COE 301 - Computer Organization

Assignment 2: MIPS Instructions and Assembly Language

1. (2 pts) Bits have no inherent meaning. Given the 32 -bit pattern:

10101101000100000000000000000010
What does it represent, assuming it is ..
a) A 2's complement signed integer?
b) A MIPS instruction?
2. (2 pts) Find the shortest sequence of MIPS instructions to:
a) Determine if there is a carry out from the addition of two registers $\mathbf{\$ \mathbf { t } 3}$ and $\mathbf{\$ t 4}$. Place the carry out ($\mathbf{0}$ or $\mathbf{1}$) in register $\mathbf{\$ \mathbf { t } 2}$. It can be done in two instructions.
b) Determine the absolute value of a signed integer. Show the implementation of the following pseudo-instruction using three real instructions:

```
abs $t1, $t2
```

3. (4 pts) For each pseudo-instruction in the following table, produce a minimal sequence of actual MIPS instructions to accomplish the same thing. You may use the \$at for some of the sequences. In the following table, imm32 refers to a 32 -bit constant.

Pseudo-instruction	
move	\$t1, $\$$ t2
clear	\$t5
li	\$t5, imm32
addi	\$t5, $\$ t 3, ~ i m m 32$
beq	\$t5, imm32, Label
ble	\$t5, $\$ t 3$, Label
bgt	\$t5, $\$ t 3$, Label
bge	\$t5, $\$ t 3$, Label

4. (2 pts) Translate the following statements into MIPS assembly language. Assume that a, b, c, and d are allocated in $\$ \mathrm{~s} 0, \$ \mathrm{~s} 1, \$ \mathrm{~s} 2$, and $\$ \mathrm{~s} 3$. All values are signed 32-bit integers.
a) if ($(\mathrm{a}>\mathrm{b})$ ||
(b > c)) \{d = 1; \}
b) if ((a <= b) \&\& (b > c)) \{d = 1; \}
5. (3 pts) Consider the following fragment of C code:
```
for (i=0; i<=100; i=i+1) { a[i] = b[i] + c; }
```

Assume that a and b are arrays of words and the base address of a is in $\$ \mathrm{a} 0$ and the base address of b is in $\$ a 1$. Register $\$ t 0$ is associated with variable i and register $\$ s 0$ with c. Write the code in MIPS.
6. (3 pts) Add comments to the following MIPS code and describe in one sentence what it computes. Assume that $\$ \mathrm{a} 0$ is used for the input and initially contains n , a positive integer. Assume that $\$ \mathrm{v} 0$ is used for the output.

```
begin: addi $t0, $zero, 0
    addi $t1, $zero, 1
loop: slt $t2, $a0, $t1
    bne $t2, $zero, finish
    add $t0, $t0, $t1
    addi $t1, $t1, 2
    j loop
finish: add $v0, $t0, $zero
```

7. (4 pts) The following code fragment processes an array and produces two important values in registers $\$ \mathrm{v} 0$ and $\$ \mathrm{v} 1$. Assume that the array consists of 5000 words indexed 0 through 4999, and its base address is stored in $\$ a 0$ and its size (5000) in $\$ a 1$. Describe in one sentence what this code does. Specifically, what will be returned in $\$ \mathrm{v} 0$ and $\$ \mathrm{v} 1$?
```
        add $a1, $a1, $a1
        add $a1, $a1, $a1
        add $v0, $zero, $zero
        add $t0, $zero, $zero
outer: add $t4, $a0, $t0
    lw $t4, 0($t4)
    add $t5, $zero, $zero
    add $t1, $zero, $zero
inner: add $t3, $a0, $t1
    lw $t3, 0($t3)
    bne $t3, $t4, skip
    addi $t5, $t5, 1
skip: addi $t1, $t1, 4
bne $t1, $a1, inner
slt $t2, $t5, $v0
bne $t2, $zero, next
add $v0, $t5, $zero
add $v1, $t4, $zero
next: addi $t0, $t0, 4
bne $t0, $a1, outer
```

