implies three significant weaknesses

Debugging Accidental introduction of a data race results in “unde-
fined behavior,” which often takes the form of surprisingutes
later during program execution, possibly long after thedate
has resulted in corrupted data. Although the usual immedéat
sult of a data race is that an unexpected, and perhaps inetenpl
value is read, or that an inconsistent value is written, wiatpo
out in [12] that other results, such as wild branches, are als
possible as a result of compiler optimizations that mistéke
assume the absence of data races. Since such races ardtdifficu
to reproduce, the root cause of such misbehavior is oftén dif
cult to identify, and such bugs may easily take weeks to track
down. Many tools to aid such debugging (e.g., CHESS [27] and
RaceFuzzer [32] ) also assume sequential consistency,-some
what limiting their utility.

variables by mapping each one to a lock, and acquiring and re- Synchronization variable performance on current hardware

leasing the corresponding lock around all accesses. Howtng
typically adds an overhead of hundreds of cycles to eachsagce
particularly since the lock accesses are likely to resutbinerence
cache misses, even when only read accesses are involved.
Volatile and atomic variables are typically used to avoid
locks for exactly these reasons. A typical use is a flag thtitates
a read-only data structure has been lazily initializedc&ithe ini-
tialization has to happen only once, nearly all accesseglgiraad
theatomic/volatile flag and avoid lock acquisitions. Acquiring
a lock to access the flag defeats the purpose.
On hardware that relaxes write atomicity (see Figure 3),-how
ever, it is often unclear that more efficient mappings (ttenuse
of locks) are possible; even the fully fenced implementativay
not be sequentially consistent. Even on other hardwareg e
apparent mismatches, most probably caused by the lack ofi-a we

As discussed, ensuring sequential consistency in the q@rese
of Javavolatile or C++atomic on current hardware can be
expensive. As a result, both C++, and to a lesser extent Java,
have had to provide less expensive alternatives that greath-
plicate the model for experts trying to use them.

Untrusted code There is no way to ensure data-race-freedom in
untrusted code. Thus, this model is insufficient for langsag
like Java.

An unequivocal lesson from our experiences is that for pro-
grams with data races, it is very hard to define semanticsatfeat
easy to understand and yet retain desired system flexitityle
the Java memory model came a long way, its complexity, and sub
sequent discoveries of its surprising behaviors, are tanfsatis-
fying. Unfortunately, we know of no alternative specificatithat

understood programming language model when the hardwase wa is sufficiently simple to be considered practical. Secontes to

designed. On x86, it islmostsufficient to map synchronization
loads and stores directly to ordinary load and store instms.
The hardware provides sufficient guarantees to ensureltthiatoy
memory operations are neisibly reordered with synchronization
operations. However it fails to prevent reordering of a $ynoiza-

weaken the data-race-free guarantee to better match tinaesh
ware, as through C++ low-level atomics, are also more comple
than we would like.

The only clear path to improvement here seems to be to elimi-
nate the need for going beyond the data-race-free guarbyntee
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e eliminating the performance motivations for going beyond i
and

e ensuring that data races are never actually executed ainnen-
thus both avoiding the need to specify their behavior andttyre
simplifying or eliminating the debugging issues assodiatéh
data races.

Unfortunately, these both take us to active research angtisno
clear off-the-shelf solutions. We discuss some possikpeagthes
in the next two sections.

6. Implicationsfor Languages

In spite of the dramatic convergence in the debate on memory
models, the state-of-the-art imposes a difficult choiceargliage
that supposedly has strong safety and security propetigspo
clear definition of what value a shared-memory read may metur
(the Java case), versus a language with clear semanticghdiut
requires abandoning security properties promised by lagesi
such as Java (the C++ case). Unfortunately, modern sofiveses

to be both parallel and secure, and requiring a choice betiese
two should not be acceptable.

A pessimistic view would be to abandon shared-memory alto-
gether. However, the intrinsic advantages of a global asddspace
are, at least anecdotally, supported by the widespread tiseeads
despite the inherent challenges. We believe the fault i¢smthe
global address space paradigm, but in the use of undisegblim
“wild shared-memory,” permitted by current systems.

Data-race-free was a first attempt to formalize a sharedenem
discipline via a memory model. It proved inadequate bec#use
responsibility for following this discipline was left toghprogram-
mer. Further, data-race-free by itself is, arguably, ificieint as a
discipline for writing correct, easily debuggable, and mtainable
shared-memory code; e.g., it does not completely elimiatim-
icity violations or non-deterministic behavior.

Moving forward, we believe a critical research agenda tdkna
“parallelism for the masses” is to develop and prondigeiplined
shared-memory modetlsat:

e aresimpleenough to be easily teachable to undergraduates; i.e.,

minimally provide sequential consistency to programs ooty
the required discipline;

enable theenforcemenof the discipline; i.e., violations of the
discipline should not have undefined or horrendously corple
semantics, but should be caught and returned back to the pro-
grammer as illegal;

are general-purpose enoughetxpresamportant parallel algo-
rithms and patterns; and

enable high and scalabperformance

Many previous programmer-productivity driven efforts bav
sought to raise the level of abstraction with threads; €itk,[18],
TBB [23], OpenMP [36], the recent HPCS languages [25], other
high-level libraries, frameworks, and APIs such as javeconcurrent
and the C++ boost libraries, as well as more domain-spegciés.o
While the above solutions go a long way towards easing the pai
of orchestrating parallelism, our memory-models driveguament
is deeper — we argue that, at least so far, it is not possibpedto
vide reasonablsemanticdor a language that allows data races,
an arguably more fundamental problem. In fact, all of thevabo
examples either provide unclear models or suffer from theesa
limitations as C++/Java. These approaches, thereforeptimeet
ourenforcementequirement. Similarly, transactional memory pro-
vides a high-level mechanism for atomicity, but the memoogdei
in the presence of non-transactional code faces the samesiss
described here [35].

At the heart of our agenda of disciplined models are the ques-

tions of what is the appropriate discipline and how to erdat@
A near-term, transition path is to continue with data-r&ee; and
focus research on its enforcement. The ideal solution ithitan-
guage to eliminate data races by design (e.g., [13]); howeue
semantics difficulties are avoided even with dynamic teghes
(e.g., [16] or [17]) that replace all data races with excai
(There are other faster dynamic data race detection tegbsjri-
marily for debugging, but they do not guarantee completeraoy,
as required here.)

Alonger term direction concerns both the appropriate gisw
and its enforcement. A fundamental challenge in debugdesd;
ing, and reasoning about threaded programs arises fromithei
herent non-determinism — an execution may exhibit one ofyman
possible interleavings of its memory accesses. In contnaahy
applications written for performance have deterministitcomes
and can be expressed with deterministic algorithms. Witinch
programs using a deterministic environment allows reaspwith
sequential semantics (a memory model much simpler tharesequ
tial consistency with threads).

A valuable discipline, therefore, is to provide a guarartée
determinism by default; when non-determinism is inheseng-
quired, it should be requested explicitly and should nogriietre
with the deterministic guarantees for the remaining progfa].
There is much prior work in deterministic data parallel,dtional,
and actor languages. Our focus is on general-purpose ®ffoat
continue use of widespread programming practices; eapatad-
dress space, imperative languages, object-oriented qgroging,
and complex, pointer based data structures.

Language-based approaches with such goals include Jafe [31
and the recent Deterministic Parallel Java (DPJ) [8]. Intipar
ular, DPJ proposes a region-based type and effect system for
deterministic-by-default semantics — “regions” namealigj par-
titions of the heap and per-metheffectannotations summarize
which regions are read and written by each method. Coupléd wi
a disciplined parallel control structure, the compiler easily use
the effect summaries to ensure that there are no unordered co
flicting accesses and the program is deterministic. Re@=tlts
show that DPJ is applicable to a range of applications angtam
data structures and provides performance comparable ¢adbr
code [8].

There has also been much recent progress in runtime methods
for determinism [15, 28, 4, 5].

Both language and runtime approaches have pros and cons
and still require research before mainstream adoptionnguage
based approach must establish that it is expressive enodgtoes
not incur undue programmer burden. For the former, the nelte
niques are promising, but the jury is still out. For the Iati2PJ
is attempting to alleviate the burden by using a familiareblas-
guage (currently Java) and providing semi-automatic taisfer
the required programmer annotations [38]. Further, lagguan-
notations such as DPJ’s read/write effect summaries aralkd
documentation in their own right — they promote lifetime bfits
for modularity and maintainability, arguably compensatiar up-
front programmer effort. Finally, a static approach beséfitm no
overhead or surprises at runtime.

In contrast, the purely runtime approaches impose lessburd
on the programmer, but a disadvantage is that the overheadsie
cases may still be too high. Further, inherently, a runtipygraach
does not provide the guarantees of a static approach bédipgisg
and is susceptible to surprises in the field.

We are optimistic that the recent approaches have opened up
many promising new avenues for disciplined shared-mentaay t
can overcome the problems described in this paper. It ifyliket
a final solution will consist of a judicious combination ohfpuage
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and runtime features, and will derive from a rich line of f&u
research.

7. Implicationsfor Hardware

As discussed in Section 4, current hardware memory modeksrar
imperfect match for even current software (data-race}freem-
ory models. ISA changes to identify individual loads andescas
synchronization can alleviate some short-term problemsegtab-
lished ISA, however, is hard to change, especially whentiegis
code works mostly adequately and there is not enough expuerie
to document the benefits of the change.

foundation of our languages and systems. It is well accetbiad
most shipped software has bugs and it is likely that much cemm
cial multithreaded software has data races. Debugging taod
safe languages that seek to sandbox untrusted code mustitieal
such races, and must be given semantics that reasonableitsmp
science graduates and developers can understand.

We believe that it is time to rethink how we design our lan-
guages and systems. Minimally, the system, and preferhbliah-
guage, must enforce the absence of data races. A longerierm
tentially more rewarding strategy is to rethink higherdedisci-
plines that make it much easier to write parallel prograntstaat
can beenforcedby our languages and systems. We also believe that

Academic researchers have taken an alternate path that usegome of the messiness of memory models today could have been

complex mechanisms (e.g., [6]) to speculatively removecthre
straints imposed by fences, rolling back the speculatioerwit
is detected that the constraints were actually needed.e/idse
techniques have been shown to work well, they come at an imple
mentation cost and do not directly confront the root of thebfem
of mismatched hardware/software views of concurrency séosg

Taking a longer term perspective, we believe that a moregund
mental solution to the problem will emerge with a co-des@jap-
proach, where future multicore hardware research evotvesi-
cert with the software models research discussed in Se@tion

The current state of hardware technology makes this a partic
larly opportune time to embark on such an agenda. Power aned co
plexity constraints have led industry to bet that futuregrchip
performance increases will largely come from increasingioers
of cores. Today’s hardware cache-coherent multicore deshpw-
ever, are optimized for few cores — power-efficient, perfance
scaling to several hundreds or a thousand cores withoutdzmas
tion of software requirements will be difficult.

We view this challenge as an opportunity to not only resolve
the problems discussed in this paper, but in doing so, weotxpe
build more effective hardware and software. First, we belighat
hardware thatakes advantage dfie emerging disciplined software
programming models is likely to be more efficient than a safew
oblivious approach. This observation already underlieswvtiork
on relaxed hardware consistency models — we hope the differe
this time around will be that the software and hardware n®del
will evolve together rather than as retrofits for each otpesyid-
ing more effective solutions. Second, hardware researshport
the emerging disciplined software models is also likely écchiti-
cal. Hardware support can be used for efficient enforcemfethieo
required discipline when static approaches fall short; ¢hgough
directly detecting violations of the discipline and/ordbgh effec-
tive strategies to sandbox untrusted code.

Along these lines, we have recently begun the DeNovo hard-
ware project at lllinois in concert with DPJ. We are expluii
DPJ-like region and effect annotations to design more poare
complexity-efficient, software-driven communication acoher-
ence protocols and task scheduling mechanisms. We alsaglan
provide hardware and runtime support to deal with cases evher
DPJ’s static information and analysis might fall short. Asls co-
designed models emerge, ultimately, we expect them to dhive
future hardware-software interface including the ISA.

8. Conclusions

This paper gives a perspective based on work collectiveiynsp
ning about thirty years. We have been repeatedly surpriskdve
difficult it is to formalize the seemingly simple and fundarted
property of “what value a read should return in a multitheshgro-
gram.” Sequential consistency for data-race-free prograppears
to be the best we can do at present, but it is insufficient. Tike i
ability to define reasonable semantics for programs with dates
is not just a theoretical shortcoming, but a fundamenta frothe

averted with a closer cooperation between hardware and/a@ft
As we move towards more disciplined programming modelsgthe
is also a new opportunity for a hardware/software co-desigap-
proach that rethinks the harwdare/software interface hadérd-
ware implementations of all concurrency mechanisms. Thieses
embody a rich research agenda that will need the involvemient
many computer science sub-disciplines, including langeagom-
pilers, formal methods, software engineering, algorithmatime
systems, and hardware.
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