
Prepared by Dr. Muhamed Mudawar Page 1 of 3

COE 308 – Computer Architecture
Term 061 – Fall 2006

Project 3: Pipelined Processor Design

Due Sunday, January 14, 2006 by Midnight

Objectives:

• Using the Logisim simulator
• Designing and testing a Pipelined 16-bit processor
• Teamwork

Instruction Set Architecture
In this project, you will use the same 16-bit MIPS-like instruction set that was defined in the
previous project. There are seven 16-bit general-purpose registers: R1 through R7. R0 is
hardwired to zero and cannot be written. There is also one special-purpose 16-bit register,
which is the program counter (PC). There are three instruction formats as shown below:

R-type format:
4-bit opcode (Op), 3-bit register numbers (Rs, Rt, and Rd), and 3-bit function field (funct)

I-type format:
4-bit opcode (Op), 3-bit register number (Rs and Rt), and 6-bit immediate constant

J-type format:
4-bit opcode (Op) and 12-bit immediate constant

Instruction Encoding:
Eight R-type instructions, six I-type instructions, and three J-type instructions are defined.
These instructions, their meanings, and their encodings are shown below:

Instr Meaning Encoding
OR Reg(Rd) = Reg(Rs) | Reg(Rt) Op = 0000 Rs Rt Rd f = 000
AND Reg(Rd) = Reg(Rs) & Reg(Rt) Op = 0000 Rs Rt Rd f = 001
NOR Reg(Rd) = ~(Reg(Rs) | Reg(Rt)) Op = 0000 Rs Rt Rd f = 010
XOR Reg(Rd) = Reg(Rs) ^ Reg(Rt) Op = 0000 Rs Rt Rd f = 011
ADD Reg(Rd) = Reg(Rs) + Reg(Rt) Op = 0000 Rs Rt Rd f = 100
SUB Reg(Rd) = Reg(Rs) – Reg(Rt) Op = 0000 Rs Rt Rd f = 101
SLT Reg(Rd) = Reg(Rs) < Reg(Rt) Op = 0000 Rs Rt Rd f = 110
JR Jump register: PC = Reg(Rs) Op = 0000 Rs 000 000 f = 111

funct3Op4 Rs3 Rt3 Rd3

Immediate6Op4 Rs3 Rt3

Immediate12Op4

Prepared by Dr. Muhamed Mudawar Page 2 of 3

ADDI Reg(Rt) = Reg(Rs) + ext(im6) Op = 0100 Rs Rt Immediate6
SLTI Reg(Rt) = Reg(Rs) < ext(im6) Op = 0110 Rs Rt Immediate6
LW Reg(Rt) = Mem(Reg(Rs) + ext(im6)) Op = 1000 Rs Rt Immediate6
SW Mem(Reg(Rs) + ext(im6)) = Reg(Rt) Op = 1001 Rs Rt Immediate6
BEQ Branch if (Reg(Rs) == Reg(Rt)) Op = 1010 Rs Rt Immediate6
BNE Branch if (Reg(Rs) != Reg(Rt)) Op = 1011 Rs Rt Immediate6

J PC = PC + 1 + ext(im12) Op = 1100 Immediate12
JAL R7 = PC + 1, PC = PC+1+ext(im12) Op = 1101 Immediate12
LUI R1 = Immediate12 << 4 Op = 1111 Immediate12

Memory:
Your processor will have separate instruction and data memories as in the previous project.
Memory is word addressable. Each word is 16 bits or 2 bytes.

Addressing Modes:
For branches (BEQ and BNE) and jumps (J and JAL), PC-relative addressing mode is used.
PC = PC + 1 + sign-extend(imm6) for branches and PC = PC + 1 + sign-extend(imm12) for
jumps. For LW and SW base-displacement addressing mode is used. The base address in
register Rs is added to the sign-extended immediate6 to compute the memory address.

Program Execution:
The program will be loaded and will start at address 0 in the instruction memory. The data
segment will be loaded and will start also at address 0 in the data memory. You may also
have a stack segment if you want to support procedures. The stack segment can occupy the
upper part of the data memory and can grow backwards towards lower addresses. The stack
segment can be implemented completely in software. To terminate the execution of a
program, the last instruction in the program can jump or branch to itself indefinitely.

Building a Pipelined Processor
In this project, you will build a 5-stage pipelined datapath and its control logic. You may start
with the non-pipelined single cycle processor that you have implemented in the first project
and modify it to make it pipelined. You should detect data hazards, implement
forwarding, detect and handle control hazards, and stall the pipeline when necessary.
You can test this part by loading a program into the instruction memory and loading its data
into the data memory.

Testing:
To test the implementation, write simple programs to test whether all instructions are
implemented and pipelined correctly. You should also test whether data hazards are detected
properly, whether forwarding is implemented properly, and whether control hazards are
detected and handled properly.

Groups:
As in the previous project, two or at most three students can form a group. It is best to
continue with the same group. Make sure to write the names of all the students involved in
your group on the project report.

Prepared by Dr. Muhamed Mudawar Page 3 of 3

Submission Guidelines:
All submissions will be by email sent to:
mudawar@ccse.kfupm.edu.sa ; rfarooqi@ccse.kfupm.edu.sa
Subject: COE 308 Project 3
Attach one zip file containing the design circuits, the binary image files of the sample
programs that you have used to test your design, as well as the report document.

Report:
The report should contain the names of all the group members and the collaboration efforts
among the group members (how the group members collaborated and divided the work
among themselves). It should contain the circuit diagrams and a description of the circuit
design. You should describe the sample code that was used to test your design in assembly
language and in binary. Make sure to demonstrate that instructions were implemented
correctly. Also, demonstrate pipelining, describe how data hazards are detected, how
forwarding is implemented, how control hazards are handled. Make sure to report all cases.
You will loose points on the report if the report is not complete.

Grading policy:
The grade will be divided according to the following components:
■ Correctness: whether your implementation is working
■ Completeness and testing: whether all instructions have been implemented correctly, and

all data and control hazards have been tested properly.
■ Participation and contribution to the project
■ Report document

Late policy:
The project should be submitted on the due date by midnight. Late projects are accepted, but
will be penalized 5% for each late day and for a maximum of 5 late days (or 25%). Projects
submitted after 5 late days will not be accepted.

