Integer Multiplication and Division

COE 301

Computer Organization
Prof. Muhamed Mudawar
College of Computer Sciences and Engineering King Fahd University of Petroleum and Minerals

Presentation Outline

Unsigned Integer Multiplication

Signed Integer Multiplication

Faster Integer Multiplication

Integer Division

Integer Multiplication and Division in MIPS

Unsigned Integer Multiplication

* Paper and Pencil Example:

Multiplicand

1100_{2}	$=12$
$\times \quad 1101_{2}$	$=13$

Multiplier

Binary multiplication is easy
$0 \times$ multiplicand $=0$
$1 \times$ multiplicand $=$ multiplicand

Product
$10011100_{2}=156$

* n-bit multiplicand \times n-bit multiplier $=(2 n)$-bit product
* Accomplished via shifting and addition
* Consumes more time and more chip area than addition

Unsigned Sequential Multiplication

\star Initialize Product $=0$

* Check each bit of the Multiplier
* If Multiplier bit $=1$ then Product $=$ Product + Multiplicand
$*$ Rather than shifting the multiplicand to the left,

Shift the Product to the Right

Has the same net effect and produces the same result
Minimizes the hardware resources

* One cycle per iteration (for each bit of the Multiplier)
\diamond Addition and shifting can be done simultaneously

Unsigned Sequential Multiplier

* Initialize: $\mathrm{HI}=0$
* Initialize: LO = Multiplier

Final Product in HI and LO registers

* Repeat for each bit of Multiplier


```
                    Oisters
```


Sequential Multiplier Example

$*$ Consider: $1100_{2} \times 1101_{2}$, Product $=10011100_{2}$

* 4-bit multiplicand and multiplier are used in this example
* 4-bit adder produces a 4-bit Sum + Carry bit

Iteration		Multiplicand	Carry	Product $=\mathrm{HI}, \mathrm{LO}$
0	Initialize (HI = 0, LO = Multiplier)	1100		00001101
1	LO[0] = 1 => ADD	$\rightarrow+$	\longrightarrow	11001101
	Shift Right (Carry, Sum, LO) by 1 bit	1100		01100110
2	LO[0] = $0=>$ NO addition			
	Shift Right (HI, LO) by 1 bit	1100		00110011
3	LO[0] = 1 => ADD	$\rightarrow+$	$\longrightarrow 0$	11110011
	Shift Right (Carry, Sum, LO) by 1 bit	1100		01111001
4	LO[0] = 1 => ADD	$\stackrel{\square}{+}$	$\rightarrow 1$	00111001
	Shift Right (Carry, Sum, LO) by 1 bit	1100		10011100

Next . . .

* Unsigned Integer Multiplication

Signed Integer Multiplication

Faster Integer Multiplication

* Integer Division
* Integer Multiplication and Division in MIPS

Signed Integer Multiplication

* First attempt:

૪ Convert multiplier and multiplicand into positive numbers

- If negative then obtain the 2's complement and remember the sign
\diamond Perform unsigned multiplication
\diamond Compute the sign of the product
\diamond If product sign < 0 then obtain the 2's complement of the product
\diamond Drawback: additional steps to compute the 2's complement
\star Better version:
\triangleleft Use the unsigned multiplication hardware
\diamond When shifting right, extend the sign of the product
\triangleleft If multiplier is negative, the last step should be a subtract

Signed Multiplication (Paper \& Pencil)

* Case 1: Positive Multiplier

* Case 2: Negative Multiplier

Signed Sequential Multiplier

* ALU produces: 32-bit sum + sign bit

* Sign bit can be computed:
\triangleleft No overflow: sign = sum[31]
\& If Overflow: sign = ~sum[31]

Signed Multiplication Example

* Consider: $1100_{2}(-4) \times 1101_{2}(-3)$, Product $=00001100_{2}$
* Check for overflow: No overflow \rightarrow Extend sign bit
* Last iteration: add 2's complement of Multiplicand

Iteration		Multiplicand	Sign	Product $=\mathrm{HI}$, LO
0	Initialize (HI = 0, LO = Multiplier)	1100		00001101
1	LO[0] = 1 => ADD	\checkmark	$\rightarrow 1$	11001101
	Shift Right (Sign, Sum, LO) by 1 bit	1100		11100110
2	LO[0] = 0 => NO addition			
	Shift Right (Sign, HI, LO) by 1 bit	1100		11110011
3	LO[0] = 1 => ADD	$\stackrel{\downarrow}{+}$	$\rightarrow 1$	10110011
	Shift Right (Sign, Sum, LO) by 1 bit	1100		11011001
4	LO[0] = 1 => SUB (ADD 2's compl)	- 0100 +	$\rightarrow 0$	00011001
	Shift Right (Sign, Sum, LO) by 1 bit			00001100

Next . . .

* Unsigned Integer Multiplication

Signed Integer Multiplication

Faster Integer Multiplication

* Integer Division
* Integer Multiplication and Division in MIPS

Faster Multiplier

* Suppose we want to multiply two numbers A and B
\diamond Example on 4-bit numbers: $A=a_{3} a_{2} a_{1} a_{0}$ and $B=b_{3} b_{2} b_{1} b_{0}$
* Step 1: AND (multiply) each bit of A with each bit of B
\diamond Requires n^{2} AND gates and produces n^{2} product bits
\diamond Position of $\mathrm{a}_{\mathrm{i}} \mathrm{b}_{\mathrm{j}}=(\mathrm{i}+\mathrm{j})$. For example, Position of $\mathrm{a}_{2} \mathrm{~b}_{3}=2+3=5$

Adding the Partial Products

* Step 2: Add the partial products
\diamond The partial products are shifted and added to compute the product \mathbf{P}
\diamond The partial products can be added in parallel
\diamond Different implementations are possible

4-bit Multiplicand		A_{3}	A_{2}	A_{1}	A_{θ}
4-bit Multiplier	\times	B_{3}	B_{2}	B_{1}	B_{0}

$\left.\begin{array}{cl:llll}\text { Partial Products } & \begin{array}{c}\text { Can be added } \\ \text { in parallel }\end{array} & \mathbf{A}_{3} \mathbf{B}_{1} & \mathbf{A}_{\mathbf{2}} \mathbf{A}_{1} & \mathbf{A}_{1} \mathbf{B}_{1} & \mathbf{A}_{0} \mathbf{B}_{1}\end{array}\right]$
8-bit Product $\begin{array}{llllllll}\mathbf{P}_{7} & \mathbf{P}_{6} & \mathbf{P}_{5} & \mathbf{P}_{4} & \mathbf{P}_{3} & \mathbf{P}_{2} & \mathbf{P}_{1} & \mathbf{P}_{\boldsymbol{\theta}}\end{array}$

4-bit x 4-bit Binary Multiplier

16 AND gates, Three 4-bit adders, a half-adder, and an OR gate

Carry Save Adders

* A n-bit carry-save adder produces two n-bit outputs
\diamond n-bit partial sum bits and n-bit carry bits
* All the n bits of a carry-save adder work in parallel
\triangleleft The carry does not propagate as in a carry-propagate adder
\diamond This is why a carry-save is faster than a carry-propagate adder
* Useful when adding multiple numbers (as in multipliers)

Carry-Propagate Adder

Carry-Save Adder

Carry-Save Adders in a Multiplier

* ADD the product bits vertically using Carry-Save adders
\diamond Full Adder adds three vertical bits
\diamond Half Adder adds two vertical bits
\diamond Each adder produces a partial sum and a carry
* Use Carry-propagate adder for final addition

Carry-Save Adders in a Multiplier

Step 1: Use carry save adders to add the partial products
\diamond Reduce the partial products to just two numbers
Step 2: Use carry-propagate adder to add last two numbers

Summary of a Fast Multiplier

* A fast n -bit $\times \mathrm{n}$-bit multiplier requires:
$\triangleleft n^{2}$ AND gates to produce n^{2} product bits in parallel
\diamond Many adders to perform additions in parallel
* Uses carry-save adders to reduce delays
* Higher cost (more chip area) than sequential multiplier
* Higher performance (faster) than sequential multiplier

Next . . .

* Unsigned Integer Multiplication

Signed Integer Multiplication

Faster Integer Multiplication

Integer Division

* Integer Multiplication and Division in MIPS

Unsigned Division (Paper \& Pencil)

Sequential Division

* Uses two registers: HI and LO
* Initialize: HI = Remainder = 0 and LO = Dividend
* Shift (HI, LO) LEFT by 1 bit (also Shift Quotient LEFT)
\diamond Shift the remainder and dividend registers together LEFT
\diamond Has the same net effect of shifting the divisor RIGHT
* Compute: Difference = Remainder - Divisor
* If (Difference ≥ 0) then
\diamond Remainder = Difference
\diamond Set Least significant Bit of Quotient
* Observation to Reduce Hardware:
\triangleleft LO register can be also used to store the computed Quotient

Sequential Division Hardware

* Initialize:
$\diamond \mathrm{HI}=0, \mathrm{LO}=$ Dividend
* Results:
$\diamond \mathrm{HI}=$ Remainder
\& LO = Quotient

Unsigned Integer Division Example

* Example: $\mathbf{1 1 1 0}_{2} / \mathbf{0 1 0 0}_{2}$ (4-bit dividend \& divisor)
* Result Quotient $=0011_{2}$ and Remainder $=0010_{2}$
* 4-bit registers for Remainder and Divisor (4-bit ALU)

Iteration		HI	LO	Divisor	Difference
0	Initialize	0000	1110	0100	
1	Shift Left, Diff = HI - Divisor	0001	1100	0100	< 0
	Diff < 0 => Do Nothing				
2	Shift Left, Diff = HI - Divisor	0011	1000	0100	<0
	Diff < 0 => Do Nothing				
3	Shift Left, Diff = HI- Divisor	0111	0000	0100	0011
	HI = Diff, set Isb of LO	0011	0001		
4	Shift Left, Diff = HI - Divisor	0110	0010	0100	0010
	HI = Diff, set Isb of LO	0010	0011		

Signed Integer Division

* Simplest way is to remember the signs
* Convert the dividend and divisor to positive
\diamond Obtain the 2's complement if they are negative
* Do the unsigned division
* Compute the signs of the quotient and remainder
\diamond Quotient sign = Dividend sign XOR Divisor sign
\diamond Remainder sign = Dividend sign
* Negate the quotient and remainder if their sign is negative
\diamond Obtain the 2's complement to convert them to negative

Signed Integer Division Examples

1. Positive Dividend and Positive Divisor
\diamond Example: $+17 /+3 \quad$ Quotient $=+5$ Remainder $=+2$
2. Positive Dividend and Negative Divisor
\triangleleft Example: $+17 /-3 \quad$ Quotient $=-5 \quad$ Remainder $=+2$
3. Negative Dividend and Positive Divisor
\checkmark Example: $-17 /+3 \quad$ Quotient $=-5 \quad$ Remainder $=-2$
4. Negative Dividend and Negative Divisor
\triangleleft Example: -17/-3 Quotient $=+5$ Remainder $=-2$
The following equation must always hold:
Dividend = Quotient \times Divisor + Remainder

Next . . .

* Unsigned Integer Multiplication

Signed Integer Multiplication

Faster Integer Multiplication
Integer Division

Integer Multiplication and Division in MIPS

Integer Multiplication in MIPS

* Multiply instructions
\triangleleft mult Rs, Rt Signed multiplication
« multu Rs, Rt Unsigned multiplication
* 32-bit multiplication produces a 64-bit Product
* Separate pair of 32-bit registers
$\diamond \mathrm{HI}=$ high-order 32-bit of product
\triangleleft LO = low-order 32-bit of product
* MIPS also has a special mul instruction
\diamond mul Rd, Rs, Rt $\quad R d=R s \times R t$

> Copy LO into destination register Rd
\triangleleft Useful when the product is small (32 bits) and HI is not needed

Integer Division in MIPS

* Divide instructions

$$
\begin{array}{lll}
\diamond \text { div Rs, Rt } & \text { Signed division } \\
\diamond \text { divu Rs, Rt } & \text { Unsigned division }
\end{array}
$$

* Division produces quotient and remainder
* Separate pair of 32-bit registers
$\triangleleft \mathrm{HI}=32$-bit remainder
\diamond LO = 32-bit quotient
\diamond If divisor is 0 then result is unpredictable
* Moving data from HI, LO to MIPS registers

$\diamond m f h i \operatorname{Rd}(R d=H I)$
$\diamond m f l o \operatorname{Rd}(R d=L O)$

Integer Multiply and Divide Instructions

Instruction		$\begin{array}{\|c\|} \hline \text { Meaning } \\ \hline \text { HI, LO }=\text { Rs } x_{s} \text { Rt } \end{array}$	Format					
mult	Rs, Rt		Op = 0	Rs	Rt	0	0	0x18
multu	Rs, Rt	HI, LO $=$ Rs $\times_{u} \mathrm{Rt}$	$\mathrm{Op}=0$	Rs	Rt	0	0	0x19
mul	Rd, Rs, Rt	$\mathrm{Rd}=\mathrm{Rs} \mathrm{x}_{\mathrm{s}} \mathrm{Rt}$	0x1c	Rs	Rt	Rd	0	2
div	Rs, Rt	$\mathrm{HI}, \mathrm{LO}=\mathrm{Rs} /{ }_{\text {s }} \mathrm{Rt}$	Op = 0	Rs	Rt	0	0	0x1a
divu	Rs, Rt	HI, LO = Rs / ${ }_{\text {ut }} \mathrm{Rt}$	Op $=0$	Rs	Rt	0	0	0x1b
mfhi	Rd	$\mathrm{Rd}=\mathrm{HI}$	$\mathrm{Op}=0$	0	0	Rd	0	0x10
mflo	Rd	Rd = LO	Op $=0$	0	0	Rd	0	0x12
mthi	Rs	$\mathrm{HI}=\mathrm{Rs}$	Op $=0$	Rs	0	0	0	0x11
mtlo	Rs	LO = Rs	$\mathrm{Op}=0$	Rs	0	0	0	0x13

$x_{s}=$ Signed multiplication, $\quad x_{u}=$ Unsigned multiplication
$/{ }_{s}=$ Signed division, $\quad /{ }_{u}=$ Unsigned division
NO arithmetic exception can occur

String to Integer Conversion

* Consider the conversion of string "91052" into an integer

$' 9 '$	'1'	'0'	'5'	'2'

* How to convert the string into an integer?
* Initialize: sum = 0
* Load each character of the string into a register
\diamond Check if the character is in the range: ' 0 ' to ' 9 '
\diamond Convert the character into a digit in the range: 0 to 9
\diamond Compute: sum = sum * 10 + digit
\triangleleft Repeat until end of string or a non-digit character is encountered
* To convert "91052", initialize sum to 0 then ...
\triangleleft sum $=9$, then 91 , then 910 , then 9105 , then 91052

String to Integer Conversion Function

```
#-
# str2int: Convert a string of digits into unsigned integer
# Input: $a0 = address of null terminated string
# Output: $v0 = unsigned integer value
#-
str2int:
\begin{tabular}{|c|c|c|c|}
\hline & li & \$v0, 0
\$t0, 10 & \begin{tabular}{l}
\# Initialize: \$v0 = sum = 0 \\
\# Initialize: \$t0 = 10
\end{tabular} \\
\hline L1: & 1b & \$t1, 0(\$a0) & \# load \$t1 = str[i] \\
\hline & blt & \$t1, '0', done & \# exit loop if (\$t1 < '0') \\
\hline & bgt & \$t1, '9', done & \# exit loop if (\$t1 > '9') \\
\hline & addiu & \$t1, \$t1, -48 & \# Convert character to digit \\
\hline & mul & \$v0, \$v0, \$t0 & \# \$v0 = sum * 10 \\
\hline & addu & \$v0, \$v0, \$t1 & \# \$v0 = sum * 10 + digit \\
\hline & addiu & \$a0, \$a0, 1 & \# \$a0 = address of next char \\
\hline & j & L1 & \# loop back \\
\hline done: & jr & \$ra & \# return to caller \\
\hline
\end{tabular}
```


Integer to String Conversion

Convert an unsigned 32-bit integer into a string

* How to obtain the decimal digits of the number?
\diamond Divide the number by 10, Remainder = decimal digit (0 to 9)
\diamond Convert decimal digit into its ASCII representation ('0' to ' 9 ')
\diamond Repeat the division until the quotient becomes zero
\triangleleft Digits are computed backwards from least to most significant
* Example: convert 2037 to a string
\triangleleft Divide 2037/10 quotient $=203$ remainder $=7$ char $={ }^{\prime} 7$ '
\diamond Divide 203/10 quotient $=20 \quad$ remainder $=3 \quad$ char $=$ ' 3 '
४ Divide 20/10 quotient $=2$ remainder $=0 \quad$ char $=$ ' 0 '
\diamond Divide 2/10 quotient $=0 \quad$ remainder $=2 \quad$ char $=$ ' 2 '

Integer to String Conversion Function

```
# int2str: Converts an unsigned integer into a string
# Input: $a0 = value, $a1 = buffer address (12 bytes)
# Output: $v0 = address of converted string in buffer
#-
int2str:
\begin{tabular}{|c|c|c|}
\hline li & \$t0, 10 & \# \$t0 = divisor = 10 \\
\hline addiu & \$v0, \$a1, 11 & \# start at end of buffer \\
\hline sb & \$zero, 0 (\$v0) & \# store a NULL character \\
\hline divu & \$a0, \$t0 & \# LO = value/10, HI = value\%10 \\
\hline mflo & \$a0 & \# \$a0 = value/10 \\
\hline mfhi & \$t1 & \# \$t1 = value\%10 \\
\hline addiu & \$t1, \$t1, 48 & \# convert digit into ASCII \\
\hline addiu & \$v0, \$v0, -1 & \# point to previous byte \\
\hline sb & \$t1, 0(\$v0) & \# store character in memory \\
\hline bnez & \$a0, L2 & \# loop if value is not 0 \\
\hline jr & \$ra & \# return to caller \\
\hline
\end{tabular}
```

