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Abstract
The era of parallel computing for the masses is here, but writing
correct parallel programs remains far more difficult than writing
sequential programs. Aside from a few domains, most parallel pro-
grams are written using a shared-memory approach. Thememory
model,which specifies the meaning of shared variables, is at the
heart of this programming model. Unfortunately, it has involved
a tradeoff between programmability and performance, and has ar-
guably been one of the most challenging and contentious areas in
both hardware architecture and programming language specifica-
tion. Recent broad community-scale efforts have finally ledto a
convergence in this debate, with popular languages such as Java
and C++ and most hardware vendors publishing compatible mem-
ory model specifications. Although this convergence is a dramatic
improvement, it has exposed fundamental shortcomings in current
popular languages and systems that prevent achieving the vision of
structured and safe parallel programming.

This paper discusses the path to the above convergence, the hard
lessons learned, and their implications. A cornerstone of this con-
vergence has been the view that the memory model should be a
contract between the programmer and the system - if the program-
mer writes disciplined (data-race-free) programs, the system will
provide high programmability (sequential consistency) and perfor-
mance. We discuss why this view is the best we can do with current
popular languages, and why it is inadequate moving forward.We
then discuss research directions that eliminate much of theconcern
about the memory model, but require rethinking popular parallel
languages and hardware. In particular, we argue that parallel lan-
guages should not only promote high-level disciplined models, but
they should alsoenforcethe discipline. Further, for scalable and
efficient performance, hardware should be co-designed to take ad-
vantage of and support such disciplined models. The inadequacies
of the state-of-the-art and the research agenda we outline have deep
implications for the practice, research, and teaching of many com-
puter science sub-disciplines, spanning theory, software, and hard-
ware.

1. Introduction
Most parallel programs today are written using threads and shared
variables. Although there is no consensus on parallel programming
models, there are a number of reasons why threads remain popular.
Threads were already widely supported by mainstream operating
systems well before the dominance of multicore, largely because
they are also useful for other purposes. Direct hardware support for
shared-memory potentially provides a performance advantage; e.g.,
by implicitly sharing read-mostly data without the space overhead
of complete replication. The ability to pass memory references
among threads makes it easier to share complex data structures.

Finally, shared-memory makes it far easier to selectively parallelize
application hot spots without complete redesign of data structures.

The memory model, or memory consistency model, is at the
heart of the concurrency semantics of a shared-memory program
or system. It defines the set of values that a read in a program is
allowed to return, thereby defining the basic semantics of shared
variables. It answers questions such as: Is there enough synchro-
nization to ensure a thread’s write will occur before another’s read?
Can two threads write to adjacent fields in a memory location at
the same time? Must the final value of a location always be one of
those written to it?

The memory model defines an interface between a program and
any hardware or software that may transform that program (e.g., the
compiler, the virtual machine, or any dynamic optimizer). It is not
possible to meaningfully reason about either a program (written in
a high-level, bytecode, assembly, or machine language) or any part
of the language implementation (including hardware) without an
unambiguous memory model.

A complex memory model makes parallel programs difficult
to write, and parallel programming difficult to teach. An overly
constraining one may limit hardware and compiler optimization,
severely reducing performance. Since it is an interface property, the
memory model decision has a long-lasting impact, affectingporta-
bility and maintainability of programs. Thus, a hardware architec-
ture committed to a strong memory model cannot later forsakeit
for a weaker model without breaking binary compatibility, and a
new compiler release with a weaker memory model may require
rewriting source code. Finally, memory model related decisions for
a single component must consider implications for the rest of the
system. A processor vendor cannot guarantee a strong hardware
model if the memory system designer provides a weaker model;
a strong hardware model is not very useful to programmers using
languages and compilers that provide only a weak guarantee.

Nonetheless, the central role of the memory model has of-
ten been downplayed. This is partly because formally specifying
a model that balances all desirable properties of programmabil-
ity, performance, and portability has proven surprisinglycomplex.
At the same time, informal, machine-specific descriptions proved
mostly adequate in an era where parallel programming was thedo-
main of experts and achieving the highest possible performance
trumped programmability or portability arguments.

In the late 1980s and 1990s, the area received attention primar-
ily in the hardware community, which explored many approaches,
with little consensus [2]. Commercial hardware memory model de-
scriptions varied greatly in precision, including cases ofcomplete
omission of the topic and some reflecting vendors’ reluctance to
make commitments with unclear future implications. Although the
memory model affects the meaning of every load instruction in ev-

1



ery multithreaded application, it is still sometimes relegated to the
“systems programming” section of the architecture manual.

Part of the challenge for hardware architects was the lack of
clear memory models at the programming language level – it was
unclear what programmers expected hardware to do. Although
hardware researchers proposed approaches to bridge this gap [3],
widespread adoption required consensus from the software com-
munity. Before 2000, there were a few programming environments
that addressed the issue with relative clarity (cf. [37]), but the most
widely used environments had unclear and questionable specifica-
tions [29, 9]. Even when specifications were relatively clear, they
were often violated to obtain sufficient performance [9], tended to
be misunderstood even by experts, and were difficult to teach.

Since 2000, we have been involved in efforts to cleanly specify
programming-language-level memory models, first for Java and
then C++, with efforts now underway to adopt similar models for
C and other languages. In the process, we had to address issues
created by hardware that had evolved without the benefit of a clear
programming model. This often made it difficult to reconcilethe
need for a simple and usable programming model with that for
adequate performance on existing hardware.

Today, the above languages and most hardware vendors have
published (or plan to publish) compatible memory model specifi-
cations. Although this convergence is a dramatic improvement over
the past, it has exposed fundamental shortcomings in our paral-
lel languages and their interplay with hardware. After decades of
research, it is still unacceptably difficult to describe what value a
load can return without compromising modern safety guarantees or
implementation methodologies. To us, this experience has made it
clear that solving the memory model problem will require a sig-
nificantly new and cross-disciplinary research direction for parallel
computing languages, hardware, and environments as a whole.

This paper discusses the path that led to the current convergence
in memory models, the fundamental shortcomings it exposed,and
the implications for future research. The central role of the mem-
ory model in parallel computing makes this paper relevant tomany
computer science sub-disciplines, including algorithms,applica-
tions, languages, compilers, formal methods, software engineering,
virtual machines, runtime systems, and hardware. For practition-
ers and educators, the paper provides a succinct summary of the
state-of-the-art of this often ignored and poorly understood topic.
For researchers, the paper outlines an ambitious, cross-disciplinary
agenda towards resolving a fundamental problem in parallelcom-
puting today – what value can a shared variable have and how to
implement it?

2. Sequential Consistency
A natural view of the execution of a multithreaded program oper-
ating on shared variables is as follows. Each step in the execution
consists of choosing one of the threads to execute, and then per-
forming the next step in that thread’s execution (as dictated by the
thread’s program text, orprogram order). This process is repeated
until the program as a whole terminates. Effectively, the execution
can be viewed as taking all the steps executed by each thread,and
interleaving them in some way. Whenever an object (i.e. variable,
field, or array element) is accessed, the last value stored tothe ob-
ject by this interleaved sequence is retrieved.

For example, consider Figure 1, which gives the core of Dekker’s
mutual exclusion algorithm. The program can be executed by in-
terleaving the steps from the two threads in many ways. Formally,
each of these interleavings is a total order over all the steps per-
formed by all the threads, that is consistent with the program order
of each thread. Each access to a shared variable “sees” the last prior
value stored to that variable in the interleaving.

Initially X = Y = 0
RedThread BlueThread
X = 1; Y = 1;
r1 = Y; r2 = X;

Figure 1. Core of Dekker’s Algorithm. Canr1 = r2 = 0?

Execution 1 Execution 2 Execution 3
X = 1; Y = 1; X = 1;
r1 = Y; r2 = X; Y = 1;
Y = 1; X = 1; r1 = Y;
r2 = X; r1 = Y; r2 = X;
// r1 == 0 // r1 == 1 // r1 == 1
// r2 == 1 // r2 == 0 // r2 == 1

Figure 2. Some executions for Figure 1

Figure 2 gives three possible executions that together illustrate
all possible final values of the non-shared variablesr1 andr2. Al-
though many other interleavings are also possible, it is notpossible
that bothr1 andr2 are 0 at the end of an execution; any execution
must start with the first statement of one of the two threads, and the
variable assigned there will later be read as one.

Following Lamport [24], an execution that can be understood
as such an interleaving is referred to assequentially consistent.
Sequential consistency gives us the simplest possible meaning for
shared variables, but suffers from several related flaws.

First, sequential consistency can be expensive to implement. For
Figure 1, a compiler might, for example, reorder the two indepen-
dent assignments in the red thread, since scheduling loads early
tends to hide the load latency. In addition, modern processors al-
most always use a store buffer to avoid waiting for stores to com-
plete, also effectively reordering instructions in each thread. Both
the compiler and hardware optimization make an outcome ofr1 ==
0 andr2 == 0 possible, and hence may result in a non-sequentially-
consistent execution. Overall, reordering any pair of accesses, read-
ing values from write buffers, register promotion, common sub-
expression elimination, redundant read elimination, and many other
hardware and compiler optimizations commonly used in uniproces-
sors can potentially violate sequential consistency [2].

There is some work on compiler analysis to determine when
such transformations are unsafe (e.g., [34]). Compilers, however,
often have little information about sharing between threads, mak-
ing it expensive to forego the optimizations, since we wouldhave to
forego them everywhere. There is also much work on speculatively
performing these optimizations in hardware, with rollbackon de-
tection of an actual sequential consistency violation (e.g., [19, 14]).
However, these ideas are tied to specific implementation techniques
(e.g., aggressive speculation support), and vendors have generally
been unwilling to commit to those for the long term (especially,
given non-sequentially consistent compilers). Thus, mosthardware
and compilers today do not provide sequential consistency.

Second, while sequential consistency may seem to be the sim-
plest model, it is not sufficiently simple and a much less useful pro-
gramming model than commonly imagined. For example, it only
makes sense to reason about interleaving steps if we know what
those steps are. In this case, they are typically individualmem-
ory accesses, a very low-level notion. Consider two threadsconcur-
rently assigning values of 100,000 and 60,000 to the shared variable
X on a machine that accesses memory 16 bits at a time. The final
value ofX in a “sequentially consistent” execution may be 125,536
if the assignment of 60,000 occurred between the bottom and top
half of the assignment of 100,000. At a somewhat higher level, this
implies the meaning of even simple library operations depends on
the granularity at which the library carries out those operations.
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More generally, programmers do not reason about correctness
of parallel code in terms of interleavings of individual memory
accesses, and sequential consistency does not prevent common
sources of concurrency bugs arising from simultaneous access to
the same shared data (e.g., data races). Even with sequential con-
sistency, such simultaneous accesses can remain dangerous, and
should be avoided, or at least explicitly highlighted. Relying on
sequential consistency without such highlighting both obscures the
code, and greatly complicates the implementation’s job.

3. Data-Race-Free
We can avoid both of the above problems by observing that:

• The problematic transformations (e.g., reordering accesses to
unrelated variables in Figure 1) never change the meaning of
single-threaded programs, but do affect multithreaded programs
(e.g., by allowing bothr1 andr2 to be0 in Figure 1).

• These transformations are detectable only by code that allows
two threads to access the same data simultaneously in conflict-
ing ways; e.g., one thread writes the data and another reads it.

Programming languages generally already providesynchroniza-
tion mechanisms, such as locks, or possibly transactional memory,
for limiting simultaneous access to variables by differentthreads.
If we require that these be used correctly, and guarantee sequential
consistency only if no undesirable concurrent accesses arepresent,
we avoid the above issues.

We can make this more precise as follows. We assume the lan-
guage allows distinguishing between synchronization and ordinary
(non-synchronization or data) operations (see below). We say that
two memory operationsconflict if they access the same memory
location (e.g., variable or array element), and at least oneis a write.

We say that a program (on a particular input) allows adata race
if it has a sequentially consistent execution (i.e., a program-ordered
interleaving of operations of the individual threads) in which two
conflicting ordinary operations execute “simultaneously.” For our
purposes, two operations execute “simultaneously” if theyoccur
next to each other in the interleaving and correspond to different
threads. Since these operations occur adjacently in the interleaving,
we know that they could equally well have occurred in the opposite
order; there are no intervening operations to enforce the order.

To ensure that two conflicting ordinary operations do not hap-
pen simultaneously, they must be ordered by intervening synchro-
nization operations. For example, one thread must release alock
after accessing a shared variable, and the other thread mustacquire
the lock before its access. Thus, it is also possible to definedata
races as conflicting accesses not ordered by synchronization, as is
done in Java. These definitions are essentially equivalent [1, 12].

A program that does not allow a data race is said to be data-race-
free. Thedata-race-freemodel guarantees sequential consistency
only for data-race-free programs [3, 1]. For programs that allow
data races, the model does not provide any guarantees.

The restriction on data races is not onerous. In addition to locks
for avoiding data races, modern programming languages generally
also provide a mechanism, such as Java’svolatile variables, for
declaring that certain variables or fields are to be used for synchro-
nization between threads. Conflicting accesses to such variables
may occur simultaneously – since they are explicitly identified as
synchronization(vs. ordinary), they do not create a data race.

To write Figure 1 correctly under data-race-free, we need simply
identify the shared variablesX andY as synchronization variables.
This would require the implementation to do whatever is necessary
to ensure sequential consistency, in spite of those simultaneous
accesses. It would also obligate the implementation to ensure that
these synchronization accesses are performed indivisibly; if a 32-

bit integer is used for synchronization purposes, it shouldnot be
visibly accessed as two 16-bit halves.

This “sequential consistency for data-race-free programs” ap-
proach alleviates the problems discussed with pure sequential con-
sistency. Most important hardware and compiler optimizations con-
tinue to be allowed for ordinary accesses – care must be takenpri-
marily at the explicitly identified (infrequent) synchronization ac-
cesses since these are the only ones through which such optimiza-
tions and granularity considerations affect program outcome. Fur-
ther, synchronization-free sections of the code appear to execute
atomically and the requirement to explicitly identify concurrent ac-
cesses makes it easier for humans and compilers to understand the
code. This is described in more detail in, for example [11].

Data-race-free does not give the implementation a blanket li-
cense to perform single-threaded program optimizations. In par-
ticular, optimizations that amount to copying a shared variable to
itself; i.e., introducing the assignmentx = x, wherex might not
otherwise have been written, generally remain illegal. These are
commonly performed in certain contexts [9], but should not be.

Although data-race-free was formally proposed in 1990 [3],it
did not see widespread adoption as a formal model in industryun-
til recently. We next describe the evolution of industry models to a
convergent path centered around data-race-free, the emergent short-
comings of data-race-free, and their implications for the future.

4. Industry Practice and Evolution
4.1 Hardware Memory Models

Most hardware supports relaxed models that are weaker than se-
quential consistency. These models take an implementation- or
performance-centric view, where the desirable hardware optimiza-
tions drive the model specification [2]. Typical driving optimiza-
tions relax the program order requirement of sequential consis-
tency. For example, Sparc’s TSO guarantees that a thread’s mem-
ory accesses will become visible to other threads in programorder,
except for the case of a write followed by a read. Such models
additionally provide fence instructions to enable programmers to
explicitly impose orderings that are otherwise not guaranteed; e.g.,
TSO programmers may insert a fence between a thread’s write and
read to ensure the execution preserves that order.

Such a program-orderings + fences style of specification is sim-
ple, but many subtleties make it inadequate [1, 2]. First, this style
implies that a write is an atomic or indivisible operation that be-
comes visible to all threads at once. As Figure 3 illustrates, how-
ever, hardware may make writes visible to different threadsat dif-
ferent times through write buffers and shared caches. Incorporating
such optimizations increases the complexity of the memory model
specification. Thus, the full TSO specification, which incorporates
one of the simplest atomicity optimizations, is much more involved
than the simple description above. PowerPC implements moreag-
gressive forms of the optimization, with a specification that is com-
plex and difficult to interpret even for experts. The x86 documenta-
tion from both AMD and Intel was ambiguous on this issue; recent
updates now clarify the intent, but remain informal.

Second, in well-written software, a thread usually relies on syn-
chronization interactions to reason about the ordering or visibility
of memory accesses on other threads. Thus, it is usually overkill
to require that two program ordered accesses always become vis-
ible to all threads in the same order or a write appears atomic to
all threads regardless of the synchronization among the threads. In-
stead, it is sufficient to preserve ordering and atomicity only among
mutually synchronizing threads. Some hardware implementations
attempt to exploit this insight, albeit through ad hoc techniques,
thereby further complicating the memory model.
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Initially X = Y = 0
Core 1 Core 2 Core 3 Core 4
X = 1; Y = 1; r1 = X; r3 = Y;

fence; fence;
r2 = Y; r4 = X;

Canr1 = 1,r2 = 0,r3 = 1,r4 = 0, violating write atomicity?

Figure 3. Hardware may not execute atomic or indivisible writes.
Assume a fence imposes program order. Assume core 3’s and core
4’s caches have X and Y. The two writes generate invalidations
for these caches. These could reach the caches in a differentorder,
giving the result shown and a deduction that X’s update occurs both
before and after Y’s.

Initially X = Y = 0
Core 1 Core 2
r1 = X; r2 = Y;
if (r1==1) if (Y==1)

Y = 1; X = 1;

Is r1 = r2 = 1 allowed?
(a)

Initially X = Y = 0
Core 1 Core 2
r1 = X; r2 = Y;
Y = r1; X = r2;

Is r1 = r2 = 42 allowed?
(b)

Figure 4. Subtleties with (a) control and (b) data dependences.
It is feasible for core 1 to speculate that its read of X will see 1
and speculatively write Y. Core 2 similarly writes X. Both reads
now return 1, creating a “self-fulfilling” speculation or a “causality
loop.” Within a single core, no control dependences are violated
since the speculation appears correct; however, most programmers
will not expect such an outcome (the code is in fact data-race-free
since no sequentially consistent execution contains a datarace).
Part (b) shows an analogous causal loop with data dependences.
Core 1 may speculate X is 42 (e.g., using value prediction based
on previous store values) and (speculatively) write 42 intoY. Core
2 reads this and writes 42 into X, thereby proving the speculation
right and creating a causal loop that generates a value (42) out-of-
thin-air. Fortunately, no processor today behaves this way, but the
memory model specification needs to reflect this property.

Third, modern processors perform various forms of speculation
(e.g., on branches and addresses) which can result in subtleand
complex interactions with data and control dependences, asillus-
trated in Figure 4. Incorporating these considerations in aprecise
way adds another source of complexity to program-order + fence
style specifications. As we discuss in Section 4.2.1, precise formal-
ization of data and control dependences is a fundamental obstacle
to providing clean high-level memory model specifications today.

In summary, hardware memory model specifications have often
been incomplete, excessively complex, and/or ambiguous enough
to be misinterpreted even by experts. Further, since hardware mod-
els have largely been driven by hardware optimizations, they have
often not been well-matched to software requirements, resulting in
incorrect code or unnecessary loss in performance (Section4.3).

4.2 High-Level Language Memory Models

Ada was perhaps the first widely used high-level programminglan-
guage to provide first class support for shared-memory parallel
programming. Although Ada’s approach to thread synchronization
was initially quite different from both that of the earlier Mesa de-
sign and most later language designs, it was remarkably advanced

in its treatment of memory semantics [37]. It used a style similar to
data-race-free, requiring legal programs to be well-synchronized;
however, it did not fully formalize the notion of well-synchronized
and left uncertain the behavior of such programs.

Subsequently, until the introduction of Java, mainstream pro-
gramming languages did not provide first-class support for threads,
and shared-memory programming was mostly enabled through li-
braries and APIs such as Posix threads and OpenMP. Previous work
describes why the approach of an add-on threads library is not en-
tirely satisfactory [9]. Without a real definition of the program-
ming language in the context of threads, it is unclear what com-
piler transformations are legal, and hence what the programmer is
allowed to assume. Nevertheless, the Posix threads specification
indicates a model similar to data-race-free, although there are sev-
eral inconsistent aspects, with widely varying interpretations even
among experts participating in standards committee discussions.
The OpenMP model is also unclear and largely based on a flush
instruction that is analogous to fence instructions in hardware mod-
els, with related shortcomings.

4.2.1 The Java Memory Model

Java provided first class support for threads with a chapter specif-
ically devoted to its memory model. Pugh showed that this model
was hard to interpret and badly broken – common compiler opti-
mizations were prohibited and in many cases the model gave am-
biguous or unexpected behavior [29]. In 2000, Sun appointedan
expert group to revise the model through the Java community pro-
cess [30]. The effort was coordinated through an open mailing list
that attracted a variety of participants, representing hardware and
software and researchers and practitioners.

It was quickly decided that the Java memory model must pro-
vide sequential consistency for data-race-free programs,where
volatile accesses (and locks from synchronized methods andmon-
itors) were deemed synchronization.

However, data-race-free is inadequate for Java. Since Javais
meant to be a safe and secure language, it cannot allow arbitrary be-
havior for data races. Specifically, Java must support untrusted code
running as part of a trusted application and hence must limitdam-
age done by a data race in the untrusted code. Unfortunately,the no-
tions of safety, security, and “limited damage” in a multithreaded
context were not clearly defined. The challenge with definingthe
Java model was to formalize these notions in a way that minimally
affected system flexibility.

Figure 4(b) illustrates these issues. The program has a data
race and is buggy. However, Java cannot allow its reads to return
values out-of-thin-air (e.g., 42) since this could clearlycompromise
safety and security. It would, for example, make it impossible to
guarantee that similar untrusted code cannot return a password that
it should not have access to. Such a scenario appears to violate any
reasonable causality expectation and no current processorproduces
it. Nevertheless, the memory model must formally prohibit such
behavior so that future speculative processors also avoid it.

Prohibiting such causality violations in a way that does notalso
prohibit other desired optimizations turned out to be surprisingly
difficult. Figure 5 illustrates an example that also appearsto violate
causality, but is allowed by the common compiler optimization of
redundant read elimination. After many proposals and five years
of spirited debate, the current model was approved as the best
compromise. This model allows the outcome of Figure 5, but not
that of Figure 4(b). Unfortunately, this model is very complex, was
known to have some surprising behaviors, and has recently been
shown to have a bug. We provide intuition for the model below and
refer the reader to [26] for a full description.

Common to both Figures 4(b) and 5 are writes that are executed
earlier than they would be with sequential consistency. Theexam-
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Initially X = Y = 0
Original code

Thread 1 Thread 2
r1 = X r3 = Y
r2 = X X = r3
if (r1 == r2)

Y = 1

After compiler transformation
Thread 1 Thread 2
Y = 1 r3 = Y
r1 = X X = r3
r2 = r1
if (true);

Is r1=r2=r3=1 allowed?

Figure 5. Redundant read elimination may appear as a causality
violation, but must be allowed. For thread 1, the compiler could
eliminate the redundant read of X, replacing r2=X with r2=r1.
This allows deducing that r1==r2 is always true, making the write
of Y unconditional. Then the compiler may move the write to
before the read of X since no dependence is violated. Sequential
consistency would allow both the reads of X and Y to return 1 in
the new but not the original code. This outcome for the original
code appears to violate causality since it seems to require aself-
justifying speculative write of Y.

ples differ in that for the speculative write in the latter (Y=1), there
is somesequentially consistent execution where it is executed (the
execution where both reads of X return 0). For Figure 4(b), there is
no sequentially consistent execution where Y=42 could occur. This
notion of whether a speculative writecould occur in some well-
behaved execution is the basis of causality in the Java model, and
the definition ofwell-behavedis the key source of complexity.

The Java model tests for the legality of an execution by “com-
mitting” one or more of its memory accesses at a time – legality
requires all accesses to commit (in any order). Committing awrite
early (before its turn in program order) requires it to occurin a well-
behaved execution where (informally) (1) the already committed
accesses have similar synchronization and data race relationships
in all previously used well-behaved executions and (2) the to-be-
committed write is not dependent on a read that returns its value
from a data race. These conditions ensure that a future data race
will never be used to justify a speculative write which couldthen
later justify that future data race.

A key reason for the complexity in the Java model is that it is
not operational – an access in the future can determine whether the
current access is legal. Further, many possible future executions
must be examined to determine this legality. The choice of future
(well-behaved) executions also gives some surprising results. In
particular, as discussed in [26], if the code of one thread is“inlined”
in (concatenated with) another thread, then the inlined code can
produce more behaviors than the original. Thus, thread inlining
is generally illegal under the Java model (even if there are no
synchronization and deadlock related considerations). Inpractice,
the prohibited optimizations are difficult to implement andthis is
not a significant performance limitation. The behavior, however, is
non-intuitive, with other implications – it occurs becausesome data
races in the original code may no longer be data races in the inlined
code. This means that when determining whether to commit a write
early, a read in a well-behaved execution has more choices toreturn
values than before (since there are fewer data races), resulting in
new behaviors.

More generally, increasing synchronization in the Java model
can actually result in new behaviors, even though more synchro-
nization conventionally constrains possible executions.Recently, it
has been shown that, for similar reasons, adding seemingly irrel-

evant reads or removing redundant reads sometimes can also add
new behaviors, and that the above properties have more serious im-
plications than previously thought [33]. In particular, some opti-
mizations that were intended to be allowed by the Java model are
in fact prohibited by the current specification.

It is unclear if current hardware or JVMs implement the above
optimizations and therefore violate the current Java model. Cer-
tainly the current specification is much improved over the original.
Regardless, the situation is still far from satisfactory. First, clearly,
the current specification does not meet its desired intent ofhav-
ing certain common optimizing transformations preserve program
meaning. Second, its inherent complexity and the new observations
make it difficult to prove the correctness of any real system.Third,
the specification methodology is inherently fragile – smallchanges
usually result in hard-to-detect unintended consequences.

The Java model was largely guided by an emergent set of test
cases [30], based on informal code transformations that were or
were not deemed desirable. While it may be possible to fix the Java
model, it seems undesirable that our specification of multithreaded
program behavior would rest on such a complex and fragile foun-
dation. Instead, Section 6 advocates a fundamental rethinking of
our approach.

4.2.2 The C++ Memory Model

The situation in C++ was significantly different from Java. The
language itself provided no support for threads. Nonetheless, they
were already in widespread use, typically with the additionof a
library-based threads implementation, such as pthreads [20] or the
corresponding Microsoft Windows facilities. Unfortunately the rel-
evant specifications, for example the combination of the C orC++
standard with the Posix standard, left significant uncertainties about
the rules governing shared variables [9]. This made it unclear to
compiler writers precisely what they needed to implement, resulted
in very occasional failures for which it was hard to assign blame
to any specific piece of the implementation and, most importantly,
made it difficult to teach parallel programming since even the ex-
perts were unable to agree on some of the basic rules, such as
whether figure 4(a) constitutes a data race. (Correct answer: No.)

Motivated by these observations, we began an effort in 2005
to develop a proper memory model for C++. The resulting effort
eventually expanded to include the definition ofatomic (synchro-
nization, analogous to Javavolatile) operations, and the threads
API itself. It is part of the current Committee Draft [22] forthe
next C++ revision. The next C standard is expected to containa
very similar memory model, with very similaratomic operations.

This development took place in the face of increasing doubt that
a Java-like memory model relying on sequential consistencyfor
data-race-free programs was efficiently implementable on main-
stream architectures, at least given the specifications available at the
time. Largely as a result, much of the early discussion focused on
the tension between the following two observations, both ofwhich
we still believe to be correct given existing hardware:

• A programming language model weaker than data-race-free is
probably unusable by a large fraction of the programming com-
munity. Earlier work [10] points out, for example, that even
thread library implementors often get confused when it comes
to dealing explicitly with memory ordering issues. Substantial
effort was invested in attempts to develop weaker, but compa-
rably simple and usable models. We do not feel these were suc-
cessful.

• On some architectures, notably on some PowerPC implementa-
tions, data-race-free involves substantial implementation cost.
(In light of modern (2009) specifications, the cost on others,
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notably x86, is modest, and limited largely toatomic (C++) or
volatile (Java) store operations.)

This resulted in a compromise memory model that supports
data-race-free for nearly all of the language. However,atomic
data types also provide low-level operations with explicitmem-
ory ordering constraints that blatantly violate sequential consis-
tency, even in the absence of data races. The low-level operations
are easily identified and can be easily avoided by non-expertpro-
grammers. (They require an explicitmemory order argument.)
But they do give expert programmers a way to write very carefully
crafted, but portable, synchronization code that approaches the per-
formance of assembly code.

Since C++ does not support sand-boxed code execution, the
C++ draft standard can and does leave the semantics of a program
with data races completely undefined, effectively making iterro-
neous to write such programs. As we point out in [12], this hasa
number of, mostly performance-related, advantages, and better re-
flects existing compiler implementations.

In addition to the issues raised in Section 5, it should be noted
that this really only pushes Java’s issues with causality into a much
smaller and darker corner of the specification; exactly the same
issues arise if we rewrite Figure 4(b) with C++atomic variables
and use low-levelmemory order relaxed operations. Our current
solution to this problem is simpler, but as inelegant as the Java one.
Unlike Java, it affects a small number of fairly esoteric library calls,
not all memory accesses.

As with the Java model, we feel that although this solution in-
volves compromises, it is an important step forward. It clearly es-
tablishes data-race-free as the core guarantee that every program-
mer should understand. It defines precisely what constitutes a data
race. It finally resolves simple questions such as: Ifx.a andx.b
are assigned simultaneously, is that a data race? (No, unless they
are part of the same contiguous sequence of bit-fields.) By doing
so, it clearly identifies shortcomings of existing compilers that we
can now begin to remedy.

4.3 Reconciling Language and Hardware Models

Throughout this process, it repeatedly became clear that current
hardware models and supporting fence instructions are often at best
a marginal match for programming language memory models, par-
ticularly in the presence of Javavolatile fields or C++atomic
objects. It is always possible to implement such synchronization
variables by mapping each one to a lock, and acquiring and re-
leasing the corresponding lock around all accesses. However, this
typically adds an overhead of hundreds of cycles to each access,
particularly since the lock accesses are likely to result incoherence
cache misses, even when only read accesses are involved.

Volatile and atomic variables are typically used to avoid
locks for exactly these reasons. A typical use is a flag that indicates
a read-only data structure has been lazily initialized. Since the ini-
tialization has to happen only once, nearly all accesses simply read
theatomic/volatile flag and avoid lock acquisitions. Acquiring
a lock to access the flag defeats the purpose.

On hardware that relaxes write atomicity (see Figure 3), how-
ever, it is often unclear that more efficient mappings (than the use
of locks) are possible; even the fully fenced implementation may
not be sequentially consistent. Even on other hardware, there are
apparent mismatches, most probably caused by the lack of a well-
understood programming language model when the hardware was
designed. On x86, it isalmostsufficient to map synchronization
loads and stores directly to ordinary load and store instructions.
The hardware provides sufficient guarantees to ensure that ordinary
memory operations are notvisibly reordered with synchronization
operations. However it fails to prevent reordering of a synchroniza-

tion store followed by a synchronization load; thus this implemen-
tation does not prevent the incorrect outcome for Figure 1.

This may be addressed by translating a synchronization store to
an ordinary store instruction followed by an expensive fence. The
sole purpose of this fence is to prevent reordering of the synchro-
nization store with a subsequentsynchronizationload. In practice,
such a synchronization load is unlikely to follow closely enough
(Dekker’s algorithm is not commonly used) to really constrain the
hardware. But the only available fence instruction constrains all
memory reordering around it, including that involving ordinary
data accesses, and thus overly constrains the hardware. A better
solution would involve distinguishing between two flavors of loads
and stores (ordinary and synchronization), roughly along the lines
of Itanium’s ld.acq andst.rel [21]. This, however, requires a
change to the instruction set architecture, usually a difficult propo-
sition.

We suspect the current situation makes the fence instruc-
tion more expensive than necessary, in turn motivating addi-
tional language-level complexity such as C++ low-level atomics
or lazySet() in Java.

5. Lessons Learned
Data-race-free provides a simple and consistent model for threads
and shared variables. We are convinced that it is the best model to-
day to target during initial software development. Unfortunately, its
lack of any guarantees in the presence of data races and mismatch
with current hardware implies three significant weaknesses:

Debugging Accidental introduction of a data race results in “unde-
fined behavior,” which often takes the form of surprising results
later during program execution, possibly long after the data race
has resulted in corrupted data. Although the usual immediate re-
sult of a data race is that an unexpected, and perhaps incomplete
value is read, or that an inconsistent value is written, we point
out in [12] that other results, such as wild branches, are also
possible as a result of compiler optimizations that mistakenly
assume the absence of data races. Since such races are difficult
to reproduce, the root cause of such misbehavior is often diffi-
cult to identify, and such bugs may easily take weeks to track
down. Many tools to aid such debugging (e.g., CHESS [27] and
RaceFuzzer [32] ) also assume sequential consistency, some-
what limiting their utility.

Synchronization variable performance on current hardware
As discussed, ensuring sequential consistency in the presence
of Javavolatile or C++atomic on current hardware can be
expensive. As a result, both C++, and to a lesser extent Java,
have had to provide less expensive alternatives that greatly com-
plicate the model for experts trying to use them.

Untrusted code There is no way to ensure data-race-freedom in
untrusted code. Thus, this model is insufficient for languages
like Java.

An unequivocal lesson from our experiences is that for pro-
grams with data races, it is very hard to define semantics thatare
easy to understand and yet retain desired system flexibility. While
the Java memory model came a long way, its complexity, and sub-
sequent discoveries of its surprising behaviors, are far from satis-
fying. Unfortunately, we know of no alternative specification that
is sufficiently simple to be considered practical. Second, rules to
weaken the data-race-free guarantee to better match current hard-
ware, as through C++ low-level atomics, are also more complex
than we would like.

The only clear path to improvement here seems to be to elimi-
nate the need for going beyond the data-race-free guaranteeby:
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• eliminating the performance motivations for going beyond it,
and

• ensuring that data races are never actually executed at run-time,
thus both avoiding the need to specify their behavior and greatly
simplifying or eliminating the debugging issues associated with
data races.

Unfortunately, these both take us to active research areas,with no
clear off-the-shelf solutions. We discuss some possible approaches
in the next two sections.

6. Implications for Languages
In spite of the dramatic convergence in the debate on memory
models, the state-of-the-art imposes a difficult choice: a language
that supposedly has strong safety and security properties,but no
clear definition of what value a shared-memory read may return
(the Java case), versus a language with clear semantics, butthat
requires abandoning security properties promised by languages
such as Java (the C++ case). Unfortunately, modern softwareneeds
to be both parallel and secure, and requiring a choice between the
two should not be acceptable.

A pessimistic view would be to abandon shared-memory alto-
gether. However, the intrinsic advantages of a global address space
are, at least anecdotally, supported by the widespread use of threads
despite the inherent challenges. We believe the fault lies not in the
global address space paradigm, but in the use of undisciplined or
“wild shared-memory,” permitted by current systems.

Data-race-free was a first attempt to formalize a shared-memory
discipline via a memory model. It proved inadequate becausethe
responsibility for following this discipline was left to the program-
mer. Further, data-race-free by itself is, arguably, insufficient as a
discipline for writing correct, easily debuggable, and maintainable
shared-memory code; e.g., it does not completely eliminateatom-
icity violations or non-deterministic behavior.

Moving forward, we believe a critical research agenda to enable
“parallelism for the masses” is to develop and promotedisciplined
shared-memory modelsthat:

• aresimpleenough to be easily teachable to undergraduates; i.e.,
minimally provide sequential consistency to programs thatobey
the required discipline;

• enable theenforcementof the discipline; i.e., violations of the
discipline should not have undefined or horrendously complex
semantics, but should be caught and returned back to the pro-
grammer as illegal;

• are general-purpose enough toexpressimportant parallel algo-
rithms and patterns; and

• enable high and scalableperformance.

Many previous programmer-productivity driven efforts have
sought to raise the level of abstraction with threads; e.g.,Cilk [18],
TBB [23], OpenMP [36], the recent HPCS languages [25], other
high-level libraries, frameworks, and APIs such as java.util.concurrent
and the C++ boost libraries, as well as more domain-specific ones.
While the above solutions go a long way towards easing the pain
of orchestrating parallelism, our memory-models driven argument
is deeper – we argue that, at least so far, it is not possible topro-
vide reasonablesemanticsfor a language that allows data races,
an arguably more fundamental problem. In fact, all of the above
examples either provide unclear models or suffer from the same
limitations as C++/Java. These approaches, therefore, do not meet
ourenforcementrequirement. Similarly, transactional memory pro-
vides a high-level mechanism for atomicity, but the memory model
in the presence of non-transactional code faces the same issues as
described here [35].

At the heart of our agenda of disciplined models are the ques-
tions of what is the appropriate discipline and how to enforce it?
A near-term, transition path is to continue with data-race-free, and
focus research on its enforcement. The ideal solution is forthe lan-
guage to eliminate data races by design (e.g., [13]); however, our
semantics difficulties are avoided even with dynamic techniques
(e.g., [16] or [17]) that replace all data races with exceptions.
(There are other faster dynamic data race detection techniques, pri-
marily for debugging, but they do not guarantee complete accuracy,
as required here.)

A longer term direction concerns both the appropriate discipline
and its enforcement. A fundamental challenge in debugging,test-
ing, and reasoning about threaded programs arises from their in-
herent non-determinism – an execution may exhibit one of many
possible interleavings of its memory accesses. In contrast, many
applications written for performance have deterministic outcomes
and can be expressed with deterministic algorithms. Writing such
programs using a deterministic environment allows reasoning with
sequential semantics (a memory model much simpler than sequen-
tial consistency with threads).

A valuable discipline, therefore, is to provide a guaranteeof
determinism by default; when non-determinism is inherently re-
quired, it should be requested explicitly and should not interfere
with the deterministic guarantees for the remaining program [7].
There is much prior work in deterministic data parallel, functional,
and actor languages. Our focus is on general-purpose efforts that
continue use of widespread programming practices; e.g., global ad-
dress space, imperative languages, object-oriented programming,
and complex, pointer based data structures.

Language-based approaches with such goals include Jade [31]
and the recent Deterministic Parallel Java (DPJ) [8]. In partic-
ular, DPJ proposes a region-based type and effect system for
deterministic-by-default semantics – “regions” name disjoint par-
titions of the heap and per-methodeffectannotations summarize
which regions are read and written by each method. Coupled with
a disciplined parallel control structure, the compiler caneasily use
the effect summaries to ensure that there are no unordered con-
flicting accesses and the program is deterministic. Recent results
show that DPJ is applicable to a range of applications and complex
data structures and provides performance comparable to threads
code [8].

There has also been much recent progress in runtime methods
for determinism [15, 28, 4, 5].

Both language and runtime approaches have pros and cons
and still require research before mainstream adoption. A language
based approach must establish that it is expressive enough and does
not incur undue programmer burden. For the former, the new tech-
niques are promising, but the jury is still out. For the latter, DPJ
is attempting to alleviate the burden by using a familiar base lan-
guage (currently Java) and providing semi-automatic toolsto infer
the required programmer annotations [38]. Further, language an-
notations such as DPJ’s read/write effect summaries are valuable
documentation in their own right – they promote lifetime benefits
for modularity and maintainability, arguably compensating for up-
front programmer effort. Finally, a static approach benefits from no
overhead or surprises at runtime.

In contrast, the purely runtime approaches impose less burden
on the programmer, but a disadvantage is that the overheads in some
cases may still be too high. Further, inherently, a runtime approach
does not provide the guarantees of a static approach before shipping
and is susceptible to surprises in the field.

We are optimistic that the recent approaches have opened up
many promising new avenues for disciplined shared-memory that
can overcome the problems described in this paper. It is likely that
a final solution will consist of a judicious combination of language
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and runtime features, and will derive from a rich line of future
research.

7. Implications for Hardware
As discussed in Section 4, current hardware memory models are an
imperfect match for even current software (data-race-free) mem-
ory models. ISA changes to identify individual loads and stores as
synchronization can alleviate some short-term problems. An estab-
lished ISA, however, is hard to change, especially when existing
code works mostly adequately and there is not enough experience
to document the benefits of the change.

Academic researchers have taken an alternate path that uses
complex mechanisms (e.g., [6]) to speculatively remove thecon-
straints imposed by fences, rolling back the speculation when it
is detected that the constraints were actually needed. While these
techniques have been shown to work well, they come at an imple-
mentation cost and do not directly confront the root of the problem
of mismatched hardware/software views of concurrency semantics.

Taking a longer term perspective, we believe that a more funda-
mental solution to the problem will emerge with a co-designed ap-
proach, where future multicore hardware research evolves in con-
cert with the software models research discussed in Section6.

The current state of hardware technology makes this a particu-
larly opportune time to embark on such an agenda. Power and com-
plexity constraints have led industry to bet that future single-chip
performance increases will largely come from increasing numbers
of cores. Today’s hardware cache-coherent multicore designs, how-
ever, are optimized for few cores – power-efficient, performance
scaling to several hundreds or a thousand cores without considera-
tion of software requirements will be difficult.

We view this challenge as an opportunity to not only resolve
the problems discussed in this paper, but in doing so, we expect to
build more effective hardware and software. First, we believe that
hardware thattakes advantage ofthe emerging disciplined software
programming models is likely to be more efficient than a software-
oblivious approach. This observation already underlies the work
on relaxed hardware consistency models – we hope the difference
this time around will be that the software and hardware models
will evolve together rather than as retrofits for each other,provid-
ing more effective solutions. Second, hardware research tosupport
the emerging disciplined software models is also likely to be criti-
cal. Hardware support can be used for efficient enforcement of the
required discipline when static approaches fall short; e.g., through
directly detecting violations of the discipline and/or through effec-
tive strategies to sandbox untrusted code.

Along these lines, we have recently begun the DeNovo hard-
ware project at Illinois in concert with DPJ. We are exploiting
DPJ-like region and effect annotations to design more power- and
complexity-efficient, software-driven communication andcoher-
ence protocols and task scheduling mechanisms. We also planto
provide hardware and runtime support to deal with cases where
DPJ’s static information and analysis might fall short. As such co-
designed models emerge, ultimately, we expect them to drivethe
future hardware-software interface including the ISA.

8. Conclusions
This paper gives a perspective based on work collectively span-
ning about thirty years. We have been repeatedly surprised at how
difficult it is to formalize the seemingly simple and fundamental
property of “what value a read should return in a multithreaded pro-
gram.” Sequential consistency for data-race-free programs appears
to be the best we can do at present, but it is insufficient. The in-
ability to define reasonable semantics for programs with data races
is not just a theoretical shortcoming, but a fundamental hole in the

foundation of our languages and systems. It is well acceptedthat
most shipped software has bugs and it is likely that much commer-
cial multithreaded software has data races. Debugging tools and
safe languages that seek to sandbox untrusted code must dealwith
such races, and must be given semantics that reasonable computer
science graduates and developers can understand.

We believe that it is time to rethink how we design our lan-
guages and systems. Minimally, the system, and preferably the lan-
guage, must enforce the absence of data races. A longer-term, po-
tentially more rewarding strategy is to rethink higher-level disci-
plines that make it much easier to write parallel programs and that
can beenforcedby our languages and systems. We also believe that
some of the messiness of memory models today could have been
averted with a closer cooperation between hardware and software.
As we move towards more disciplined programming models, there
is also a new opportunity for a hardware/software co-designed ap-
proach that rethinks the harwdare/software interface and the hard-
ware implementations of all concurrency mechanisms. Theseviews
embody a rich research agenda that will need the involvementof
many computer science sub-disciplines, including languages, com-
pilers, formal methods, software engineering, algorithms, runtime
systems, and hardware.
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