
Prepared by Dr. Muhamed Mudawar Page 1 of 4

COE 308 – Computer Architecture
Term 061 – Fall 2006

Project 2: Single Cycle Processor Design

Due Sunday, December 10, 2006 by Midnight

Objectives:

• Using the Logisim simulator
• Designing and testing a Single-Cycle 16-bit processor
• Teamwork

Instruction Set Architecture
In this project, you will design a simple 16-bit MIPS-like processor with seven 16-bit
general-purpose registers: R1 through R7. R0 is hardwired to zero and cannot be written, so
we are left with seven registers. There is also one special-purpose 16-bit register, which is the
program counter (PC). All instructions are also 16 bits. There are three instruction formats,
R-type, I-type, and J-type as shown below:

R-type format:
4-bit opcode (Op), 3-bit register numbers (Rs, Rt, and Rd), and 3-bit function field (funct)

I-type format:
4-bit opcode (Op), 3-bit register number (Rs and Rt), and 6-bit immediate constant

J-type format:
4-bit opcode (Op) and 12-bit immediate constant

For R-type instructions, Rs and Rt specify the two source register numbers, and Rd specifies
the destination register number. The function field can specify at most eight functions for a
given opcode. We will reserve opcode 0 for R-type instructions. It is also possible to reserve
more opcodes, if more than eight R-type instructions exist.
For I-type instructions, Rs specifies a source register number, and Rt can be a second source
or a destination register number. The immediate constant is only 6 bits because of the fixed-
size nature of the instruction. The size of the immediate constant is suitable for our uses. The
6-bit immediate constant is signed (and sign-extended) for all I-type instructions.
For J-type, a 12-bit immediate constant is used for J (jump), JAL (jump-and-link), and LUI
(load upper immediate) instructions.

funct3Op4 Rs3 Rt3 Rd3

Immediate6Op4 Rs3 Rt3

Immediate12Op4

Prepared by Dr. Muhamed Mudawar Page 2 of 4

Instruction Encoding:
Eight R-type instructions, six I-type instructions, and three J-type instructions are defined.
These instructions, their meanings, and their encodings are shown below:

Instr Meaning Encoding
OR Reg(Rd) = Reg(Rs) | Reg(Rt) Op = 0000 Rs Rt Rd f = 000
AND Reg(Rd) = Reg(Rs) & Reg(Rt) Op = 0000 Rs Rt Rd f = 001
NOR Reg(Rd) = ~(Reg(Rs) | Reg(Rt)) Op = 0000 Rs Rt Rd f = 010
XOR Reg(Rd) = Reg(Rs) ^ Reg(Rt) Op = 0000 Rs Rt Rd f = 011
ADD Reg(Rd) = Reg(Rs) + Reg(Rt) Op = 0000 Rs Rt Rd f = 100
SUB Reg(Rd) = Reg(Rs) – Reg(Rt) Op = 0000 Rs Rt Rd f = 101
SLT Reg(Rd) = Reg(Rs) < Reg(Rt) Op = 0000 Rs Rt Rd f = 110
JR Jump register: PC = Reg(Rs) Op = 0000 Rs 000 000 f = 111

ADDI Reg(Rt) = Reg(Rs) + ext(im6) Op = 0100 Rs Rt Immediate6
SLTI Reg(Rt) = Reg(Rs) < ext(im6) Op = 0110 Rs Rt Immediate6
LW Reg(Rt) = Mem(Reg(Rs) + ext(im6)) Op = 1000 Rs Rt Immediate6
SW Mem(Reg(Rs) + ext(im6)) = Reg(Rt) Op = 1001 Rs Rt Immediate6
BEQ Branch if (Reg(Rs) == Reg(Rt)) Op = 1010 Rs Rt Immediate6
BNE Branch if (Reg(Rs) != Reg(Rt)) Op = 1011 Rs Rt Immediate6

J PC = PC + 1 + ext(im12) Op = 1100 Immediate12
JAL R7 = PC + 1, PC = PC+1+ext(im12) Op = 1101 Immediate12
LUI R1 = Immediate12 << 4 Op = 1111 Immediate12

Although the instruction set is too much reduced, it is still rich enough to write some useful
programs. We can have procedure calls and returns using the JAL and JR instructions.

Memory:
Your processor will have separate instruction and data memories with 212 = 4096 words each
(this is the maximum that can be supported under the current version of Logisim). Each word
is 16 bits or 2 bytes. Memory is word addressable. Only words (not bytes) can be read and
written to memory, and each address is a word address. This will simplify the processor
implementation. The PC contains a word address (not a byte address). Therefore, it is
sufficient to increment the PC by 1 (rather than 2) to point to the next instruction in memory.
Also, the Load and Store instructions can only load and store words. There is no instruction
to load or store a byte in memory.

Addressing Modes:
For branches (BEQ and BNE) and jumps (J and JAL), PC-relative addressing mode is used.
PC = PC + 1 + sign-extend(imm6) for branches and PC = PC + 1 + sign-extend(imm12) for
jumps. For LW and SW base-displacement addressing mode is used. The base address in
register Rs is added to the sign-extended immediate6 to compute the memory address.

Prepared by Dr. Muhamed Mudawar Page 3 of 4

Program Execution:
The program will be loaded and will start at address 0 in the instruction memory. The data
segment will be loaded and will start also at address 0 in the data memory. You may also
have a stack segment if you want to support procedures. The stack segment can occupy the
upper part of the data memory and can grow backwards towards lower addresses. The stack
segment can be implemented completely in software.
To terminate the execution of a program, the last instruction in the program can jump or
branch to itself indefinitely.

Getting Started with Logisim:
You should first download Logisim from my COE 308 course website. Logisim is very easy
to use. To get started, you can read the documentation available under the Logisim website.

Building a Single-Cycle Processor
Build a single-cycle datapath and its control logic. You can test this part by loading a
program into the instruction memory and loading its data into the data memory.

Testing:
To test the implementation, write a simple program that adds 5 array elements. Two
procedures are required. The main procedure initializes the 5 array elements with some
constant values. It then calls the second procedure after passing the array address and the
number of elements as parameters in two registers. The second procedure uses the parameters
to compute the sum of the array elements and returns the result in a register. Convert the
program into machine instructions by hand and load it into the instruction memory starting at
address 0. Having two procedures in the program, you will be able to test the JAL and JR
instructions. You can also write other programs and additional code as necessary to test all
the instructions that you have implemented.

WARNING:
Although Logisim is stable, it might crash from time to time. Therefore, it is best to save your
work often. Make several copies and versions of your design before making changes, in case
you need to go back to an older version.

Groups:
As in the first project, two or at most three students can form a group. It is best to continue
with the same group. Make sure to write the names of all the students involved in your group
on the project report.

Submission Guidelines:
All submissions will be by email sent to:
mudawar@ccse.kfupm.edu.sa ; rfarooqi@ccse.kfupm.edu.sa
Subject: COE 308 Project 2
Attach one zip file containing the design circuits, the binary image files of the sample
programs that you have used to test your design, as well as the report document.

Report:
The report should contain the names of all the group members and the collaboration efforts
among the group members (how the group members collaborated and divided the work

Prepared by Dr. Muhamed Mudawar Page 4 of 4

among themselves). It should contain the circuit diagrams and a description of the circuit
design. You should describe the sample code that was used to test your design in assembly
language and in binary. Make sure to demonstrate the instructions that were implemented
correctly and to identify the instructions that were not implemented or do not function
properly.

Grading policy:
The grade will be divided according to the following components:
■ Correctness: whether your implementation is working
■ Completeness and testing: whether all instructions have been implemented, handled, and

tested properly
■ Participation and contribution to the project
■ Report document

Late policy:
The project should be submitted on the due date by midnight. Late projects are accepted, but
will be penalized 5% for each late day and for a maximum of 5 late days (or 25%). Projects
submitted after 5 late days will not be accepted.

