Floating Point

COE 301 / ICS 233
Computer Organization

Dr. Muhamed Mudawar

College of Computer Sciences and Engineering King Fahd University of Petroleum and Minerals

Presentation Outline

- Floating-Point Numbers
- The IEEE 754 Floating-Point Standard

Floating-Point Comparison, Addition and Subtraction

Floating-Point Multiplication

MIPS Floating-Point Instructions and Examples

The World is Not Just Integers

- Programming languages support numbers with fraction
 - ♦ Called floating-point numbers
 - ♦ Examples:

```
3.14159265...(\pi)
```

2.71828... (*e*)

 1.0×10^{-9} (seconds in a nanosecond)

 8.64×10^{13} (nanoseconds in a day)

The last number is a large integer that cannot fit in a 32-bit register

- We use a scientific notation to represent
 - \diamond Very small numbers (e.g. 1.0 × 10⁻⁹)
 - \diamond Very large numbers (e.g. 8.64 × 10¹³)
 - \diamond Scientific notation: $\pm d$. fraction \times 10 \pm exponent

Floating-Point Numbers

- Examples of floating-point numbers in base 10
 - -5.341×10^3 , 2.013×10^{-1} decimal point
- Examples of floating-point numbers in base 2

-1.00101
$$\times$$
2²³ , 1.101101 \times 2⁻³ binary point

- ♦ Exponents are kept in decimal for clarity
- Floating-point numbers should be normalized
 - ♦ Exactly one non-zero digit should appear before the point
 - In a decimal number, this digit can be from 1 to 9
 - In a binary number, this digit should be 1
 - ♦ Normalized: -5.341×10³ and 1.101101×2⁻³
 - ♦ NOT Normalized: -0.05341×10⁵ and 1101.101×2⁻⁶

Floating-Point Representation

A floating-point number is represented by the triple

- ♦ Sign bit (0 is positive and 1 is negative)
 - Representation is called sign and magnitude
- - Very large numbers have large positive exponents
 - Very small close-to-zero numbers have negative exponents
 - More bits in exponent field increases range of values
- ♦ Fraction field (fraction after binary point)
 - More bits in fraction field improves the precision of FP numbers

S Exponent Fraction	
---------------------	--

IEEE 754 Floating-Point Standard

- Found in virtually every computer invented since 1980
 - ♦ Simplified porting of floating-point numbers
 - ♦ Unified the development of floating-point algorithms
 - ♦ Increased the accuracy of floating-point numbers
- Single Precision Floating Point Numbers (32 bits)
 - ↑ 1-bit sign + 8-bit exponent + 23-bit fraction

S Exponent ⁸	Fraction ²³
-------------------------	------------------------

- Double Precision Floating Point Numbers (64 bits)
 - ↑ 1-bit sign + 11-bit exponent + 52-bit fraction

S	Exponent ¹¹	Fraction ⁵²		
(continued)				

Normalized Floating Point Numbers

❖ For a normalized floating point number (S, E, F)

S
$$F = f_1 f_2 f_3 f_4 ...$$

- Significand is equal to $(1.F)_2 = (1.f_1f_2f_3f_4...)_2$
 - ♦ IEEE 754 assumes hidden 1. (not stored) for normalized numbers
 - ♦ Significand is 1 bit longer than fraction
- Value of a Normalized Floating Point Number:

$$\pm (1.F)_{2} \times 2^{\text{exponent_value}}$$

$$\pm (1.f_{1}f_{2}f_{3}f_{4}...)_{2} \times 2^{\text{exponent_value}}$$

$$\pm (1 + f_{1} \times 2^{-1} + f_{2} \times 2^{-2} + f_{3} \times 2^{-3} + f_{4} \times 2^{-4} ...)_{2} \times 2^{\text{exponent_value}}$$

$$S = 0$$
 is positive, $S = 1$ is negative

Biased Exponent Representation

- How to represent a signed exponent? Choices are ...
 - ♦ Sign + magnitude representation for the exponent
 - → Two's complement representation
 - ♦ Biased representation
- ❖ IEEE 754 uses biased representation for the exponent
 - \Rightarrow Exponent Value = E Bias (Bias is a constant)
- The exponent field is 8 bits for single precision
 - ♦ E can be in the range 0 to 255
 - \Rightarrow E = 0 and E = 255 are reserved for special use (discussed later)
 - \Rightarrow E = 1 to 254 are used for normalized floating point numbers
 - \Rightarrow Bias = 127 (half of 254)
 - \Rightarrow Exponent value = E 127 Range: -126 to +127

Biased Exponent - Cont'd

- ❖ For double precision, the exponent field is 11 bits
 - \Rightarrow *E* can be in the range 0 to 2047
 - \Rightarrow E = 0 and E = 2047 are reserved for special use
 - \Rightarrow E = 1 to 2046 are used for normalized floating point numbers
 - \Rightarrow Bias = 1023 (half of 2046)
 - \Rightarrow Exponent value = E 1023 Range: -1022 to +1023
- Value of a Normalized Floating Point Number is

$$\pm (1.F)_2 \times 2^{(E-Bias)}$$

$$\pm (1.f_1f_2f_3f_4...)_2 \times 2^{(E-Bias)}$$

$$\pm (1 + f_1 \times 2^{-1} + f_2 \times 2^{-2} + f_3 \times 2^{-3} + f_4 \times 2^{-4} ...)_2 \times 2^{(E-Bias)}$$

$$S = 0$$
 is positive, $S = 1$ is negative

Examples of Single Precision Float

What is the decimal value of this Single Precision float?

Solution:

- ♦ Sign = 1 is negative
- \Rightarrow E = (01111100)₂ = 124, E bias = 124 127 = -3
- \Rightarrow Significand = $(1.0100 ... 0)_2 = 1 + 2^{-2} = 1.25 (1. is implicit)$
- ♦ Value in decimal = $-1.25 \times 2^{-3} = -0.15625$
- What is the decimal value of?

Solution:

 \Rightarrow Value in decimal = +(1.01001100 ... 0)₂ × 2¹³⁰⁻¹²⁷ = (1.01001100 ... 0)₂ × 2³ = (1010.01100 ... 0)₂ = 10.375

Examples of Double Precision Float

What is the decimal value of this Double Precision float?

Solution:

- \Rightarrow Value of exponent = $(10000000101)_2$ Bias = 1029 1023 = 6
- \Rightarrow Value of double = $(1.00101010 \dots 0)_2 \times 2^6$ (1. is implicit) = $(1001010.10 \dots 0)_2 = 74.5$
- What is the decimal value of?

Do it yourself! (answer should be $-1.5 \times 2^{-7} = -0.01171875$)

Decimal to Binary Floating-Point

Convert –0.8125 to single and double-precision floating-point

Solution:

♦ Fraction bits can be obtained using multiplication by 2

$$\bullet$$
 0.8125 × 2 = 1.625

$$-0.625 \times 2 = 1.25$$

$$-0.25 \times 2 = 0.5$$

$$-0.5 \times 2 = 1.0$$

$$0.8125 = (0.1101)_2 = \frac{1}{2} + \frac{1}{4} + \frac{1}{16} = \frac{13}{16}$$

- Stop when fractional part is 0, or after computing all required fraction bits
- \Rightarrow Fraction = $(0.1101)_2$ = $(1.101)_2 \times 2^{(-1)}$ (Normalized)
- \Rightarrow Exponent =(-1)+ Bias = 126 (single precision) and 1022 (double)

Single Precision

Double Precision

Largest Normalized Float

- What is the Largest normalized float?
- Solution for Single Precision:

- \Rightarrow E bias = 254 127 = +127 (largest exponent for SP)
- \Rightarrow Significand = (1.111 ... 1)₂ = 1.99999988 = almost 2
- ♦ Value in decimal ≈ $2 \times 2^{+127} \approx 2^{+128} \approx 3.4028 \dots \times 10^{+38}$
- Solution for Double Precision:

- ♦ Value in decimal $\approx 2 \times 2^{+1023} \approx 2^{+1024} \approx 1.79769 \dots \times 10^{+308}$
- Overflow: exponent is too large to fit in the exponent field

Smallest Normalized Float

- What is the smallest (in absolute value) normalized float?
- Solution for Single Precision:

 - \Rightarrow Exponent bias = 1 127 = -126 (smallest exponent for SP)
 - ♦ Significand = $(1.000 ... 0)_2 = 1$
 - \Rightarrow Value in decimal = 1 × 2⁻¹²⁶ = 1.17549 ... × 10⁻³⁸
- Solution for Double Precision:

- \Rightarrow Value in decimal = 1 x 2⁻¹⁰²² = 2.22507 ... x 10⁻³⁰⁸
- Underflow: exponent is too small to fit in exponent field

Zero, Infinity, and NaN

Zero

- \Rightarrow Exponent field E = 0 and fraction F = 0
- → +0 and -0 are both possible according to sign bit S

Infinity

- \Rightarrow Infinity is a special value represented with maximum E and F = 0
 - For single precision with 8-bit exponent: maximum E = 255
 - For double precision with 11-bit exponent: maximum E = 2047
- ♦ Infinity can result from overflow or division by zero
- → +∞ and -∞ are both possible according to sign bit S

NaN (Not a Number)

- \diamond NaN is a special value represented with maximum E and $F \neq 0$
- \diamond 0 / 0 \rightarrow NaN, 0 × ∞ \rightarrow NaN, sqrt(-1) \rightarrow NaN
- ♦ Operation on a NaN is typically a NaN: Op(X, NaN) → NaN

Denormalized Numbers

- ❖ IEEE standard uses denormalized numbers to ...
 - ♦ Fill the gap between 0 and the smallest normalized float
 - ♦ Provide gradual underflow to zero
- ightharpoonup Denormalized: exponent field E is 0 and fraction $F \neq 0$
 - ♦ The Implicit 1. before the fraction now becomes 0. (denormalized)
- ❖ Value of denormalized number (S, 0, F)

Single precision: $\pm (0.F)_2 \times 2^{-126}$

Double precision: $\pm (0.F)_2 \times 2^{-1022}$

Summary of IEEE 754 Encoding

Single-Precision	Exponent = 8	Fraction = 23	Value
Normalized Number	1 to 254	Anything	$\pm (1.F)_2 \times 2^{E-127}$
Denormalized Number	0	nonzero $\pm (0.F)$	
Zero	0	0	± 0
Infinity	255	0	± ∞
NaN	255	nonzero	NaN

Double-Precision	Exponent = 11 Fraction = 52		Value	
Normalized Number	1 to 2046	Anything	$\pm (1.F)_2 \times 2^{E-1023}$	
Denormalized Number	0	nonzero	$\pm (0.F)_2 \times 2^{-1022}$	
Zero	0	0	± 0	
Infinity	2047	0	± 8	
NaN	2047	nonzero	NaN	

Next...

- Floating-Point Numbers
- The IEEE 754 Floating-Point Standard

Floating-Point Comparison, Addition and Subtraction

Floating-Point Multiplication

MIPS Floating-Point Instructions and Examples

Floating-Point Comparison

- ❖ IEEE 754 floating point numbers are ordered (except NaN)
 - ♦ Because the exponent uses a biased representation ...
 - Exponent value and its binary representation have same ordering
 - ♦ Placing exponent before the fraction field orders the magnitude
 - Larger exponent ⇒ larger magnitude
 - For equal exponents, Larger fraction ⇒ larger magnitude

■
$$0 < (0.F)_2 \times 2^{Emin} < (1.F)_2 \times 2^{E-Bias} < \infty$$
 $(E_{min} = 1 - Bias)$

- ♦ Sign bit provides a quick test for signed <</p>
- Integer comparator can compare the magnitudes

Floating Point Addition

- Consider Adding Single-Precision Floats:

 - $+ 1.1000000000000110000101_2 \times 2^2$
- Cannot add significands ... Why?
 - ♦ Because exponents are not equal
- How to make exponents equal?
 - ♦ Shift the significand of the lesser exponent right
 - \Rightarrow Difference between the two exponents = 4 2 = 2
 - ♦ So, shift right second number by 2 bits and increment exponent

$$1.1000000000000110000101_2 \times 2^2$$

$$= 0.011000000000001100001 01_2 \times 2^4$$

Floating-Point Addition - cont'd

Now, ADD the Significands:

- Addition produces a carry bit, result is NOT normalized
- Normalize Result (shift right and increment exponent):

```
10.0100010000000001100011 01 \times 2^{4}
```

 $= 1.0010001000000000110001 101 \times 2^{5}$ (normalized)

Rounding

- Single-precision requires only 23 fraction bits
- However, Normalized result can contain additional bits

```
1.001000100000000110001 | (1)(01) \times 2^5

Round Bit: R = 1 t \in Sticky Bit: S = 1
```

- Two extra bits are used for rounding
 - ♦ Round bit: appears just after the normalized result
 - ♦ Sticky bit: appears after the round bit (OR of all additional bits)
- Since RS = 11, increment fraction to round to nearest
 - $1.0010001000000000110001 \times 2^{5}$

1.0010001000000000110010 \times 2⁵ (Rounded)

Floating-Point Subtraction

- Addition is used when operands have the same sign
- Addition becomes a subtraction when sign bits are different
- Consider adding floating-point numbers with different signs:
- + 1.00000000101100010001101 \times 2⁻⁶
- 1.000000000000000010011010 \times 2⁻¹
- + 0.00001000000001011000100 01101 \times 2⁻¹ (shift right 5 bits)
- 1.000000000000000010011010 \times 2⁻¹
- $0.00001000000001011000100 01101 \times 2^{-1}$
- 1 0.111111111111111101100110 \times 2⁻¹ (2's complement)
- 1 1.00001000000001000101010 01101 × 2⁻¹ (Negative result)
- 0.111101111111110111010101 10011 × 2⁻¹ (Sign Magnitude)
- 2's complement of result is required if result is negative

Floating-Point Subtraction - cont'd

- + 1.00000000101100010001101 \times 2⁻⁶
- 1.000000000000000010011010 \times 2⁻¹
- Result should be normalized (unless it is equal to zero)
 - → For subtraction, we can have leading zeros. To normalize, count the number of leading zeros, then shift result left and decrement the exponent accordingly.

Guard bit

- 0.11110111111110111010101 (1) 0011 \times 2⁻¹
- 1.11101111111110111010101 $\frac{1}{1}$ 0011 × 2⁻² (Normalized)
- Guard bit: guards against loss of a fraction bit
 - ♦ Needed for subtraction only, when result has a leading zero and should be normalized.

Floating-Point Subtraction - cont'd

Next, the normalized result should be rounded

```
Guard bit

- 0.111101111111101111010101 (1) 0 011 × 2^{-1}

- 1.111011111111101110101011 (0) (011) × 2^{-2} (Normalized)

Round bit: R=0 -- Sticky bit: S = 1
```

❖ Since R = 0, it is more accurate to truncate the result even though S = 1. We simply discard the extra bits.

```
    1.11101111111111110101011
    0 011 × 2<sup>-2</sup> (Normalized)
    1.11101111111111011110101011
    × 2<sup>-2</sup> (Rounded to nearest)
```

❖ IEEE 754 Representation of Result

```
10111101111011111111101110101011
```

Rounding to Nearest Even

- ❖ Normalized result has the form: 1. f₁ f₂ ... f₁ R S
 - ♦ The round bit R appears immediately after the last fraction bit f₁
 - ♦ The sticky bit S is the OR of all remaining additional bits
- Round to Nearest Even: default rounding mode
- * Four cases for RS:
 - ♦ RS = 00 → Result is Exact, no need for rounding
 - ♦ RS = 01 → Truncate result by discarding RS
 - ♦ RS = 11 → Increment result: ADD 1 to last fraction bit
 - ♦ RS = 10 → Tie Case (either truncate or increment result)
 - Check Last fraction bit f₁ (f₂₃ for single-precision or f₅₂ for double)
 - If f_i is 0 then truncate result to keep fraction even
 - If f_i is 1 then increment result to make fraction even

Additional Rounding Modes

- ❖ IEEE 754 standard includes other rounding modes:
- 1. Round to Nearest Even: described in previous slide
- Round toward +Infinity: result is rounded up
 Increment result if sign is positive and R or S = 1
- Round toward -Infinity: result is rounded down
 Increment result if sign is negative and R or S = 1
- 4. Round toward 0: always truncate result
- Rounding or Incrementing result might generate a carry
 - ♦ This occurs only when all fraction bits are 1
 - ♦ Re-Normalize after Rounding step is required only in this case

Example on Rounding

- ❖ Round following result using IEEE 754 rounding modes:
- ❖ Round to Nearest Even: Round Bit → L Sticky Bit
 - \Rightarrow Increment result since RS = 10 and f_{23} = 1

 - Renormalize and increment exponent (because of carry)
- ❖ Round towards +∞: Truncate result since negative
 - ♦ Truncated Result: -1.11111111111111111111 x 2-7
- ❖ Round towards -∞: Increment since negative and R = 1
- Round towards 0: Truncate always

Accuracy can be a Big Problem

Value1	Value2	Value3	Value4	Sum
1.0E+30	-1.0E+30	9.5	-2.3	7.2
1.0E+30	9.5	-1.0E+30	-2.3	-2.3
1.0E+30	9.5	-2.3	-1.0E+30	0

- Adding double-precision floating-point numbers (Excel)
- Floating-Point addition is NOT associative
- Produces different sums for the same data values
- Rounding errors when the difference in exponent is large

Floating Point Addition / Subtraction

Start

- Compare the exponents of the two numbers. Shift the smaller number to the right until its exponent would match the larger exponent.
- 2. Add / Subtract the significands according to the sign bits.
- 3. Normalize the sum, either shifting right and incrementing the exponent or shifting left and decrementing the exponent.
- 4. Round the significand to the appropriate number of bits, and renormalize if rounding generates a carry.

Shift significand right by $d = |E_X - E_Y|$

Add significands when signs of *X* and *Y* are identical, Subtract when different.

Convert negative result from 2's complement to sign-magnitude.

Normalization shifts right by 1 if there is a carry, or shifts left by the number of leading zeros in the case of subtraction.

Rounding either truncates fraction, or adds a 1 to least significant fraction bit.

Floating Point Adder Block Diagram

Next...

- Floating-Point Numbers
- The IEEE 754 Floating-Point Standard

Floating-Point Comparison, Addition and Subtraction

Floating-Point Multiplication

MIPS Floating-Point Instructions and Examples

Floating Point Multiplication Example

Consider multiplying:

```
-1.110\ 1000\ 0100\ 0000\ 1010\ 0001_2\ \times\ 2^{-4}
```

- \times 1.100 0000 0001 0000 0000 0000₂ \times 2⁻²
- Unlike addition, we add the exponents of the operands
 - \Rightarrow Result exponent value = (-4) + (-2) = -6
- ❖ Using the biased representation: $E_Z = E_X + E_Y Bias$

$$\Leftrightarrow E_X = (-4) + 127 = 123$$
 (*Bias* = 127 for single precision)

$$\Leftrightarrow E_{\vee} = (-2) + 127 = 125$$

$$\Rightarrow E_Z = 123 + 125 - 127 = 121$$
 (exponent value = -6)

- Sign bit of product can be computed independently
- ❖ Sign bit of product = Sign_X XOR Sign_Y = 1 (negative)

Floating-Point Multiplication, cont'd

Now multiply the significands:

111010000100000010100001

111010000100000010100001

1.11010000100000010100001

- ❖ 24 bits × 24 bits → 48 bits (double number of bits)
- \bigstar Multiplicand \times 0 = 0 Zero rows are eliminated
- Multiplicand x 1 = Multiplicand (shifted left)

Floating-Point Multiplication, cont'd

Normalize Product

```
-10.1011100011111101111110011001... × 2<sup>-6</sup>
Shift right and increment exponent because of carry bit
```

- Round to Nearest Even: (keep only 23 fraction bits)

$$-1.010111000111111011111100 \mid (1)(100...) \times 2^{-5}$$

Round bit = 1, Sticky bit = 1, so increment fraction

❖ IEEE 754 Representation

101111010010111100011111101111101

Floating Point Multiplication

- 1. Add the biased exponents of the two numbers, subtracting the bias from the sum to get the new biased exponent
- 2. Multiply the significands. Set the result sign to positive if operands have same sign, and negative otherwise
- 3. Normalize the product if necessary, shifting its significand right and incrementing the exponent
- 4. Round the significand to the appropriate number of bits, and renormalize if rounding generates a carry

Biased Exponent Addition $E_Z = E_X + E_Y - Bias$

Result sign $S_Z = S_X \mathbf{xor} S_Y \mathbf{can}$ be computed independently

Since the operand significands $1.F_X$ and $1.F_Y$ are ≥ 1 and < 2, their product is ≥ 1 and < 4. To normalize product, we need to shift right at most by 1 bit and increment exponent

Rounding either truncates fraction, or adds a 1 to least significant fraction bit

Extra Bits to Maintain Precision

- Floating-point numbers are approximations for ...
 - ♦ Real numbers that they cannot represent
- Infinite real numbers exist between 1.0 and 2.0
 - ♦ However, exactly 2²³ fractions represented in Single Precision
- * Extra bits are generated in intermediate results when ...
 - ♦ Shifting and adding/subtracting a p-bit significand
 - ♦ Multiplying two p-bit significands (product is 2p bits)
- But when packing result fraction, extra bits are discarded
- * Few extra bits are needed: guard, round, and sticky bits
- Minimize hardware but without compromising accuracy

Advantages of IEEE 754 Standard

- Used predominantly by the industry
- Encoding of exponent and fraction simplifies comparison
 - ♦ Integer comparator used to compare magnitude of FP numbers
- ❖ Includes special exceptional values: NaN and ±∞
 - ♦ Special rules are used such as:
 - 0/0 is NaN, sqrt(-1) is NaN, 1/0 is ∞, and 1/∞ is 0
 - ♦ Computation may continue in the face of exceptional conditions
- Denormalized numbers to fill the gap
 - \Rightarrow Between smallest normalized number 1.0 \times 2^{E_{min}} and zero
 - \Rightarrow Denormalized numbers, values $0.F \times 2^{E_{min}}$, are closer to zero
 - ♦ Gradual underflow to zero

Floating Point Complexities

- Operations are somewhat more complicated
- In addition to overflow we can have underflow
- Accuracy can be a big problem
 - ♦ Extra bits to maintain precision: guard, round, and sticky
 - ♦ Four rounding modes
 - ♦ Division by zero yields Infinity
 - ♦ Zero divide by zero yields Not-a-Number
 - ♦ Other complexities
- Implementing the standard can be tricky
- Not using the standard can be even worse

Next...

- Floating-Point Numbers
- The IEEE 754 Floating-Point Standard

Floating-Point Comparison, Addition and Subtraction

Floating-Point Multiplication

MIPS Floating-Point Instructions and Examples

MIPS Floating Point Coprocessor

- Called Coprocessor 1 or the Floating Point Unit (FPU)
- ❖ 32 separate floating point registers: \$f0, \$f1, ..., \$f31
- FP registers are 32 bits for single precision numbers
- Even-odd register pair form a double precision register
- Use the even number for double precision registers
 - ♦ \$f0, \$f2, \$f4, ..., \$f30 are used for double precision
- Separate FP instructions for single/double precision
 - ♦ Single precision: add.s, sub.s, mul.s, div.s (.s extension)
 - ♦ Double precision: add.d, sub.d, mul.d, div.d (.d extension)
- FP instructions are more complex than the integer ones
 - ♦ Take more cycles to execute

Floating-Point Arithmetic Instructions

Instru	ction	Meaning	Op ⁶	fmt ⁵	ft ⁵	fs ⁵	fd⁵	func ⁶
add.s	\$f5,\$f3,\$f4	\$f5 = \$f3 + \$f4	0x11	0x10	\$f4	\$f3	\$f5	0
sub.s	\$f5,\$f3,\$f4	\$f5 = \$f3 - \$f4	0x11	0x10	\$f4	\$f3	\$f5	1
mul.s	\$f5,\$f3,\$f4	\$f5 = \$f3 × \$f4	0x11	0x10	\$f4	\$f3	\$f5	2
div.s	\$f5,\$f3,\$f4	\$f5 = \$f3 / \$f4	0x11	0x10	\$f4	\$f3	\$f5	3
sqrt.s	\$f5,\$f3	\$f5 = sqrt(\$f3)	0x11	0x10	0	\$f3	\$f5	4
abs.s	\$f5,\$f3	\$f5 = abs(\$f3)	0x11	0x10	0	\$f3	\$f5	5
neg.s	\$f5,\$f3	\$f5 = -(\$f3)	0x11	0x10	0	\$f3	\$f5	7
add.d	\$f6,\$f2,\$f4	\$f6,7 = \$f2,3 + \$f4,5	0x11	0x11	\$f4	\$f2	\$f6	0
sub.d	\$f6,\$f2,\$f4	\$f6,7 = \$f2,3 - \$f4,5	0x11	0x11	\$f4	\$f2	\$f6	1
mul.d	\$f6,\$f2,\$f4	\$f6,7 = \$f2,3 × \$f4,5	0x11	0x11	\$f4	\$f2	\$f6	2
div.d	\$f6,\$f2,\$f4	\$f6,7 = \$f2,3 / \$f4,5	0x11	0x11	\$f4	\$f2	\$f6	3
sqrt.d	\$f6,\$f2	\$f6,7 = sqrt(\$f2,3)	0x11	0x11	0	\$f2	\$f6	4
abs.d	\$f6,\$f2	\$f6,7 = abs(\$f2,3)	0x11	0x11	0	\$f2	\$f6	5
neg.d	\$f6,\$f2	\$f6,7 = -(\$f2,3)	0x11	0x11	0	\$f2	\$f6	7

Floating-Point Load and Store

Separate floating-point load and store instructions

♦ lwc1: load word coprocessor 1

♦ ldc1: load double coprocessor 1

♦ swc1: store word coprocessor 1

♦ sdc1: store double coprocessor 1

General purpose register is used as the address register

Instruction	Meaning	Op ⁶	rs ⁵	ft ⁵	Immediate ¹⁶
lwc1 \$f2, 8(\$t0)	\$f2 ← ₄ Mem[\$t0+8]	0x31	\$t0	\$f2	8
swc1 \$f2, 8(\$t0)	\$f2 → ₄ Mem[\$t0+8]	0x39	\$t0	\$f2	8
ldc1 \$f2, 8(\$t0)	\$f2,3 ← ₈ Mem[\$t0+8]	0x35	\$t0	\$f2	8
sdc1 \$f2, 8(\$t0)	\$f2,3 → ₈ Mem[\$t0+8]	0x3d	\$t0	\$f2	8

Data Movement Instructions

- Moving data between general purpose and FP registers
 - ♦ mfc1: move from coprocessor 1 (to a general purpose register)
 - mtc1: move to coprocessor 1 (from a general purpose register)
- Moving data between FP registers
 - → mov.s: move single precision float
 - → mov.d: move double precision float = even/odd pair of registers

Instru	ction		Meaning	Op ⁶	fmt⁵	rt ⁵	fs ⁵	fd⁵	func
mfc1	\$t0,	\$f2	\$t0 = \$f2	0x11	0	\$t0	\$f2	0	0
mtc1	\$t0,	\$f2	\$f2 = \$t0	0x11	4	\$t0	\$f2	0	0
mov.s	\$f4,	\$f2	\$f4 = \$f2	0x11	0x10	0	\$f2	\$f4	6
mov.d	\$f4,	\$f2	\$f4,5 = \$f2,3	0x11	0x11	0	\$f2	\$f4	6

Convert Instructions

- Convert instruction: cvt.x.y
 - ♦ Convert the source format y into destination format x
- Supported Formats:
 - ♦ Single-precision float = .s
 - ♦ Double-precision float = .d
 - \diamond Signed integer word = $\cdot w$ (in a floating-point register)

Instruction	Meaning	Op ⁶	fmt ⁵		fs ⁵	fd⁵	func
cvt.s.w \$f2,\$f4	\$f2 = W2S(\$f4)	0x11	0x14	0	\$f4	\$f2	0x20
cvt.s.d \$f2,\$f4	\$f2 = D2P(\$f4,5)	0x11	0x11	0	\$f4	\$f2	0x20
cvt.d.w \$f2,\$f4	\$f2,3 = W2D(\$f4)	0x11	0x14	0	\$f4	\$f2	0x21
cvt.d.s \$f2,\$f4	\$f2,3 = S2D(\$f4)	0x11	0x10	0	\$f4	\$f2	0x21
cvt.w.s \$f2,\$f4	\$f2 = S2W(\$f4)	0x11	0x10	0	\$f4	\$f2	0x24
cvt.w.d \$f2,\$f4	\$f2 = D2W(\$f4,5)	0x11	0x11	0	\$f4	\$f2	0x24

Floating-Point Compare and Branch

- Floating-Point unit has eight condition code cc flags
 - ♦ Set to 0 (false) or 1 (true) by any comparison instruction
- Three comparisons: eq (equal), It (less than), Ie (less or equal)
- Two branch instructions based on the condition flag

Instruction	Meaning	Op ⁶	fmt ⁵	ft ⁵	fs ⁵		func
c.eq.s cc \$f2,\$f4	cc = (\$f2 == \$f4)	0x11	0x10	\$f4	\$f2	СС	0x32
c.eq.d cc \$f2,\$f4	cc = (\$f2,3 == \$f4,5)	0x11	0x11	\$f4	\$f2	СС	0x32
c.lt.s cc \$f2,\$f4	cc = (\$f2 < \$f4)	0x11	0x10	\$f4	\$f2	CC	0x3c
c.lt.d cc \$f2,\$f4	cc = (\$f2,3 < \$f4,5)	0x11	0x11	\$f4	\$f2	CC	0x3c
c.le.s cc \$f2,\$f4	cc = (\$f2 <= \$f4)	0x11	0x10	\$f4	\$f2	СС	0x3e
c.le.d cc \$f2,\$f4	cc = (\$f2,3 <= \$f4,5)	0x11	0x11	\$f4	\$f2	СС	0x3e
bc1f cc Label	branch if (cc == 0)	0x11	8	cc,0	16-bit Offset		ffset
bc1t cc Label	branch if (cc == 1)	0x11	8	cc,1	16-b	oit O	ffset

Example 1: Area of a Circle

```
.data
         .double
  pi:
                           3.1415926535897924
  msg: .asciiz
                           "Circle Area = "
.text
main:
  ldc1 $f2, pi
                           # $f2,3 = pi
  li
         $v0, 7
                           # read double (radius)
                           # $f0,1 = radius
  syscall
  mul.d $f12, $f0, $f0
                           # $f12,13 = radius*radius
  mul.d $f12, $f2, $f12
                          # $f12,13 = area
  la
         $a0, msg
  li
         $v0, 4
                           # print string (msg)
  syscall
  li
         $v0, 3
                           # print double (area)
                           # print $f12,13
  syscall
```

Example 2: Matrix Multiplication

```
void mm (int n, float X[n][n], Y[n][n], Z[n][n]) {
  for (int i=0; i!=n; i=i+1) {
    for (int j=0; j!=n; j=j+1) {
      float sum = 0.0;
      for (int k=0; k!=n; k=k+1) {
        sum = sum + Y[i][k] * Z[k][j];
     X[i][j] = sum;
```

- ❖ Matrix size is passed in \$a0 = n
- ❖ Matrix addresses in \$a1 = &X, \$a2 = &Y, and \$a3 = &Z
- What is the MIPS assembly code for the procedure?

Access Pattern for Matrix Multiply

$$&X[i][j] = &X + (i*n + j)*4 = &X[i][j-1] + 4$$

 $&Y[i][k] = &Y + (i*n + k)*4 = &Y[i][k-1] + 4$
 $&Z[k][j] = &Z + (k*n + j)*4 = &Z[k-1][j] + 4*n$

Matrix Multiplication Procedure (1 of 3)

```
# arguments $a0=n, $a1=&X, $a2=&Y, $a3=&Z
mm: s11 $t0, $a0, 2 # $t0 = n*4 (row size)
              # $t1 = i = 0
   li $t1, 0
# Outer for (i = ...) loop starts here
L1: 1i $t2, 0 # $t2 = j = 0
# Middle for (j = . . . ) loop starts here
L2: 1i $t3, 0 # $t3 = k = 0
   move $t4, $a2 # $t4 = &Y[i][0]
   $11 $t5, $t2, 2 # $t5 = j*4
   addu $t5, $a3, $t5 # $t5 = &Z[0][j]
   mtc1 $zero, $f0
                      # $f0 = sum = 0.0
```

Matrix Multiplication Procedure (2 of 3)

```
# Inner for (k = . . .) loop starts here
# $t3 = k, $t4 = &Y[i][k], $t5 = &Z[k][j]
L3: lwc1 $f1, 0($t4) # load $f1 = Y[i][k]
    lwc1 f2, 0(f5) # load f2 = Z[k][j]
   mul.s f3, f1, f2 # f3 = Y[i][k]*Z[k][j]
    add.s $f0, $f0, $f3 # sum = sum + $f3
    addiu $t3, $t3, 1 # k = k + 1
    addiu $t4, $t4, 4 # $t4 = &Y[i][k]
    addu $t5, $t5, $t0 # $t5 = &Z[k][j]
    bne $t3, $a0, L3 # loop back if (k != n)
# End of inner for loop
```

Matrix Multiplication Procedure (3 of 3)

```
swc1 f0, 0(a1) # store X[i][j] = sum
    addiu a1, a1, 4 # a1 = ax[i][j]
    addiu $t2, $t2, 1
                       # j = j + 1
    bne $t2, $a0, L2
                       # loop L2 if (j != n)
# End of middle for loop
    addu a2, a2, a2, a2 = a2 = a2 = a2
   addiu $t1, $t1, 1 # i = i + 1
    bne $t1, $a0, L1 # loop L1 if (i != n)
# End of outer for loop
         $ra
                       # return to caller
```