

Prepared by Dr. Muhamed Mudawar

COE 308 – Computer Architecture

Exam II – Fall 2008

Monday, January 12, 2009

7:00 – 9:00 pm

Computer Engineering Department

College of Computer Sciences & Engineering

King Fahd University of Petroleum & Minerals

Student Name:

Student ID:

Q1 / 15 Q2 / 15

Q3 / 15 Q4 / 25

Q5 / 15 Q6 / 15

Total / 100

Important Reminder on Academic Honesty

Using unauthorized information on an exam, peeking at others work, or altering
graded exams to claim more credit are severe violations of academic honesty.
Detected cases will receive a failing grade in the course.

 Page 2 of 9

Q1. (15 pts) Using the refined division hardware, show the unsigned division of:

 Dividend = 11011001 by Divisor = 00001010

 The result of the division should be stored in the Remainder and Quotient registers.
Eight iterations are required. Show your steps.

 Page 3 of 9

Q2. (15 pts) A program, being executed on a processor, has the following instructions mix:

Operation Frequency Clock cycles per instruction
ALU 40 % 2
Load 20 % 10
Store 15 % 4
Branches 25 % 3

a) (3 pts) Compute the average clock cycles per instruction

b) (5 pts) Compute the percent of execution time spent by each class of instructions

c) (5 pts) A designer wants to improve the performance. He designs a new execution unit

that makes 80% of ALU operations take only 1 cycle to execute. The other 20% of ALU
operations will still take 2 cycles to execute. The designer also wants to improve the
execution of the memory access instructions. He does it in a way that 95% of the load
instructions take only 2 cycles to execute, while the remaining 5% of the load
instructions take 10 cycles to execute per load. He also improves the store instructions
in such a way that each store instruction takes 2 cycles to execute.

Compute the new average CPI

d) (2 pts) What is the speedup factor by which the performance has improved in part c?

 Page 4 of 9

Q3. (15 pts) The following code fragment processes two double-precision floating-point
arrays A and B, and produces an important result in register $f0. Each array consists of
10000 double words. The base addresses of the arrays A and B are stored in $a0 and
$a1 respectively.

 ori $t0, $zero, 10000
 sub.d $f0, $f0, $f0
loop: ldc1 $f2, 0($a0)
 ldc1 $f4, 0($a1)
 mul.d $f6, $f2, $f4
 add.d $f0, $f0, $f6
 addi $a0, $a0, 8
 addi $a1, $a1, 8
 addi $t0, $t0, -1
 bne $t0, $zero, loop

a) (3 pts) Count the total number of instructions executed by all the iterations (including
those executed outside the loop).

 Assume that the code is run on a machine with a 2 GHz clock that requires the following
number of cycles for each instruction:

Instruction Cycles

addi, ori 1

ldc1 3

add.d, sub.d 5

mul.d 6

bne 2

b) (5 pts) How many cycles does it take to execute the above code?

c) (3 pts) What is the execution time in nanoseconds?

d) (2 pts) What is the average CPI for the above code?

e) (2 pts) What is the MIPS rate for the above code?

 Page 5 of 9

Q4. (25 pts) Consider the following idea: we want to modify all load and store instructions in
the instruction set such that the offset is always 0 (the addressing mode is register
indirect only). This means that all load and store instructions will have the following
format, where Rs is the register that contains the memory address.

 LW Rt, (Rs) # No immediate constant used
 SW Rt, (Rs) # No immediate constant used

a) (10 pts) Draw the modified single-cycle datapath (rotate the page for wider drawing).
Identify the changes that you are making to the single-cycle (non-pipelined) datapath.

 Page 6 of 9

b) (7 pts) Assume that the operation delays for the major components are as follows:

 Instruction Memory: 200 ps

 Data Memory: 200 ps

 ALU: 100 ps

 Register file (read or write): 50 ps

 Ignore the delays in the multiplexers, control, PC access, extension logic, and wires.

 What is the cycle time for the single-cycle non-pipelined datapath BEFORE and AFTER
making the modification?

c) (8 pts) Because we have reduced the offset to zero in all load and store instructions, all
original load-store instructions with non-zero offsets would now require an additional
ADDI instruction to compute the address. This will increase the instruction count.

 Suppose we have a program in which 20% of the instructions are load-store instructions.
Assume further that only 10% of the original load-store instructions have a non-zero
offset and would require an additional ADDI instruction to compute the address.

 What is the percent increase in the instruction count when additional ADDI instructions
are used?

 Which design is better, the original one that allowed non-zero offsets, or the modified
one with zero offsets, and why?

 What is the speedup factor?

 Page 7 of 9

 Q5. (15 pts) Consider the following MIPS code sequence:

lw $5, 100($2)

add $2, $3, $5

sub $5, $5, $2

sw $5, 100($2)

a) (6 pts) Identify all pairs of instructions that have RAW dependencies

b) (3 pts) Identify all pairs of instructions that have WAR dependencies

c) (2 pts) Identify all pairs of instructions that have WAW dependencies

d) (4 pts) Rewrite the above instructions to eliminate all WAR and WAW dependencies

Prepared by Dr. Muhamed Mudawar

Q6. (15 pts) Consider the following MIPS assembly language code:

I1: ADD $4, $1, $0
I2: SUB $9, $3, $4
I3: ADD $4, $5, $6
I4: LW $2, 100($3)
I5: LW $2, 0($2)
I6: SW $2, 100($4)
I7: AND $2, $2, $1

a) (8 pts) Show the timing of one loop iteration on a 5-stage (IF, ID, EX, MEM, WB)
pipeline without forwarding hardware. Complete the timing table, showing all the
stall cycles that are caused by data hazards. Label all stall cycles (Draw an X in the box).
Compute the average CPI for the above code fragment.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

I1: ADD IF ID EX M WB

I2: SUB

I3: ADD

I4: LW

I5: LW

I6: SW

I7: AND

b) (7 pts) Repeat part (a) on a pipeline that supports forwarding. Label all data forwards

that the forwarding unit detects with an arrow between the stage handing off the data
and the stage receiving the data. Compute the average CPI for the above code fragment.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

I1: ADD IF ID EX M WB

I2: SUB

I3: ADD

I4: LW

I5: LW

I6: SW

I7: AND

 Page 9 of 9

Additional page if needed

