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Drawbacks of Single Cycle Processor
 Long cycle time

All instructions take as much time as the slowest

Instruction Fetch

Store

ALU Memory Write

Instruction Fetch

Arithmetic & Logical

Register Read ALU Reg Write

Load

Memory ReadInstruction Fetch
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ALURegister Read 
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 Functional units are duplicated raising cost
Each functional unit can be used once per clock cycle

Instruction Fetch

Branch

Register Read ALU



Solution = Multicycle Implementation
 Break instruction execution into five steps

 Instruction fetch

 Instruction decode and register read

Execution, memory address calculation, or branch completion

Memory access or ALU instruction completion

 Load instruction completion

 One step = One clock cycle (clock cycle is reduced)
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 First 2 steps are the same for all instructions

Instruction # cycles Instruction # cycles

ALU 4 Branch 3

Load 5 Store 4

MIPS Multicycle Datapath
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ALU is used to increment upper 30 
bits of PC, to compute branch 

target and load/store address, and 
to execute ALU instructions

Registers are used to store values at the end of 
each clock cycle for use during next cycle

Same memory is used for instructions and data



Multicycle Datapath Changes
 Eliminating some of the components

Single memory unit for both instructions and data

Si l ALU li i ti b h dd dd d PC ddSingle ALU eliminating branch address adder and PC adder

Note: modern CPUs maintain separate instruction and data memories as 
well as separate address adders, but we reduce them here because the 
same component can be used for different purposes in different cycles

 Adding temporary registers

 Instruction Register: IR
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Memory Data Register: MDR

Register file output data registers: A and B

ALU output register: ALUout

Required to store major unit output values for use in next cycle

Multicycle Datapath Changes – cont’d
 This multicycle design can accommodate

One memory access per cycle

 IR register sa es fetched instr ction IR register saves fetched instruction

 MDR register saves the read memory data

One register file access per cycle

 Two registers can be read concurrently into A and B registers

One ALU operation per cycle

 ALUout register saves the ALU output
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 Additional multiplexers are also needed

Mux before the memory address to select PC or ALUout address

Mux before 1st ALU input to select PC to increment or A register

Extended mux before PC to increment PC, branch, or jump



Multicycle Datapath + Control Signals
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Extender
32

PCWrite and IRWrite to enable the 
writing of PC and IR registers

IorD to select memory address as either PC 
for instruction or ALUout for data address

PCSource to select PC input

ALUSrcB to 
select ALU inputs

More control signals than single-cycle CPU

Signal Effect when ‘0’ Effect when ‘1’
RegDst Destination register = Rt Destination register = Rd

RegWrite None Register(RW) ← BusW

ExtOp 16 bit immediate is zero extended 16 bit immediate is sign extended

Control Signals

ExtOp 16-bit immediate is zero-extended 16-bit immediate is sign-extended

ALUSrcA 1st ALU operand is PC (upper 30-bit) 1st ALU operand is the A register

ALUSrcB 2nd ALU operand is the B register 2nd ALU input is extended-imm16

MemRead None MemData ← Memory[address]

MemWrite None Memory[address] ← Data_in

MemtoReg BusW = ALUout BusW = MDR

IorD Memory Address = PC Memory Address = ALUout

IRWrite None IR ← MemData
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PCWrite None PC ← NextPC

Signal Value Effect

PCSource

00 NextPC = PC[31:2] + 1 (increment upper 30 bits of PC)

01 NextPC = ALUout = PC[31:2] + 1 + sign-extend(imm16) (for branch)

10 NextPC = PC[31:28], imm26 (for jump)
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Extender
32

IR ← Memory[PC]
PC ← PC + 4

ExtOp = x

IorD = 0
MemRead = 1
IRWrite = 1

ALUSrcA = 0, ALU = INC
PCSource = 0, PCWrite = 1

MemWrite = 0, RegWrite = 0

Don’t care 
about rest

2. Decode and Register Fetch
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Extender

A ← Reg[Rs],   B ← Reg[Rt]
A, B are written on every cycle

ALUout ← PC[31:2] + sign-ext(Im16) (branch address)
ALUSrcA = 0, ALUSrcB = 1, ExtOp = 1, ALU = ADD

MemRead = MemWrite = IRWrite = RegWrite = 0

PCSource = 10, PCWrite = J (Jump Completion)Compute branch address in advance

instruction is decoded to 
determine the control 

signals for the next cycles



3a. Execute Cycle for R-type
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Extender

For R-type ALU instructions:
ALUout ← A funct B
ALUCtrl depends on the function field

ExtOp = x

ALUSrcA = 1,
ALUSrcB = 0,
ALU = funct

PCWrite = MemRead = MemWrite = IRWrite = RegWrite = 0

Don’t care 
about rest

can perform different 
operations depending on 

the instruction class

3b. Compute Address for Load/Store

4

PC[31:28], Imm26

30
30

30

IorD
= x

MemRead
= 0

MemWrite
= 0

IRWrite
= 0

RegWrite
= 0

ALUSrcA
= 1

RegDst
= x

PCWrite
= 0

PCSource
= x

m
u
x

2

1
NextPC

0

Rs

Rt

Address

MemData

Memory

30

m
u
x

0

1
Rd

m
u
x

0

1

zero

Data_in

M
D

R

32

30

32

ALUSrcB
= 1

ALUCtrl
= ADD

0

mux 01MemtoReg
= x

P
C

00

30

32

IR

A
B

RA

RB

BusA

BusB
RW

BusW

Registers

Imm16
Extender

A
L
U

32m
u
x
1

32

m
u
x

0

1

32

A
L

U
o

u
t

32

Multicycle Implementation © Muhamed Mudawar, COE 308 – KFUPM Slide 12

ALUout ← A + sign-extend(Immediate16)

ExtOp = sign

ALUSrcA = 1, ALUSrcB = 1
ExtOp = sign, ALU = ADD

PCWrite = MemRead = MemWrite = IRWrite = RegWrite = 0

For load/store instructions, 
ALU computes memory 
address during 3rd cycle

Extender

Same control signals can be used with I-type ALU



3c. Branch Completion
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Extender

if (branch) PC ← ALUout
ALUout is branch target address computed 
during the second cycle

ExtOp = x

ALUSrcA = 1,
ALUSrcB = 0, PCSource = 01
ALUCtrl = SUB, PCWrite = Branch

MemRead = MemWrite = IRWrite = RegWrite = 0

compares A with B and if 
the branch is taken then 

PC becomes ALUout 

Branch depends on the zero condition 
Branch = beq . zero + bne . zero

4a. ALU Instruction Completion
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Extender

Reg[Rd] ← ALUout (for R-type)
Reg[Rt] ← ALUout (for I-type ALU instruction)

ExtOp = x

RegDst = 1 (for R-type and 0 for I-type)
MemtoReg = 0, RegWrite = 1

PCWrite = MemRead = MemWrite = IRWrite = 0, and don’t care about rest

instruction completes 
writing its result into the 

destination register



4b. Memory Access for Load & Store
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Extender

MDR ← Memory[ALUout] (for load)
Memory[ALUout] ← B (for store)

ExtOp = x

IorD = 1, MemRead = 1 (load)
MemWrite = 1 (store)

PCWrite = IRWrite = RegWrite = 0

Load & store access memory during 4th cycle

5. Load Instruction Completion
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Extender

Reg[Rt] ← MDR

ExtOp = x

RegDst = 0 (Rt)
MemtoReg = 1
RegWrite = 1

PCWrite = IRWrite = 0,
MemRead = MemWrite = 0
Don’t care about rest

During the 5th cycle, the 
load instruction 

completes writing its 
result into register Rt



Instruction Execution Summary
Cycle Action Register Transfers

1 Fetch instruction IR ← Memory[PC] , PC ← PC + 4

Decode instruction Generate control signals

2

Decode instruction
Fetch registers
Compute branch address in advance
Jump completion (case of a jump)

Generate control signals
A ← Reg[Rs], B ← Reg[Rt]
ALUout ← PC[31:2] + sign-extend(Imm16)
PC ← PC[31:28], Im26

3

Case 1: Execute R-type ALU
Case 2: Execute I-type ALU
Case 3: Compute load/store address
Case 4: Branch completion

ALUout ← A funct B
ALUout ← A op extend(Imm16)
ALUout ← A + sign-extend(Imm16)
if (Branch) PC ← ALUout
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4

Case 1: Write ALU result for R-type
Case 2: Write ALU result for I-type
Case 3: Access memory for load
Case 4: Access memory for store

Reg[Rd] ← ALUout
Reg[Rt] ← ALUout
MDR ← Memory[ALUout]
Memory[ALUout] ← B

5 Load instruction completion Reg[Rt] ← MDR

Defining the Control
 Control for multicycle datapath is more complex

Because instruction is executed as a sequence of steps

 Values of control signals depend upon:

What instruction is being executed

Which cycle is being performed

 Multicycle control is a Finite State Machine (FSM)

While single-cycle control is a combinational logic
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 Two implementation techniques for multicycle control

Set of states and transitions implemented directly in logic

Microprogramming: a programming representation for control



Multicycle Datapath + Control
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Instruction
fetch

Start Instruction decode,
register fetch, and

branch address computation

(op = J)

branch address computation

(op = BEQ) or 
(op = BNE)

(op = ANDI) or 
(op = ORI) or …
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R-typeLoad/Store Branch
I-type
ALU



State Diagram for Multicycle Control
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Branch 
Completion BEQ or BNE

Control signal 
values default to 
zero when they 

are not specified

ALUSrcA = 1
ALUSrcB = 0
ALUop = SUB
PCSource = 01

PCWrite = Branch

8
9 10ALUSrcA = 1

ALUSrcB = 1
Extop = zero
ALUop = op

I-type ALU

RegDst = 0 (Rt)
MemtoReg = 0
RegWrite = 1

I-type Completion

ORI, ANDI, …

Finite State Machine Controller
 Implemented as …

 Comb control logic

 State register ur
re

nt
 s

ta
te

e
xt

 s
ta

te

R
eg

D
st

er
o

R
eg

W
rit

e

A
LU

S
rc

A

A
LU

S
rc

B

M
em

R
ea

d

M
em

W
rit

e

M
em

to
R

eg

or
D

R
W

rit
e

P
C

W
rit

e

P
C

S
ou

rc
e

A
LU

op

p

E
xt

O
p

State Transition and Output Table

 State register

RegDst
RegWrite
ExtOp
ALUSrcA
ALUSrcB
MemRead
MemWrite
MemtoReg
IorD
IRWrite
PCWrite

Op

zero

Combinational

Control logic

0 x x 1 x x 0 0 x 1 0 x 0 1 1 00 INC

1 lw, sw x 2 x 1 0 0 1 0 0 x x 0 0 10 ADD

1 Rtype x 6 x 1 0 0 1 0 0 x x 0 0 10 ADD

1
beq
bne

x 8 x 1 0 0 1 0 0 x x 0 0 10 ADD

1 j x 0 x 1 0 0 1 0 0 x x 0 1 10 ADD

1 ori, … x 9 x 1 0 0 1 0 0 x x 0 0 10 ADD

2 lw x 3 x 1 0 1 1 0 0 x x 0 0 x ADD

2 sw x 5 x 1 0 1 1 0 0 x x 0 0 x ADD

3 x x 4 x x 0 x x 1 0 x 1 0 0 x x

c n Rze R A A M M M Io IR P P AO E
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PCWrite
PCSource

State register
next
state

current state

clk

ALUop
4 x x 0 0 x 1 x x 0 0 1 x 0 0 x x

5 x x 0 x x 0 x x 0 1 x 1 0 0 x x

6 x x 7 x x 0 1 0 0 0 x x 0 0 x Rtype

7 x x 0 1 x 1 x x 0 0 0 x 0 0 x x

8
bne
beq

0
1

0 x x 0 1 0 0 0 x x 0 Br 01 SUB

9 x x 10 x 0 0 1 1 0 0 x x 0 0 x Op

10 x x 0 0 x 1 x x 0 0 0 x 0 0 x x



 Reduces hardware
One unified memory for instruction and data, and one ALU

 R d l k l d ti

Multicycle Implementation Summary

 Reduces clock cycle and time
When compared to single-cycle implementation

 Breaks instruction execution into steps (step = 1 cycle)

 Internal registers in datapath
Save intermediate data for later cycles

 Fi i S M hi (FSM) ifi i f l
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 Finite State Machine (FSM) specification of control

 Implementation of control 
Hardwired control  a sequential machine

Microprogramming (covered in textbook)


