Floating Point

COE 301 / ICS 233
Computer Organization
Dr. Muhamed Mudawar

College of Computer Sciences and Engineering King Fahd University of Petroleum and Minerals

Presentation Outline

* Floating-Point Numbers
* The IEEE 754 Floating-Point Standard
* Floating-Point Comparison, Addition and Subtraction
* Floating-Point Multiplication
* MIPS Floating-Point Instructions and Examples

The World is Not Just Integers

\star Programming languages support numbers with fraction
\diamond Called floating-point numbers
\diamond Examples:
3.14159265... (π)
2.71828... (e)
1.0×10^{-9} (seconds in a nanosecond)
8.64×10^{13} (nanoseconds in a day)
The last number is a large integer that cannot fit in a 32-bit register

* We use a scientific notation to represent
\diamond Very small numbers (e.g. 1.0×10^{-9})
\diamond Very large numbers (e.g. 8.64×10^{13})
\diamond Scientific notation: $\pm d$. fraction $\times 10 \pm$ exponent

Floating-Point Numbers

\Varangle Examples of floating-point numbers in base 10
$-5.341 \times 10^{3}, 2.013 \times 10^{-1}$ \uparrow decimal point

* Examples of floating-point numbers in base 2
$-1.00101 \times 2^{23}, 1_{i}^{.101101 \times 2^{-3}}$
\diamond Exponents are kept in decimal for clarity
* Floating-point numbers should be normalized
\diamond Exactly one non-zero digit should appear before the point
- In a decimal number, this digit can be from 1 to 9
- In a binary number, this digit should be 1
\diamond Normalized: -5.341×10^{3} and 1.101101×2^{-3}
\diamond NOT Normalized: -0.05341×10^{5} and 1101.101×2^{-6}

Floating-Point Representation

A floating-point number is represented by the triple
\checkmark Sign bit (0 is positive and 1 is negative)

- Representation is called sign and magnitude
« Exponent field (signed value)
- Very large numbers have large positive exponents
- Very small close-to-zero numbers have negative exponents
- More bits in exponent field increases range of values
\& Fraction field (fraction after binary point)
- More bits in fraction field improves the precision of FP numbers

S	Exponent	Fraction

IEEE 754 Floating-Point Standard

* Found in virtually every computer invented since 1980
\diamond Simplified porting of floating-point numbers
\triangleleft Unified the development of floating-point algorithms
\triangleleft Increased the accuracy of floating-point numbers
* Single Precision Floating Point Numbers (32 bits)
$\diamond 1$-bit sign +8 -bit exponent +23 -bit fraction

S Exponent ${ }^{8}$	Fraction 23

* Double Precision Floating Point Numbers (64 bits)
« 1-bit sign +11 -bit exponent +52 -bit fraction

S	Exponent 11
(continued)	

Normalized Floating Point Numbers

* For a normalized floating point number (S, E, F)

S	E

Significand is equal to $(1 . F)_{2}=\left(1 . f_{1} f_{2} f_{3} f_{4} \ldots\right)_{2}$
\diamond IEEE 754 assumes hidden 1. (not stored) for normalized numbers
\diamond Significand is 1 bit longer than fraction

* Value of a Normalized Floating Point Number:
$\pm(1 . F)_{2} \times 2^{\text {exponent_value }}$
$\pm\left(1 . f_{1} f_{2} f_{3} f_{4} \ldots\right)_{2} \times 2^{\text {exponent_value }}$
$\pm\left(1+f_{1} \times 2^{-1}+f_{2} \times 2^{-2}+f_{3} \times 2^{-3}+f_{4} \times 2^{-4} \ldots\right)_{2} \times 2^{\text {exponent_value }}$
$S=0$ is positive, $\quad S=1$ is negative

Biased Exponent Representation

* How to represent a signed exponent? Choices are ...
\diamond Sign + magnitude representation for the exponent
\diamond Two's complement representation
\diamond Biased representation
* IEEE 754 uses biased representation for the exponent
\diamond Exponent Value $=E$ - Bias (Bias is a constant)
\star The exponent field is 8 bits for single precision
$\diamond E$ can be in the range 0 to 255
$\diamond E=0$ and $E=255$ are reserved for special use (discussed later)
$\diamond E=1$ to 254 are used for normalized floating point numbers
\diamond Bias $=127$ (half of 254)
\diamond Exponent value $=E-127$
Range: -126 to +127

Biased Exponent - Cont'd

\Varangle For double precision, the exponent field is 11 bits
$\triangleleft E$ can be in the range 0 to 2047
$\diamond E=0$ and $E=2047$ are reserved for special use
$\diamond E=1$ to 2046 are used for normalized floating point numbers
\triangleleft Bias = 1023 (half of 2046)
\diamond Exponent value $=E-1023 \quad$ Range: $\mathbf{- 1 0 2 2}$ to $+\mathbf{1 0 2 3}$

* Value of a Normalized Floating Point Number is

$$
\begin{aligned}
& \pm(1 . F)_{2} \times 2^{(E-B i a s)} \\
& \pm\left(1 . f_{1} f_{2} f_{3} f_{4} \ldots\right)_{2} \times 2^{(E-B i a s)} \\
& \pm\left(1+f_{1} \times 2^{-1}+f_{2} \times 2^{-2}+f_{3} \times 2^{-3}+f_{4} \times 2^{-4} \ldots\right)_{2} \times 2^{(E-\text { Bias })}
\end{aligned}
$$

$S=0$ is positive, $\quad S=1$ is negative

Examples of Single Precision Float

*What is the decimal value of this Single Precision float?
101111100010000000000000000000000

* Solution:
\triangleleft Sign = 1 is negative
$\triangleleft E=(01111100)_{2}=124, E-$ bias $=124-127=-3$
\triangleleft Significand $=(1.0100 \ldots 0)_{2}=1+2^{-2}=1.25$ (1 . is implicit)
\triangleleft Value in decimal $=-1.25 \times 2^{-3}=-0.15625$
* What is the decimal value of?

01000001001001100000000000000000

* Solution:
implicit \downarrow
\diamond Value in decimal $=+(1.01001100 \ldots 0)_{2} \times 2^{130-127}=$

$$
(1.01001100 \ldots 0)_{2} \times 2^{3}=(1010.01100 \ldots 0)_{2}=10.375
$$

Examples of Double Precision Float

* What is the decimal value of this Double Precision float?

* Solution:
\triangleleft Value of exponent $=(10000000101)_{2}-$ Bias $=1029-1023=6$
\diamond Value of double $=(1.00101010 \ldots 0)_{2} \times 2^{6}(1$. is implicit $)=$ $(1001010.10 \ldots 0)_{2}=74.5$
* What is the decimal value of ?

10111111100010000000000000000000 00000000000000000000000000000000

* Do it yourself! (answer should be $-1.5 \times 2^{-7}=-0.01171875$)

Decimal to Binary Floating-Point

* Convert -0.8125 to single and double-precision floating-point

* Solution:

\diamond Fraction bits can be obtained using multiplication by 2

- $0.8125 \times 2=1.625$
- $0.625 \times 2=1.25$
- $0.25 \times 2=0.5$

$$
0.8125=(0.1101)_{2}=1 / 2+1 / 4+1 / 16=13 / 16
$$

- $0.5 \times 2=1.0$

- Stop when fractional part is 0 , or after computing all required fraction bits
\triangleleft Fraction $=(0.1101)_{2}=(1.101)_{2} \times 2 \underset{(i-i)}{i-i}($ Normalized $)$
\diamond Exponent $=1+$ Bias $=126$ (single precision) and 1022 (double)

10111111101010000000000000000000

Single Precision

Double Precision

Largest Normalized Float

* What is the Largest normalized float?
* Solution for Single Precision:
$\diamond \mathrm{E}-$ bias $=254-127=+127$ (largest exponent for SP)
\triangleleft Significand $=(1.111 \ldots 1)_{2}=1.99999988=$ almost 2
\triangleleft Value in decimal $\approx 2 \times 2^{+127} \approx 2^{+128} \approx 3.4028 \ldots \times 10^{+38}$
* Solution for Double Precision:

\diamond Value in decimal $\approx 2 \times 2^{+1023} \approx 2^{+1024} \approx 1.79769 \ldots \times 10^{+308}$
* Overflow: exponent is too large to fit in the exponent field

Smallest Normalized Float

* What is the smallest (in absolute value) normalized float?
* Solution for Single Precision:

00000000100000000000000000000000
\diamond Exponent - bias =1-127=-126 (smallest exponent for SP)
\diamond Significand $=(1.000 \ldots 0)_{2}=1$
\diamond Value in decimal $=1 \times 2^{-126}=1.17549 \ldots \times 10^{-38}$

* Solution for Double Precision:

\triangleleft Value in decimal $=1 \times 2^{-1022}=2.22507 \ldots \times 10^{-308}$
* Underflow: exponent is too small to fit in exponent field

Zero, Infinity, and NaN

* Zero

\diamond Exponent field $E=0$ and fraction $F=0$
$\diamond+0$ and -0 are both possible according to sign bit S

* Infinity
\& Infinity is a special value represented with maximum E and $F=0$
- For single precision with 8-bit exponent: maximum $E=255$
- For double precision with 11-bit exponent: maximum $E=2047$
\triangleleft Infinity can result from overflow or division by zero
$\diamond+\infty$ and $-\infty$ are both possible according to sign bit S
* NaN (Not a Number)
$\diamond \mathrm{NaN}$ is a special value represented with maximum E and $F \neq 0$
$\diamond 0 / 0 \rightarrow \mathrm{NaN}, \mathbf{0 \times \infty} \rightarrow \mathrm{NaN}$, sqrt(-1) $\rightarrow \mathrm{NaN}$
\diamond Operation on a NaN is typically a $\mathrm{NaN:} \mathrm{Op}(X, \mathrm{NaN}) \rightarrow \mathrm{NaN}$

Denormalized Numbers

* IEEE standard uses denormalized numbers to ...
\diamond Fill the gap between 0 and the smallest normalized float
\diamond Provide gradual underflow to zero
Denormalized: exponent field E is 0 and fraction $F \neq 0$
\diamond The Implicit 1 . before the fraction now becomes 0 . (denormalized)
* Value of denormalized number ($S, 0, F$)

Single precision: $\quad \pm(0 . F)_{2} \times 2^{-126}$
Double precision: $\quad \pm(0 . F)_{2} \times 2^{-1022}$

Summary of IEEE 754 Encoding

Single-Precision	Exponent $=8$	Fraction $=23$	Value
Normalized Number	1 to 254	Anything	$\pm(1 . F)_{2} \times 2^{E-127}$
Denormalized Number	0	nonzero	$\pm(0 . F)_{2} \times 2^{-126}$
Zero	0	0	± 0
Infinity	255	0	$\pm \infty$
NaN	255	nonzero	NaN

Double-Precision	Exponent $=11$	Fraction $=52$	Value
Normalized Number	1 to 2046	Anything	$\pm(1 . F)_{2} \times 2^{E-1023}$
Denormalized Number	0	nonzero	$\pm(0 . F)_{2} \times 2^{-1022}$
Zero	0	0	± 0
Infinity	2047	0	$\pm \infty$
NaN	2047	nonzero	NaN

Next . . .

* Floating-Point Numbers
* The IEEE 754 Floating-Point Standard
* Floating-Point Comparison, Addition and Subtraction
* Floating-Point Multiplication
* MIPS Floating-Point Instructions and Examples

Floating-Point Comparison

* IEEE 754 floating point numbers are ordered (except NaN)
\triangleleft Because the exponent uses a biased representation ...
- Exponent value and its binary representation have same ordering
\triangleleft Placing exponent before the fraction field orders the magnitude
- Larger exponent \Rightarrow larger magnitude
- For equal exponents, Larger fraction \Rightarrow larger magnitude
- $0<(0 . F)_{2} \times 2^{E \text { min }}<(1 . F)_{2} \times 2^{E-B i a s}<\infty \quad\left(E_{\text {min }}=1-\right.$ Bias $)$
\diamond Sign bit provides a quick test for signed <
* Integer comparator can compare the magnitudes

$$
\begin{aligned}
& X=\left(E_{X}, F_{X}\right) \rightarrow \begin{array}{c}
\text { Integer } \\
\text { Magnitude } \\
\text { Comparator }
\end{array} \\
& Y X=\left(E_{Y}, F_{Y}\right) \rightarrow X<Y \\
& \longrightarrow X=Y
\end{aligned}
$$

Floating Point Addition

* Consider Adding Single-Precision Floats:
$1.11100100000000000000010_{2} \times 2^{4}$
$+1.10000000000000110000101_{2} \times 2^{2}$
* Cannot add significands ... Why?
\triangleleft Because exponents are not equal
* How to make exponents equal?
\triangleleft Shift the significand of the lesser exponent right
\diamond Difference between the two exponents $=4-2=2$
\diamond So, shift right second number by 2 bits and increment exponent $1.10000000000000110000101_{2} \times 2^{2}$
$=0.0110000000000000110000101_{2} \times 2^{4}$

Floating-Point Addition - cont'd

* Now, ADD the Significands:

$$
\begin{aligned}
1.11100100000000000000010 & \times 2^{4} \\
+1.10000000000000110000101 & \times 2^{2}
\end{aligned}
$$

$1.11100100000000000000010 \times 2^{4}$
$+0.0110000000000000110000101 \times 2^{4}$ (shift right)

$$
10.0100010000000000110001101 \times 2^{4} \text { (result) }
$$

* Addition produces a carry bit, result is NOT normalized
* Normalize Result (shift right and increment exponent):
$10.0100010000000000110001101 \times 2^{4}$
$=1.00100010000000000110001101 \times 2^{5}$ (normalized)

Rounding

* Single-precision requires only 23 fraction bits
* However, Normalized result can contain additional bits

$$
\begin{array}{r}
1.00100010000000000110001 \mid \\
\text { Round Bit: } \mathrm{R}=1
\end{array}
$$

* Two extra bits are used for rounding
\diamond Round bit: appears just after the normalized result
২ Sticky bit: appears after the round bit (OR of all additional bits)
* Since RS = 11, increment fraction to round to nearest
$1.00100010000000000110001 \times 2^{5}$
+1
$1.00100010000000000110010 \times 2^{5}$ (Rounded)

Floating-Point Subtraction

* Addition is used when operands have the same sign
* Addition becomes a subtraction when sign bits are different
* Consider adding floating-point numbers with different signs:
$+1.00000000101100010001101 \times 2^{-6}$
$-1.00000000000000010011010 \times 2^{-1}$
$+0.0000100000000101100010001101 \times 2^{-1}$ (shift right 5 bits)
$-1.00000000000000010011010 \times 2^{-1}$
$00.0000100000000101100010001101 \times 2^{-1}$
$10.1111111111111101100110 \times 2^{-1}$ (2's complement)
$11.0000100000000100010101001101 \times 2^{-1}$ (Negative result)
- $0.111101111111011101010110011 \times 2^{-1}$ (Sign Magnitude)
* 2's complement of result is required if result is negative

Floating-Point Subtraction - cont'd

$+1.00000000101100010001101 \times 2^{-6}$

- $1.00000000000000010011010 \times 2^{-1}$
- $0.1111011111111011101010110011 \times 2^{-1}$ (Sign Magnitude)
* Result should be normalized (unless it is equal to zero)
\triangleleft For subtraction, we can have leading zeros. To normalize, count the number of leading zeros, then shift result left and decrement the exponent accordingly.

Guard bit
-0.11110111111110111010101 任 0011×2^{-1}

- $1.111011111111011101010110011 \times 2^{-2} \quad$ (Normalized)

Guard bit: guards against loss of a fraction bit
\diamond Needed for subtraction only, when result has a leading zero and should be normalized.

Floating-Point Subtraction - cont'd

* Next, the normalized result should be rounded

Guard bit

- 0.11110111111110111010101 (1) 0011×2^{-1}

Round bit: R=0 --' -- Sticky bit: $\mathrm{S}=1$
* Since $\mathbf{R}=0$, it is more accurate to truncate the result even though $S=1$. We simply discard the extra bits.
- $1.111011111111011101010110011 \times 2^{-2}$ (Normalized)
$-1.11101111111101110101011 \times 2^{-2}$ (Rounded to nearest)
* IEEE 754 Representation of Result 1011111101111101111111111011110101011

Rounding to Nearest Even

* Normalized result has the form: 1. $\boldsymbol{f}_{1} \boldsymbol{f}_{2} \ldots \boldsymbol{f}_{\text {I }}$ R S
\diamond The round bit \mathbf{R} appears immediately after the last fraction bit f_{l}
\diamond The sticky bit S is the OR of all remaining additional bits
Round to Nearest Even: default rounding mode
* Four cases for RS:
\triangleleft RS $=00 \rightarrow$ Result is Exact, no need for rounding
\diamond RS $=01 \rightarrow$ Truncate result by discarding RS
\triangleleft RS = 11 $\boldsymbol{\rightarrow}$ Increment result: ADD 1 to last fraction bit
\diamond RS $=10 \rightarrow$ Tie Case (either truncate or increment result)
- Check Last fraction bit f_{l} (f_{23} for single-precision or f_{52} for double)
- If f_{l} is 0 then truncate result to keep fraction even
- If f_{l} is $\mathbf{1}$ then increment result to make fraction even

Additional Rounding Modes

* IEEE 754 standard includes other rounding modes:

1. Round to Nearest Even: described in previous slide
2. Round toward +Infinity: result is rounded up Increment result if sign is positive and \mathbf{R} or $\mathbf{S}=\mathbf{1}$
3. Round toward -Infinity: result is rounded down Increment result if sign is negative and \mathbf{R} or $\mathbf{S}=\mathbf{1}$
4. Round toward 0: always truncate result

* Rounding or Incrementing result might generate a carry
\diamond This occurs only when all fraction bits are 1
\diamond Re-Normalize after Rounding step is required only in this case

Example on Rounding

* Round following result using IEEE 754 rounding modes:
-1.11111111111111111111111 (1), (0); $\times 2^{-7}$
* Round to Nearest Even: Round Bit $\uparrow \uparrow$ Sticky Bit
\diamond Increment result since RS = 10 and $f_{23}=1$
Incremented result: -10.00000000000000000000000 $\times 2^{-7}$
\triangleleft Renormalize and increment exponent (because of carry)
\triangleleft Final rounded result: -1.00000000000000000000000 $\times 2^{-6}$
* Round towards $+\infty$: Truncate result since negative
\diamond Truncated Result: -1.11111111111111111111111 $\times 2^{-7}$
* Round towards $-\infty$: Increment since negative and $\mathbf{R}=1$
\diamond Final rounded result: -1.00000000000000000000000 $\times 2^{-6}$
* Round towards 0: Truncate always

Accuracy can be a Big Problem

Value1	Value2	Value3	Value4	Sum
$1.0 \mathrm{E}+30$	$-1.0 \mathrm{E}+30$	9.5	-2.3	7.2
$1.0 \mathrm{E}+30$	9.5	$-1.0 \mathrm{E}+30$	-2.3	-2.3
$1.0 \mathrm{E}+30$	9.5	-2.3	$-1.0 \mathrm{E}+30$	0

* Adding double-precision floating-point numbers (Excel)
* Floating-Point addition is NOT associative
* Produces different sums for the same data values
* Rounding errors when the difference in exponent is large

Floating Point Addition / Subtraction

$$
\begin{aligned}
& \text { Shift significand right by } \\
& \qquad d=\left|E_{X}-E_{Y}\right|
\end{aligned}
$$

Add significands when signs of X and Y are identical, Subtract when different. Convert negative result from 2's complement to sign-magnitude.

Normalization shifts right by 1 if there is a carry, or shifts left by the number of leading zeros in the case of subtraction.

Rounding either truncates fraction, or adds a 1 to least significant fraction bit.

Floating Point Adder Block Diagram

Next . . .

* Floating-Point Numbers
* The IEEE 754 Floating-Point Standard
* Floating-Point Comparison, Addition and Subtraction
* Floating-Point Multiplication
* MIPS Floating-Point Instructions and Examples

Floating Point Multiplication Example

* Consider multiplying:
$-1.11010000100000010100001_{2} \times 2^{-4}$
$\times \quad 1.10000000001000000000000_{2} \times 2^{-2}$
* Unlike addition, we add the exponents of the operands
\diamond Result exponent value $=(-4)+(-2)=-6$
* Using the biased representation: $E_{Z}=E_{X}+E_{Y}-$ Bias

$$
\begin{aligned}
& \diamond E_{X}=(-4)+127=123 \text { (Bias }=127 \text { for single precision) } \\
& \diamond E_{Y}=(-2)+127=125 \\
& \left.\diamond E_{Z}=123+125-127=121 \text { (exponent value }=-6\right)
\end{aligned}
$$

* Sign bit of product can be computed independently
* Sign bit of product $=\operatorname{Sign}_{X}$ XOR Sign $_{Y}=1$ (negative)

Floating-Point Multiplication, cont'd

* Now multiply the significands:
(Multiplicand)
1.11010000100000010100001
(Multiplier)
\times (1).(10000000001000000000000

111010000100000010100001

111010000100000010100001

1.11010000100000010100001

10.1011100011111011111100110010100001000000000000
$* 24$ bits $\times 24$ bits $\rightarrow 48$ bits (double number of bits)

* Multiplicand $\times 0=0 \quad$ Zero rows are eliminated
* Multiplicand $\times 1=$ Multiplicand (shifted left)

Floating-Point Multiplication, cont'd

* Normalize Product:
-10.101110001111101111110011001... $\times 2^{-6}$
Shift right and increment exponent because of carry bit
$=-1.010111000111110111111001100 \ldots \times 2^{-5}$
* Round to Nearest Even: (keep only 23 fraction bits)
-1. 01011100011111011111100
(1) $100 \ldots \times 2^{-5}$

Round bit = 1, Sticky bit = 1, so increment fraction
Final result $=-1.01011100011111011111101 \times 2^{-5}$

* IEEE 754 Representation

Floating Point Multiplication

Start

\downarrow

1. Add the biased exponents of the two numbers, subtracting the bias from the sum to get the new biased exponent

2. Multiply the significands. Set the result sign to positive if operands have same sign, and negative otherwise
3. Normalize the product if necessary, shifting its significand right and incrementing the exponent
4. Round the significand to the appropriate number of bits, and renormalize if rounding generates a carry

Biased Exponent Addition

$$
E_{Z}=E_{X}+E_{Y}-\text { Bias }
$$

Result sign $S_{Z}=S_{X}$ xor S_{Y} can be computed independently

Since the operand significands 1. F_{X} and $1 . F_{Y}$ are ≥ 1 and <2, their product is ≥ 1 and <4.
To normalize product, we need to shift right at most by 1 bit and increment exponent

Rounding either truncates fraction, or adds a 1 to least significant fraction bit

Extra Bits to Maintain Precision

* Floating-point numbers are approximations for ...
\checkmark Real numbers that they cannot represent
* Infinite real numbers exist between 1.0 and 2.0
\diamond However, exactly 2^{23} fractions represented in Single Precision
\diamond Exactly 2^{52} fractions can be represented in Double Precision
* Extra bits are generated in intermediate results when ...
\diamond Shifting and adding/subtracting a p-bit significand
\diamond Multiplying two p-bit significands (product is $2 p$ bits)
* But when packing result fraction, extra bits are discarded
* Few extra bits are needed: guard, round, and sticky bits
* Minimize hardware but without compromising accuracy

Advantages of IEEE 754 Standard

* Used predominantly by the industry
* Encoding of exponent and fraction simplifies comparison
\diamond Integer comparator used to compare magnitude of FP numbers
* Includes special exceptional values: NaN and $\pm \infty$
\diamond Special rules are used such as:
- $0 / 0$ is NaN , sqrt(-1) is $\mathrm{NaN}, 1 / 0$ is ∞, and $1 / \infty$ is 0
\triangleleft Computation may continue in the face of exceptional conditions
* Denormalized numbers to fill the gap
\triangleleft Between smallest normalized number $1.0 \times 2^{E_{\text {min }}}$ and zero
\diamond Denormalized numbers, values $0 . F \times 2^{E_{\text {min }}}$, are closer to zero
২ Gradual underflow to zero

Floating Point Complexities

* Operations are somewhat more complicated
* In addition to overflow we can have underflow
* Accuracy can be a big problem
\triangleleft Extra bits to maintain precision: guard, round, and sticky
\triangleleft Four rounding modes
\diamond Division by zero yields Infinity
\diamond Zero divide by zero yields Not-a-Number
\checkmark Other complexities
* Implementing the standard can be tricky
* Not using the standard can be even worse

Next . . .

* Floating-Point Numbers
* The IEEE 754 Floating-Point Standard
* Floating-Point Comparison, Addition and Subtraction
* Floating-Point Multiplication
* MIPS Floating-Point Instructions and Examples

MIPS Floating Point Coprocessor

* Called Coprocessor 1 or the Floating Point Unit (FPU)
* 32 separate floating point registers: \$f0, \$1, ..., \$f31
*FP registers are 32 bits for single precision numbers
* Even-odd register pair form a double precision register
* Use the even number for double precision registers
$\checkmark \$ \mathbf{0}, \$ \mathbf{2}, \$ 44, \ldots, \$ 30$ are used for double precision
* Separate FP instructions for single/double precision
\diamond Single precision: add.s, sub.s, mul.s, div.s (.s extension)
\diamond Double precision: add.d, sub.d, mul.d, div.d (.d extension)
* FP instructions are more complex than the integer ones
\diamond Take more cycles to execute

Floating-Point Arithmetic Instructions

Instruction	Meaning	Op ${ }^{6}$	fmt ${ }^{5}$	$f t^{5}$	fs ${ }^{5}$	fd^{5}	func ${ }^{6}$
add.s \$f5,\$f3,\$f4	\$f5 = \$f3 + \$f4	0x11	0x10	\$f4	\$f3	\$f5	0
sub.s \$f5,\$f3,\$f4	\$f5 = \$f3 - \$f4	0x11	0x10	\$f4	\$f3	\$f5	1
mul.s \$f5,\$f3,\$f4	\$f5 = \$f3 \times \$f4	0x11	0x10	\$f4	\$f3	\$f5	2
div.s \$f5,\$f3,\$f4	\$f5 = \$f3 / \$f4	0x11	0x10	\$f4	\$f3	\$f5	3
sqrt.s \$f5,\$f3	\$f5 = sqrt(\$f3)	0x11	0x10	0	\$f3	\$f5	4
abs.s \$f5,\$f3	\$f5 = abs(\$f3)	0x11	0x10	0	\$f3	\$f5	5
neg.s \$f5,\$f3	\$f5 = - (\$f3)	0x11	0x10	0	\$f3	\$f5	7
add.d \$f6,\$f2,\$f4	\$f6, 7 = \$ $\mathrm{f} 2,3$ + \$f4, 5	0x11	0x11	\$f4	\$f2	\$f6	0
sub.d \$f6,\$f2,\$f4	\$f6,7 = \$f2, 3-\$f4,5	0x11	0x11	\$f4	\$f2	\$f6	1
mul.d \$f6,\$f2,\$f4	\$f6,7 = \$f2, $3 \times \$ \mathrm{f4}, 5$	0x11	0x11	\$f4	\$f2	\$f6	2
div.d \$f6,\$f2,\$f4	\$f6,7 = \$f2, 3 / \$f4,5	0x11	0x11	\$f4	\$f2	\$f6	3
sqrt.d \$f6,\$f2	\$f6,7 = sqrt (\$f2,3)	0x11	0x11	0	\$f2	\$f6	4
abs.d \$f6,\$f2	\$f6, 7 = abs (\$f2,3)	0x11	0x11	0	\$f2	\$f6	5
neg.d \$f6,\$f2	\$f6,7 = - (\$f2, 3)	0x11	0x11	0	\$f2	\$f6	7

Floating-Point Load and Store

* Separate floating-point load and store instructions
\diamond lwc1: load word coprocessor 1
\diamond ldc1: load double coprocessor 1
\diamond swc1: store word coprocessor 1

General purpose register is used as the address register
\diamond sdc1: store double coprocessor 1

Instruction	Meaning	$0 p^{6}$	rs 5	ft^{5}	Immediate 16
lwc1 \$f2, 8(\$t0)	$\$ \mathrm{f} 2 \leftarrow_{4}$ Mem[\$t0+8]	0×31	$\$ \mathrm{t} 0$	$\$ \mathrm{f} 2$	8
swc1 \$f2, 8(\$t0)	$\$ \mathrm{f} 2 \rightarrow_{4}$ Mem[\$t0+8]	0×39	$\$ \mathrm{t} 0$	$\$ \mathrm{f} 2$	8
ldc1 \$f2, 8(\$t0)	$\$ \mathrm{f} 2,3 \leftarrow_{8}$ Mem[\$t0+8]	0×35	$\$ t 0$	$\$ \mathrm{f} 2$	8
sdc1 \$f2, 8(\$t0)	$\$ \mathrm{f} 2,3 \rightarrow_{8}$ Mem[\$t0+8]	$0 \times 3 \mathrm{~d}$	$\$ t 0$	$\$ \mathrm{f} 2$	8

Data Movement Instructions

Moving data between general purpose and FP registers
$\checkmark \mathrm{mfc} 1$: move from coprocessor 1 (to a general purpose register)
\diamond mtc1: move to coprocessor 1 (from a general purpose register)
Moving data between FP registers
\checkmark mov.s: move single precision float
\diamond mov.d: move double precision float = even/odd pair of registers

Instruction	Meaning	Op ${ }^{6}$	fmt ${ }^{5}$	rt^{5}	fs ${ }^{5}$	fd^{5}	func
mfc1 \$t0, \$f2	\$t0 = \$f2	0x11	0	\$t0	\$f2	0	0
mtc1 \$t0, \$f2	\$f2 = \$t0	0x11	4	\$t0	\$f2	0	0
mov.s \$f4, \$f2	\$f4 = \$f2	0x11	0x10	0	\$f2	\$f4	6
mov.d \$f4, \$f2	\$f4,5 $=$ \$ $\mathrm{f} 2,3$	0x11	0x11	0	\$f2	\$ 44	6

Convert Instructions

* Convert instruction: cvt.x.y
\diamond Convert the source format y into destination format x
* Supported Formats:
\diamond Single-precision float $=$. s
\diamond Double-precision float $=. \mathrm{d}$
\diamond Signed integer word =.w (in a floating-point register)

Instruction	Meaning	0^{6}	fmt^{5}		fs^{5}	fd^{5}	func
cvt.s.w \$f2,\$f4	$\$ f 2=$ W2S(\$f4)	0×11	0×14	0	$\$ f 4$	$\$ f 2$	0×20
cvt.s.d \$f2,\$f4	$\$ f 2=$ D2P(\$f4,5)	0×11	0×11	0	$\$ f 4$	$\$ f 2$	0×20
cvt.d.w \$f2,\$f4	$\$ f 2,3=$ W2D(\$f4)	0×11	0×14	0	$\$ f 4$	$\$ f 2$	0×21
cvt.d.s \$f2,\$f4	$\$ f 2,3=$ S2D(\$f4)	0×11	0×10	0	$\$ f 4$	$\$ f 2$	0×21
cvt.w.s \$f2,\$f4	$\$ f 2=$ S2W(\$f4)	0×11	0×10	0	$\$ f 4$	$\$ f 2$	0×24
cvt.w.d \$f2,\$f4	$\$ f 2=$ D2W(\$f4,5)	0×11	0×11	0	$\$ f 4$	$\$ f 2$	0×24

Floating-Point Compare and Branch

Floating-Point unit has eight condition code cc flags
\checkmark Set to 0 (false) or 1 (true) by any comparison instruction

* Three comparisons: eq (equal), It (less than), le (less or equal)
* Two branch instructions based on the condition flag

Instruction	Meaning	Op ${ }^{6}$	fmt ${ }^{5}$	$f t^{5}$	fs^{5}		func
c.eq.s cc \$f2,\$f4	cc = (\$f2 == \$f4)	0x11	0x10	\$f4	\$f2	cc	0x32
c.eq.d cc \$f2,\$f4	$\mathrm{cc}=(\$ \mathrm{f} 2,3==\$ \mathrm{f} 4,5)$	0x11	0x11	\$f4	\$f2	cc	0x32
c.lt.s cc \$f2,\$f4	cc = (\$f2 < \$f4)	0x11	0x10	\$f4	\$f2	cc	0x3c
c.lt.d cc \$f2,\$f4	cc $=(\$ \mathrm{f} 2,3<\$ \mathrm{f} 4,5)$	0x11	0x11	\$f4	\$f2	cc	0x3c
c.le.s cc \$f2,\$f4	cc = (\$f2 <= \$f4)	0x11	0x10	\$f4	\$f2	cc	0x3e
c.le.d cc \$f2,\$f4	$\mathrm{cc}=(\$ \mathrm{f} 2,3<=\$ \mathrm{f} 4,5)$	0x11	0x11	\$f4	\$f2	cc	0x3e
bc1f cc Label	branch if (cc == 0)	0x11	8	cc, 0	16-bit Offset		
bc1t cc Label	branch if (cc == 1)	0x11	8	cc, 1	16-bit Offset		

Example 1: Area of a Circle

```
.data
    pi: .double
    msg: .asciiz
    .text
main:
li $v0, 7
syscall
mul.d $f12, $f0, $f0
mul.d $f12, $f2, $f12
la $a0, msg
li $v0,4
syscall
li $v0, 3
syscall
```

ldc1 \$f2, pi
3.1415926535897924
"Circle Area = "
\# \$f2,3 = pi
\# read double (radius)
\# \$f0,1 = radius
\# \$f12,13 = radius*radius
\# \$f12,13 = area
\# print string (msg)
\# print double (area)
\# print \$f12,13

Example 2: Matrix Multiplication

```
void mm (int n, float X[n][n], Y[n][n], Z[n][n]) {
    for (int i=0; i!=n; i=i+1) {
        for (int j=0; j!=n; j=j+1) {
            float sum = 0.0;
            for (int k=0; k!=n; k=k+1) {
                sum = sum + Y[i][k] * Z[k][j];
            }
            X[i][j] = sum;
        }
    }
}
```

Matrix size is passed in $\$ \mathrm{a} 0=\mathrm{n}$
Matrix addresses in \$a1 = \&X, \$a2 = \&Y, and \$a3 = \&Z

* What is the MIPS assembly code for the procedure?

Access Pattern for Matrix Multiply

Matrix Multiplication Procedure (1 of 3)

\# arguments \$a0=n, \$a1=\&X, \$a2=\&Y, \$a3=\&Z

$\mathrm{mm}:$	sll	$\$ t 0, \$ a 0,2$	$\# \$ t 0=n * 4$ (row size)
	li	$\$ t 1,0$	$\# \$ t 1=i=0$

\# Outer for (i = . . .) loop starts here
L1: li \$t2, 0
\# \$t2 = j = 0
\# Middle for ($\mathrm{j}=$. . .) loop starts here
L2: li \$t3, 0
\# \$t3 = k = 0
move \$t4, \$a2 \# \$t4 = \&Y[i][0]
sll \$t5, \$t2, $2 \quad \#$ \$t5 $=j^{*} 4$
addu \$t5, \$a3, \$t5 \# \$t5 = \&Z[0][j]
mtc1 \$zero, \$f0 \# \$f0 = sum = 0.0

Matrix Multiplication Procedure (2 of 3)

\# Inner for ($\mathrm{k}=$. . .) loop starts here \# \$t3 = k, \$t4 = \&Y[i][k], \$t5 = \&Z[k][j]
L3: lwc1 \$f1, 0(\$t4) \# load \$f1 = Y[i][k]
lwc1 \$f2, 0(\$t5) \# load \$f2 = Z[k][j]
mul.s \$f3, \$f1, \$f2 \# \$f3 = Y[i][k]*Z[k][j]
add.s \$f0, \$f0, \$f3 \# sum = sum + \$f3
addiu \$t3, \$t3, $1 \quad \#$ k $=$ k + 1
addiu \$t4, \$t4, $4 \quad \#$ \$t4 = \&Y[i][k]
addu \$t5, \$t5, \$t0 \# \$t5 = \&Z[k][j]
bne \$t3, \$a0, L3 \# loop back if (k != n)
\# End of inner for loop

Matrix Multiplication Procedure (3 of 3)

swc1 \$f0, $0(\$ a 1)$
addiu \$a1, \$a1, 4
addiu \$t2, \$t2, 1
bne \$t2, \$a0, L2
\# End of middle for loop
\# store X[i][j] = sum
\# \$a1 = \&X[i][j]
\# $\mathbf{j}=\mathrm{j}+1$
\# loop L2 if (j ! $=$ n)
addu \$a2, \$a2, \$t0 \# \$a2 = \&Y[i][0]
addiu \$t1, \$t1, $1 \quad \#$ i = i + 1
bne \$t1, \$a0, L1 \# loop L1 if (i != n)
\# End of outer for loop
jr \$ra
\# return to caller

