COE 301 - Computer Organization

Assignment 1: Computer Abstractions and Technology

1. (5 pts) Find the word or phrase from the list below that best matches the description in the following questions. Each answer should be used only once.

Control
Wafer
Embedded system
Digital Video Disk (DVD)
Instruction set architecture
Server
Datapath

Transistor
Assembler
Cache
DRAM
Abstraction
Yield
Defect

a) Approach to the design of hardware or software. The system consists of layers, with each lower layer hiding details from the level above.
b) Computer inside another device used for running one predetermined application or collection of software.
c) Interface that the hardware provides to the low-level software.
d) Integrated circuit commonly used to construct main memory.
e) Microscopic flaw in a wafer.
f) Percentage of good dies from the total number of dies on the wafer.
g) Small, fast memory that acts as a buffer for the main memory.
h) Thin disk sliced from a silicon crystal ingot, which will be later divided into dies.
i) Component of the processor that performs arithmetic operations.
j) Component of the processor that tells the datapath what to do according to the instructions of the program.
k) On/Off switch controlled by electricity.
l) Computer used for running large programs for multiple users often simultaneously and typically accessed only by a network.
m) Optical storage medium with a storage capacity of more than 4.7 GB .
n) Program that converts symbolic versions of instructions into their binary formats.
2. (2 pts) Given a magnetic disk with the following properties: Rotation speed $=7200$ RPM (rotations per minute), Average seek $=8 \mathrm{~ms}$, Sector $=512$ bytes, Track $=200$ sectors. Calculate the following:
a) Time of one rotation (in milliseconds).
b) Average time to access a block of 32 consecutive sectors.
3. (4 pts) The cost of an integrated circuit can be expressed in three simple equations:

Cost per die $=\frac{\text { Cost per wafer }}{\text { Dies per wafer } \times \text { yield }}$
Dies per wafter $=\frac{\text { Wafer area }}{\text { Die area }}$
Yield $=\frac{1}{(1+(\text { Defects per area } \times \text { Die area } / 2))^{2}}$
The following figure shows key statistics for DRAM production over 12 years:

Year	Capacity	Die area	Wafer diameter	Yield
1980	64 K bits	$0.16 \mathrm{~cm}^{2}$	5 inches	48%
1983	256 K bits	$0.24 \mathrm{~cm}^{2}$	5 inches	46%
1985	1024 K bits	$0.42 \mathrm{~cm}^{2}$	6 inches	45%
1989	4096 K bits	$0.65 \mathrm{~cm}^{2}$	6 inches	43%
1992	16384 K bits	$0.97 \mathrm{~cm}^{2}$	8 inches	48%

a) (1 pt) Given the increase in die area of DRAMs, what parameter must improve to maintain yield?
b) (2 pts) Derive a formula for the improving parameter found in (a) from the other parameters.
c) (1 pt) Using the formula in the answer to (b), what is the calculated improvement in that parameter between 1980 and 1992 ?
4. (3 pts) Assume you are in a company that will market a certain IC chip. The fixed costs, including R\&D, fabrication and equipments, and so on, add up to $\$ 500,000$. The cost per wafer is $\$ 6000$, and each wafer can be diced into 1500 dies. The die yield is 50%. Finally, the dies are packaged and tested, with a cost of $\$ 10$ per chip. The test yield is 90%; only those that pass the test will be sold to customers. If the retail price is 40% more than the cost, at least how many chips have to be sold to break even?
5. (2 pts) What are the unsigned and signed decimal values of the following binary and hexadecimal numbers?
a) 10110110
d) C 1 B 3
6. (2 pts) Carry the following additions. Indicate whether there is a carry or overflow?
a) 11010010 (binary)
+10111101 (binary)
b) A1CF (hexadecimal)

+ B2D3 (hexadecimal)

7. (2 pts) Carry the following subtractions. Indicate whether there is borrow or overflow.
a) 11010010 (binary)

- 10111101 (binary)
b) 71CF (hexadecimal)
- B2D3 (hexadecimal)

