
Page 1 of 7

COE 301 – Computer Organization

Assignment 3 SOLUTION: Procedures in MIPS Assembly Language

For the following problems, the table holds C code functions. Assume that the first function

listed in the table is called first. You will be asked to translate these C code routines into MIPS

assembly.

a.

int compare(int a, int b) {
 if (sub(a, b) >= 0) return 1;
 else return 0;
}
int sub(int a, int b) {
 return a – b;
}

b.

int fib_iter(int a, int b, int n) {
 if (n == 0) return b;
 else return fib_iter(a+b, a, n-1);
}

1. Implement the C code in the table in MIPS assembly. What is the total number of MIPS

instructions needed to execute the function?

a.

compare:
 addi $sp, $sp, –4 # allocate frame = 4 bytes
 sw $ra, 0($sp) # save return address
 jal sub # call sub
 li $t0, 0 # result = 0
 bltz $v0, exit # if sub(a,b)<0 goto exit
 li $t0, 1 # result = 1
exit:
 move $v0, $t0 # $v0 = result
 lw $ra, 0($sp) # restore return address
 addi $sp, $sp, 4 # free stack frame
 jr $ra # return to caller

sub:
 sub $v0, $a0, $a1 # result = a - b
 jr $ra # return to caller

11 or 12 instructions (depending whether bltz is ta ken or
not). Includes the call and return from sub

Page 2 of 7

b.

int fib_iter(int a, int b, int n) {
 if (n == 0) return b;
 else return fib_iter(a+b, a, n-1);
}

fib_iter:
 bne $a2, $0, else # if (n != 0) goto else
 move $v0, $a1 # result = b
 jr $ra # return to caller
else:
 addiu $sp, $sp, –4 # allocate frame = 4 bytes
 sw $ra, 0($sp) # save return address
 move $t0, $a0
 addu $a0, $a0, $a1 # $a0 = a+b
 move $a1, $t0 # $a1 = a
 addiu $a2, $a2, -1 # $a2 = n-1
 jal fib_iter # recursive call
 lw $ra, 0($sp) # restore return address
 addiu $sp, $sp, 4 # free stack frame
 jr $ra # return to caller

Total number of instructions = n * 11 + 3
11 instructions for each recursive call/return (if n>0)
+3 instructions if (n == 0)

2. Functions can often be implemented by compilers “in-line”. An in-line function is when the

body of the function is copied into the program space, allowing the overhead of the function

call to be eliminated. Implement an “in-line” version of the above C code in MIPS assembly.

What is the reduction in the total number of MIPS assembly instructions needed to

complete the function?

a.

compare:
 sub $t0, $a0, $a1
 li $v0, 0
 bltz $t0, exit
 li $v0, 1
exit:
 jr $ra

4 or 5 instructions (whether bltz is taken or not)

b. Due to recursive nature of the code, not possible f or the
compiler to in-line the function call.

Page 3 of 7

3. For each function call, show the contents of the stack after the function call is made.

Assume that the stack pointer is originally at address 0x7ffffffc.

a.

after calling function compare:
$sp = $sp – 4 = 0x7ffffff8

0x7ffffff8: return address of compare

b.

suppose that fib_iter was called with n = 4

0x7ffffff8: return address of caller (n=4)
0x7ffffff4: return address of 1st recursive call (n =3)
0x7ffffff0: return address of 2nd recursive call (n =2)
0x7fffffec: return address of 3rd recursive call (n =1)
0x7fffffe8: return address of 4th recursive call (n =0)

The return address of the 4 recursive calls is the same.
It is the address of the ‘lw’ instruction that come s
immediately after the recursive ‘jal fib_iter’ inst ruction

The following problems refer to a function f that calls another function func. The function

declaration for func is “int func(int a, int b);”. The code for function f is as follows:

a.
int f(int a, int b, int c) {
 return func(func(a, b), c);
}

b.
int f (int a, int b, int c) {
 return func(a, b) + func(b, c);
}

4. Translate function f into MIPS assembly code, using the MIPS calling convention. If you need

to use register $t0 through $t7, use the lower-numbered registers first.

a.

int f(int a, int b, int c) {
 return func(func(a, b), c);
}

f: addiu $sp, $sp, -8 # allocate frame = 8 bytes
 sw $ra, 0($sp) # save return address
 sw $a2, 4($sp) # save c
 jal func # call func(a,b)
 move $a0, $v0 # $a0 = result of func(a,b)
 lw $a1, 4($sp) # $a1 = c
 jal func # call func(func(a,b),c)
 lw $ra, 0($sp) # restore return address
 addiu $sp, $sp, 8 # free stack frame
 jr $ra # return to caller

Page 4 of 7

b.

int f(int a, int b, int c) {
 return func(a, b) + func(b, c);
}
f: addiu $sp, $sp, -12 # allocate frame = 12 bytes
 sw $ra, 0($sp) # save return address
 sw $a1, 4($sp) # save b
 sw $a2, 8($sp) # save c
 jal func # call func(a,b)
 lw $a0, 4($sp) # $a0 = b
 lw $a1, 8($sp) # $a1 = c
 sw $v0, 4($sp) # save result of func(a,b)
 jal func # call func(b,c)
 lw $t0, 4($sp) # $t0 = result of func(a,b)
 addu $v0, $t0, $v0 # $v0 = func(a,b)+func(b,c)
 lw $ra, 0($sp) # restore return address
 addiu $sp, $sp, 12 # free stack frame
 jr $ra # return to caller

5. Right before your function f of Problem 4 returns, what do you know about contents of

registers $t5, $s3, $ra, and $sp? Keep in mind that we know what the entire function f looks

like, but for function func we only know its declaration.

Register $ra is equal to the return address in the caller function, registers $sp and $s3 have

the same values they had when function f was called, and register $t5 can have an arbitrary

value. For $t5, note that although our function f does not modify it, function func is allowed

to modify it so we cannot assume anything about $t5 after function func has been called.

For the following problems, the table has an assembly code fragment that computes a

Fibonacci number. However, the entries in the table have errors, and you will be asked to fix

these errors.

fib: addi $sp, $sp, -12
 sw $ra, 8($sp)
 sw $s1, 4($sp)
 sw $a0, 0($sp)
 slti $t0, $a0, 3
 beq $t0, $0, L1
 addi $v0, $0, 1
 j exit
L1: addi $a0, $a0, -1
 jal fib
 addi $s1, $v0, $0
 addi $a0, $a0, -1
 jal fib
 add $v0, $v0, $s1
exit: lw $a0, 8($sp)
 lw $s1, 0($sp)
 lw $ra, 4($sp)
 addi $sp, $sp, 12
 jr $ra

Page 5 of 7

6. The MIPS assembly program above computes the Fibonacci of a given input. The integer

input is passed through register $a0, and the result is returned in register $v0. In the

assembly code, there are few errors. Correct the MIPS errors.

7. For the recursive Fibonacci MIPS program above, assume that the input is 4. Rewrite the

Fibonacci program to operate in a non-recursive manner. Restrict your register use to

registers $s0 - $s7. What is the total number of instructions used to execute your non-

recursive solution versus the recursive version of the factorial program?

a.

According to MIPS convention, we should preserve $s0 and $1. We could have
used $t0 and $t1 without preserving their values. For input 4, we have 23
instructions in non-recursive Fib versus 73 instructions to execute recursive Fib.

fib:
 addiu $sp, $sp, –8 # allocate stack frame
 sw $s0, 0($sp) # save $s0
 sw $s1, 4($sp) # save $s1
 li $s0, 1 # prev value in Fib sequence
 li $v0, 1 # curr value in Fib sequence
 blt $a0, 3, EXIT # if (n < 3) goto exit
LOOP:
 addu $s1, $v0, $s0 # next = curr + prev
 move $s0, $v0 # prev = curr
 move $v0, $s1 # curr = next
 addiu $a0, $a0, –1 # n = n - 1
 bge $a0, 3, LOOP # Loop if (n >= 3)
EXIT:
 lw $s0, 0($sp) # restore $s0
 lw $s1, 4($sp) # restore $s1
 addiu $sp, $sp, 8 # free stack frame
 jr $ra # return to caller

Page 6 of 7

In this exercise, you will be asked to write a MIPS assembly program that converts strings into

the number format as specified in the table.

a. Positive integer decimal string

b. String of hexadecimal digits

8. Write a program in MIPS assembly language to convert an ASCII number string with the

conditions listed in the table above, to an integer. Your program should expect register $a0

to hold the address of a null-terminated string containing some combination of the digits 0

though 9. Your program should compute the integer value equivalent to this string of digits,

then place the number in register $v0. If a nondigit character appears anywhere in the

string, your program should stop with the value -1 in register $v0.

a.

str2int: # convert string to integer
 li $t6, 0x30 # $t6 = '0'
 li $t7, 0x39 # $t7 = '9'
 li $v0, 0 # initialize $v0 = 0
 move $t0, $a0 # $t0 = pointer to string
 lb $t1, ($t0) # load $t1 = digit character
LOOP:
 blt $t1, $t6, NoDigit # char < ‘0’
 bgt $t1, $t7, NoDigit # char > ‘9’
 subu $t1, $t1, $t6 # convert char to integer
 mul $v0, $v0, 10 # multiply by 10
 add $v0, $v0, $t1 # $v0 = $v0 * 10 + digit
 addiu $t0, $t0, 1 # point to next char
 lb $t1, ($t0) # load $t1 = next digit
 bne $t1, $0, LOOP # branch if not end of string
 jr $ra # return integer value

NoDigit:
 li $v0, -1 # return -1 in $v0
 jr $ra

Page 7 of 7

b.

hexstr 2int : # convert hex string to int
 li $t4, 0x41 # $t4 = 'A'
 li $t5, 0x46 # $t7 = 'F'
 li $t6, 0x30 # $t6 = '0'
 li $t7, 0x39 # $t7 = '9'
 li $v0, 0 # initialize $v0 = 0
 move $t0, $a0 # $t0 = pointer to string
 lb $t1, ($t0) # load $t1 = digit character
LOOP:
 blt $t1, $t6, NoDigit # char < ‘0’
 bgt $t1, $t7, HEX # check if hex digit
 subu $t1, $t1, $t6 # convert to integer
 j Compute # jump to Compute integer
HEX:
 blt $t1, $t4, NoDigit # char < ‘A’
 bgt $t1, $t5, NoDigit # char > ‘F’
 addiu $t1, $t1, -55 # convert: ‘A’=10,‘B’=11,etc
 sll $v0, $v0, 4 # multiply by 16
 add $v0, $v0, $t1 # $v0 = $v0 * 16 + digit
 addiu $t0, $t0, 1 # point to next char
 lb $t1, ($t0) # load $t1 = next digit
 bne $t1, $0, LOOP # branch if not end of string
 jr $ra # return integer value

NoDigit:
 li $v0, -1 # return -1 in $v0
 jr $ra

