Integer Multiplication and Division

COE 301

Computer Organization

Prof. Muhamed Mudawar

College of Computer Sciences and Engineering King Fahd University of Petroleum and Minerals

Presentation Outline

- Unsigned Integer Multiplication
- Signed Integer Multiplication
- Faster Integer Multiplication
- Integer Division
- Integer Multiplication and Division in MIPS

Unsigned Integer Multiplication

Paper and Pencil Example:

Multiplicand Multiplier

$$1100_2 = 12$$
× $1101_2 = 13$

1100 0000 1100

1100

Binary multiplication is easy

 $0 \times \text{multiplicand} = 0$

1 × multiplicand = multiplicand

Product

$$10011100_2 = 156$$

- n-bit multiplicand x n-bit multiplier = (2n)-bit product
- Accomplished via shifting and addition
- Consumes more time and more chip area than addition

Unsigned Sequential Multiplication

- ❖ Initialize Product = 0
- Check each bit of the Multiplier
- ❖ If Multiplier bit = 1 then Product = Product + Multiplicand
- Rather than shifting the multiplicand to the left,

Shift the Product to the Right

Has the same net effect and produces the same result

Minimizes the hardware resources

- One cycle per iteration (for each bit of the Multiplier)
 - ♦ Addition and shifting can be done simultaneously

Unsigned Sequential Multiplier

❖ Initialize: HI = 0 Start ❖ Initialize: LO = Multiplier HI = 0, LO=Multiplier Final Product in HI and LO registers Repeat for each bit of Multiplier = 0LO[0]? Multiplicand Carry, Sum = HI + Multiplicand 32 bits 32 bits HI, LO = Shift Right (Carry, Sum, LO) add 32-bit ALU Sum 32 bits No Carry 32nd Repetition? shift right Yes HI LO Control Done write 64 bits LO[0]

Sequential Multiplier Example

- **!** Consider: $1100_2 \times 1101_2$, Product = 10011100_2
- ❖ 4-bit multiplicand and multiplier are used in this example
- 4-bit adder produces a 4-bit Sum + Carry bit

Iteration		Multiplicand	Carry	Product = HI, LO
0	Initialize (HI = 0, LO = Multiplier)	1100		_ 0000 110 1
1	LO[0] = 1 => ADD	+ -	→ 0	1100 1101
	Shift Right (Carry, Sum, LO) by 1 bit	1100		0110 0110
2	LO[0] = 0 => NO addition			
2	Shift Right (HI, LO) by 1 bit	1100		_ 0011 0011
3	LO[0] = 1 => ADD	+-	→0	1111 0011
	Shift Right (Carry, Sum, LO) by 1 bit	1100		<pre>- 0111 1001</pre>
4	LO[0] = 1 => ADD	+-	→ 1	0011 1001
	Shift Right (Carry, Sum, LO) by 1 bit	1100		1001 1100

Next...

- Unsigned Integer Multiplication
- Signed Integer Multiplication
- Faster Integer Multiplication
- Integer Division
- Integer Multiplication and Division in MIPS

Signed Integer Multiplication

First attempt:

- ♦ Convert multiplier and multiplicand into positive numbers
 - If negative then obtain the 2's complement and remember the sign
- ♦ Perform unsigned multiplication
- ♦ Compute the sign of the product
- ♦ If product sign < 0 then obtain the 2's complement of the product</p>
- ♦ Drawback: additional steps to compute the 2's complement

Better version:

- ♦ Use the unsigned multiplication hardware
- ♦ When shifting right, extend the sign of the product
- ♦ If multiplier is negative, the last step should be a subtract

Signed Multiplication (Paper & Pencil)

Case 1: Positive Multiplier

```
Multiplicand 1100_2 = -4
Multiplier \times 0101_2 = +5

Sign-extension  11111100 
Product  11101100_2 = -20
```

Case 2: Negative Multiplier

```
Multiplicand 1100_2 = -4
Multiplier \times 1101_2 = -3

Sign-extension 
\begin{array}{c}
\hline
111111100 \\
\hline
00100 \\
\hline
\end{array}

(2's complement of 1100)

Product 
\begin{array}{c}
00001100_2 = +12
\end{array}
```

Signed Sequential Multiplier

❖ ALU produces: 32-bit sum + sign bit Start Sign bit can be computed: HI = 0, LO = MultiplierNo overflow: sign = sum[31] = 0= 1If Overflow: sign = ~sum[31] LO[0]? 31 iterations: Sign, Sum = HI + Multiplicand Multiplicand Last iteration: Sign, Sum = HI - Multiplicand 32 bits 32 bits add, sub HI, LO = Shift Right (Sign, Sum, LO) 32-bit ALU **→** 32 bits sum sign No 32nd Repetition? shift right HI LO Yes Control write Done 64 bits LO[0]

Signed Multiplication Example

- **!** Consider: 1100_2 (-4) × 1101_2 (-3), Product = 00001100_2
- ❖ Check for overflow: No overflow → Extend sign bit
- Last iteration: add 2's complement of Multiplicand

Iteration		Multiplicand	Sign	Product = HI, LO
0	Initialize (HI = 0, LO = Multiplier)	1100		_ 0000 110 1
1	LO[0] = 1 => ADD	+-	→ 1	1100 1101
'	Shift Right (Sign, Sum, LO) by 1 bit	1100		1110 0110
2	LO[0] = 0 => NO addition			
2	Shift Right (Sign, HI, LO) by 1 bit	1100		_ 1111 001 <mark>1</mark>
3	LO[0] = 1 => ADD	+ -	→ [1	1011 0011
3	Shift Right (Sign, Sum, LO) by 1 bit	1100		_ 1101 100 <mark>1</mark>
4	LO[0] = 1 => SUB (ADD 2's compl)	0100 +-	→ 0	0001 1001
	Shift Right (Sign, Sum, LO) by 1 bit			0000 1100

Next...

- Unsigned Integer Multiplication
- Signed Integer Multiplication
- Faster Integer Multiplication
- Integer Division
- Integer Multiplication and Division in MIPS

Faster Multiplier

- Suppose we want to multiply two numbers A and B
 - \Rightarrow Example on 4-bit numbers: A = $a_3 a_2 a_1 a_0$ and B = $b_3 b_2 b_1 b_0$
- Step 1: AND (multiply) each bit of A with each bit of B
 - ♦ Requires n² AND gates and produces n² product bits
 - \Rightarrow Position of $a_ib_i = (i+j)$. For example, Position of $a_2b_3 = 2+3 = 5$

Adding the Partial Products

- Step 2: Add the partial products
 - ♦ The partial products are shifted and added to compute the product P
 - ♦ The partial products can be added in parallel
 - ♦ Different implementations are possible

Partial Products are shifted and added

8-bit Product

 P_6

 P_5

 P_4

 P_3

 P_2

 P_1

Pa

4-bit × 4-bit Binary Multiplier

16 AND gates, Three 4-bit adders, a half-adder, and an OR gate

Carry Save Adders

- ❖ A n-bit carry-save adder produces two n-bit outputs
 - ♦ n-bit partial sum bits and n-bit carry bits
- All the n bits of a carry-save adder work in parallel
 - ♦ The carry does not propagate as in a carry-propagate adder
 - ♦ This is why a carry-save is faster than a carry-propagate adder
- Useful when adding multiple numbers (as in multipliers)

Carry-Propagate Adder

Carry-Save Adder

Carry-Save Adders in a Multiplier

- ADD the product bits vertically using Carry-Save adders
 - → Full Adder adds three vertical bits
 - ♦ Half Adder adds two vertical bits
 - ♦ Each adder produces a partial sum and a carry
- Use Carry-propagate adder for final addition

Carry-Save Adders in a Multiplier

- Step 1: Use carry save adders to add the partial products
 - ♦ Reduce the partial products to just two numbers
- Step 2: Use carry-propagate adder to add last two numbers

Summary of a Fast Multiplier

- ❖ A fast n-bit x n-bit multiplier requires:

 - Many adders to perform additions in parallel
- Uses carry-save adders to reduce delays
- Higher cost (more chip area) than sequential multiplier
- Higher performance (faster) than sequential multiplier

Next...

- Unsigned Integer Multiplication
- Signed Integer Multiplication
- Faster Integer Multiplication
- Integer Division
- Integer Multiplication and Division in MIPS

Unsigned Division (Paper & Pencil)

 $1000_{2} =$

Remainder

Sequential Division

- Uses two registers: HI and LO
- ❖ Initialize: HI = Remainder = 0 and LO = Dividend
- Shift (HI, LO) LEFT by 1 bit (also Shift Quotient LEFT)
 - ♦ Shift the remainder and dividend registers together LEFT
 - ♦ Has the same net effect of shifting the divisor RIGHT
- Compute: Difference = Remainder Divisor
- ❖ If (Difference ≥ 0) then
 - ♦ Remainder = Difference
 - ♦ Set Least significant Bit of Quotient
- Observation to Reduce Hardware:
 - ♦ LO register can be also used to store the computed Quotient

Sequential Division Hardware

Initialize:

$$\Rightarrow$$
 HI = 0, LO = Dividend

* Results:

- → HI = Remainder
- ♦ LO = Quotient

Start

1. Shift (HI, LO) Left

Difference = HI - Divisor

Unsigned Integer Division Example

- ***** Example: **1110**₂ / **0100**₂ (4-bit dividend & divisor)
- ❖ Result Quotient = 0011₂ and Remainder = 0010₂
- ❖ 4-bit registers for Remainder and Divisor (4-bit ALU)

Itera	ation	HI	LO	Divisor	Difference
0	Initialize	0000	1110	0100	
1	Shift Left, Diff = HI - Divisor	0001 ←	1100	0100	< 0
1	Diff < 0 => Do Nothing				
	Shift Left, Diff = HI - Divisor	0011 ←	1000	0100	< 0
2	Diff < 0 => Do Nothing				
3	Shift Left, Diff = HI - Divisor	0111 ←	0000	0100	0011
	HI = Diff, set Isb of LO	0011	0 0 0 1		
4	Shift Left, Diff = HI - Divisor	0110 ←	0010	0100	0010
	HI = Diff, set Isb of LO	0010	0011		

Signed Integer Division

- Simplest way is to remember the signs
- Convert the dividend and divisor to positive
 - ♦ Obtain the 2's complement if they are negative
- Do the unsigned division
- Compute the signs of the quotient and remainder

 - ♦ Remainder sign = Dividend sign
- Negate the quotient and remainder if their sign is negative
 - ♦ Obtain the 2's complement to convert them to negative

Signed Integer Division Examples

1. Positive Dividend and Positive Divisor

```
\Rightarrow Example: +17 / +3 Quotient = +5 Remainder = +2
```

2. Positive Dividend and Negative Divisor

```
\Rightarrow Example: +17 / -3 Quotient = -5 Remainder = +2
```

3. Negative Dividend and Positive Divisor

```
\Rightarrow Example: -17 / +3 Quotient = -5 Remainder = -2
```

4. Negative Dividend and Negative Divisor

```
\Rightarrow Example: -17 / -3 Quotient = +5 Remainder = -2
```

The following equation must always hold:

Dividend = Quotient × Divisor + Remainder

Next...

- Unsigned Integer Multiplication
- Signed Integer Multiplication
- Faster Integer Multiplication
- Integer Division
- Integer Multiplication and Division in MIPS

Integer Multiplication in MIPS

- Multiply instructions
 - ♦ mult Rs, Rt Signed multiplication
- ❖ 32-bit multiplication produces a 64-bit Product
- Separate pair of 32-bit registers
 - ♦ HI = high-order 32-bit of product
 - ♦ LO = low-order 32-bit of product
- MIPS also has a special mul instruction
 - \Rightarrow mul Rd, Rs, Rt Rd = Rs × Rt
 - ♦ Copy LO into destination register Rd
 - ♦ Useful when the product is small (32 bits) and HI is not needed

Integer Division in MIPS

- Divide instructions

Signed division

♦ divu Rs, Rt

- **Unsigned division**
- Division produces quotient and remainder
- Separate pair of 32-bit registers
 - ♦ HI = 32-bit remainder
 - ♦ LO = 32-bit quotient
 - ♦ If divisor is 0 then result is unpredictable
- Moving data from HI, LO to MIPS registers

 - → mflo Rd (Rd = LO)

Integer Multiply and Divide Instructions

Instruction		Meaning	Format					
mult	Rs, Rt	HI, LO = Rs \times_s Rt	Op = 0	Rs	Rt	0	0	0x18
multu	Rs, Rt	HI, LO = Rs \times_u Rt	Op = 0	Rs	Rt	0	0	0x19
mul	Rd, Rs, Rt	$Rd = Rs \times_s Rt$	0x1c	Rs	Rt	Rd	0	2
div	Rs, Rt	HI, LO = Rs $/_s$ Rt	Op = 0	Rs	Rt	0	0	0x1a
divu	Rs, Rt	HI, LO = Rs / _u Rt	Op = 0	Rs	Rt	0	0	0x1b
mfhi	Rd	Rd = HI	Op = 0	0	0	Rd	0	0x10
mflo	Rd	Rd = LO	Op = 0	0	0	Rd	0	0x12
mthi	Rs	HI = Rs	Op = 0	Rs	0	0	0	0x11
mtlo	Rs	LO = Rs	Op = 0	Rs	0	0	0	0x13

$$x_s$$
 = Signed multiplication, x_u = Unsigned multiplication
 x_s = Signed division, x_u = Unsigned division

NO arithmetic exception can occur

String to Integer Conversion

Consider the conversion of string "91052" into an integer

- How to convert the string into an integer?
- ❖ Initialize: sum = 0
- Load each character of the string into a register
 - ♦ Check if the character is in the range: '0' to '9'
 - ♦ Convert the character into a digit in the range: 0 to 9
 - ♦ Compute: sum = sum * 10 + digit
 - ♦ Repeat until end of string or a non-digit character is encountered
- ❖ To convert "91052", initialize sum to 0 then ...

String to Integer Conversion Function

```
# str2int: Convert a string of digits into unsigned integer
# Input: $a0 = address of null terminated string
# Output: $v0 = unsigned integer value
str2int:
            $v0, 0
                          # Initialize: $v0 = sum = 0
      1 i
                            # Initialize: $t0 = 10
      li
             $t0, 10
L1: 1b
             $t1, 0($a0)  # load $t1 = str[i]
             $t1, '0', done # exit loop if ($t1 < '0')
      blt
                            # exit loop if ($t1 > '9')
      bgt
            $t1, '9', done
                            # Convert character to digit
      addiu
            $t1, $t1, -48
             $v0, $v0, $t0
                            # $v0 = sum * 10
      mu1
             $v0, $v0, $t1
                            # $v0 = sum * 10 + digit
      addu
      addiu
            $a0, $a0, 1
                            # $a0 = address of next char
             L1
                            # loop back
             $ra
                            # return to caller
done:
     jr
```

Integer to String Conversion

- Convert an unsigned 32-bit integer into a string
- How to obtain the decimal digits of the number?
 - → Divide the number by 10, Remainder = decimal digit (0 to 9).
 - ♦ Convert decimal digit into its ASCII representation ('0' to '9')
 - ♦ Repeat the division until the quotient becomes zero
 - ♦ Digits are computed backwards from least to most significant
- Example: convert 2037 to a string

```
♦ Divide 2037/10 quotient = 203 remainder = 7 char = '7'
```

Integer to String Conversion Function

```
# int2str: Converts an unsigned integer into a string
# Input: $a0 = value, $a1 = buffer address (12 bytes)
# Output: $v0 = address of converted string in buffer
int2str:
     li $t0, 10 # $t0 = divisor = 10
     addiu $v0, $a1, 11 # start at end of buffer
     sb $zero, 0($v0) # store a NULL character
     divu $a0, $t0  # LO = value/10, HI = value%10
L2:
     mflo $a0
                         # $a0 = value/10
     mfhi $t1
                         # $t1 = value%10
     addiu $t1, $t1, 48
                         # convert digit into ASCII
     addiu $v0, $v0, -1 # point to previous byte
     sb $t1, 0($v0) # store character in memory
     bnez $a0, L2
                         # loop if value is not 0
     jr
           $ra
                         # return to caller
```