
Control Flow and Arrays

COE 301
Computer Organization

Prof. Muhamed Mudawar

College of Computer Sciences and Engineering

King Fahd University of Petroleum and Minerals

Control Flow and Arrays COE 301 / ICS 233 – Computer Organization – KFUPM © Muhamed Mudawar – slide 2

Presentation Outline

� Control Flow: Branch and Jump Instructions

� Translating If Statements and Boolean Expressions

� Arrays

� Load and Store Instructions

� Translating Loops and Traversing Arrays

� Addressing Modes

Control Flow and Arrays COE 301 / ICS 233 – Computer Organization – KFUPM © Muhamed Mudawar – slide 3

Control Flow

� High-level programming languages provide constructs:

� To make decisions in a program: IF-ELSE

� To repeat the execution of a sequence of instructions: LOOP

� The ability to make decisions and repeat a sequence of

instructions distinguishes a computer from a calculator

� All computer architectures provide control flow instructions

� Essential for making decisions and repetitions

� These are the conditional branch and jump instructions

Control Flow and Arrays COE 301 / ICS 233 – Computer Organization – KFUPM © Muhamed Mudawar – slide 4

� MIPS compare and branch instructions:

beq Rs, Rt, label if (Rs == Rt) branch to label

bne Rs, Rt, label if (Rs != Rt) branch to label

� MIPS compare to zero & branch instructions:

Compare to zero is used frequently and implemented efficiently

bltz Rs, label if (Rs < 0) branch to label

bgtz Rs, label if (Rs > 0) branch to label

blez Rs, label if (Rs <= 0) branch to label

bgez Rs, label if (Rs >= 0) branch to label

� beqz and bnez are defined as pseudo-instructions.

MIPS Conditional Branch Instructions

Control Flow and Arrays COE 301 / ICS 233 – Computer Organization – KFUPM © Muhamed Mudawar – slide 5

Branch Instruction Format

� The branch instructions modify the PC register only

� PC-Relative addressing:

If (branch is taken) PC = PC + 4 + 4×offset else PC = PC+4

� Branch Instructions are of the I-type Format:

Op6 Rs5 Rt5 16-bit offset

Instruction I-Type Format

beq Rs, Rt, label Op = 4 Rs Rt 16-bit Offset

bne Rs, Rt, label Op = 5 Rs Rt 16-bit Offset

blez Rs, label Op = 6 Rs 0 16-bit Offset

bgtz Rs, label Op = 7 Rs 0 16-bit Offset

bltz Rs, label Op = 1 Rs 0 16-bit Offset

bgez Rs, label Op = 1 Rs 1 16-bit Offset

Control Flow and Arrays COE 301 / ICS 233 – Computer Organization – KFUPM © Muhamed Mudawar – slide 6

Unconditional Jump Instruction

� The unconditional Jump instruction has the following syntax:

j label # jump to label

. . .

label:

� The jump instruction is always taken

� The Jump instruction is of the J-type format:

� The jump instruction modifies the program counter PC:

� The upper 4 bits of the PC are unchanged

Op6 = 2 26-bit address

26-bit address 00PC4

multiple
of 4

Control Flow and Arrays COE 301 / ICS 233 – Computer Organization – KFUPM © Muhamed Mudawar – slide 7

Translating an IF Statement

� Consider the following IF statement:

if (a == b) c = d + e; else c = d – e;

Given that a, b, c, d, e are in $t0 … $t4 respectively

� How to translate the above IF statement?

bne $t0, $t1, else

addu $t2, $t3, $t4

j next

else: subu $t2, $t3, $t4

next: . . .

Control Flow and Arrays COE 301 / ICS 233 – Computer Organization – KFUPM © Muhamed Mudawar – slide 8

Logical AND Expression

� Programming languages use short-circuit evaluation

� If first condition is false, second condition is skipped

if (($t1 > 0) && ($t2 < 0)) {$t3++;}

One Possible Translation ...

bgtz $t1, L1 # first condition

j next # skip if false

L1: bltz $t2, L2 # second condition

j next # skip if false

L2: addiu $t3, $t3, 1 # both are true

next:

Control Flow and Arrays COE 301 / ICS 233 – Computer Organization – KFUPM © Muhamed Mudawar – slide 9

Better Translation of Logical AND

Allow the program to fall through to second condition

!($t1 > 0) is equivalent to ($t1 <= 0)

!($t2 < 0) is equivalent to ($t2 >= 0)

Number of instructions is reduced from 5 to 3

if (($t1 > 0) && ($t2 < 0)) {$t3++;}

Better Translation ...

blez $t1, next # 1st condition false?

bgez $t2, next # 2nd condition false?

addiu $t3, $t3, 1 # both are true

next:

Control Flow and Arrays COE 301 / ICS 233 – Computer Organization – KFUPM © Muhamed Mudawar – slide 10

Logical OR Expression

� Short-circuit evaluation for logical OR

� If first condition is true, second condition is skipped

� Use fall-through to keep the code as short as possible

bgtz $t1, L1 # 1st condition true?

bgez $t2, next # 2nd condition false?

L1: addiu $t3, $t3, 1 # increment $t3

next:

if (($t1 > 0) || ($t2 < 0)) {$t3++;}

Control Flow and Arrays COE 301 / ICS 233 – Computer Organization – KFUPM © Muhamed Mudawar – slide 11

Compare Instructions

� MIPS also provides set less than instructions

slt Rd, Rs, Rt if (Rs < Rt) Rd = 1 else Rd = 0

sltu Rd, Rs, Rt unsigned <

slti Rt, Rs, imm if (Rs < imm) Rt = 1 else Rt = 0

sltiu Rt, Rs, imm unsigned <

� Signed / Unsigned comparisons compute different results

Given that: $t0 = 1 and $t1 = -1 = 0xffffffff

slt $t2, $t0, $t1 computes $t2 = 0

sltu $t2, $t0, $t1 computes $t2 = 1

Control Flow and Arrays COE 301 / ICS 233 – Computer Organization – KFUPM © Muhamed Mudawar – slide 12

Compare Instruction Formats

� The other comparisons are defined as pseudo-instructions:
seq, sne, sgt, sgtu, sle, sleu, sge, sgeu

Instruction Meaning Format

slt Rd, Rs, Rt Rd=(Rs <s Rt)?1:0 Op=0 Rs Rt Rd 0 0x2a

sltu Rd, Rs, Rt Rd=(Rs <u Rt)?1:0 Op=0 Rs Rt Rd 0 0x2b

slti Rt, Rs, im Rt=(Rs <s im)?1:0 0xa Rs Rt 16-bit immediate

sltiu Rt, Rs, im Rt=(Rs <u im)?1:0 0xb Rs Rt 16-bit immediate

Pseudo-Instruction Equivalent MIPS Instructions

sgt $t2, $t0, $t1

seq $t2, $t0, $t1
subu $t2, $t0, $t1

sltiu $t2, $t2, 1

slt $t2, $t1, $t0

Control Flow and Arrays COE 301 / ICS 233 – Computer Organization – KFUPM © Muhamed Mudawar – slide 13

Pseudo-Branch Instructions

� MIPS hardware does NOT provide the following instructions:

blt, bltu branch if less than (signed / unsigned)

ble, bleu branch if less or equal (signed / unsigned)

bgt, bgtu branch if greater than (signed / unsigned)

bge, bgeu branch if greater or equal (signed / unsigned)

� MIPS assembler defines them as pseudo-instructions:

Pseudo-Instruction Equivalent MIPS Instructions

blt $t0, $t1, label

ble $t0, $t1, label

$at ($1) is the assembler temporary register

slt $at, $t0, $t1
bne $at, $zero, label

slt $at, $t1, $t0
beq $at, $zero, label

Control Flow and Arrays COE 301 / ICS 233 – Computer Organization – KFUPM © Muhamed Mudawar – slide 14

Using Pseudo-Branch Instructions

� Translate the IF statement to assembly language

� $t1 and $t2 values are unsigned

� $t3, $t4, and $t5 values are signed

bgtu $t1, $t2, L1

move $t3, $t4

L1:

if($t1 <= $t2) {

$t3 = $t4;

}

if (($t3 <= $t4) &&

($t4 >= $t5)) {

$t3 = $t4 + $t5;

}

bgt $t3, $t4, L1

blt $t4, $t5, L1

addu $t3, $t4, $t5

L1:

Control Flow and Arrays COE 301 / ICS 233 – Computer Organization – KFUPM © Muhamed Mudawar – slide 15

Conditional Move Instructions

� Conditional move can eliminate branch & jump instructions

Instruction Meaning R-Type Format

movz Rd, Rs, Rt if (Rt==0) Rd=Rs Op=0 Rs Rt Rd 0 0xa

movn Rd, Rs, Rt if (Rt!=0) Rd=Rs Op=0 Rs Rt Rd 0 0xb

if ($t0 == 0) {$t1=$t2+$t3;} else {$t1=$t2-$t3;}

bne $t0, $0, L1

addu $t1, $t2, $t3

j L2

L1: subu $t1, $t2, $t3

L2: . . .

addu $t1, $t2, $t3

subu $t4, $t2, $t3

movn $t1, $t4, $t0

. . .

Control Flow and Arrays COE 301 / ICS 233 – Computer Organization – KFUPM © Muhamed Mudawar – slide 16

Next . . .

� Control Flow: Branch and Jump Instructions

� Translating If Statements and Boolean Expressions

� Arrays

� Load and Store Instructions

� Translating Loops and Traversing Arrays

� Addressing Modes

Control Flow and Arrays COE 301 / ICS 233 – Computer Organization – KFUPM © Muhamed Mudawar – slide 17

Arrays

� In a high-level programming language, an array is a

homogeneous data structure with the following properties:

� All array elements are of the same type and size

� Once an array is allocated, its size cannot be modified

� The base address is the address of the first array element

� The array elements can be indexed

� The address of any array element can be computed

� In assembly language, an array is just a block of memory

� In fact, all objects are simply blocks of memory

� The memory block can be allocated statically or dynamically

Control Flow and Arrays COE 301 / ICS 233 – Computer Organization – KFUPM © Muhamed Mudawar – slide 18

Static Array Allocation

� An array can be allocated statically in the data segment

� A data definition statement allocates static memory:

label: .type value0 [, value1 ...]

label: is the name of the array

.type directive specifies the size of each array element

value0, value1 ... specify a list of initial values

� Examples of static array definitions:

arr1: .half 20, -1 # array of 2 half words

arr2: .word 1:5 # array of 5 words (value=1)

arr3: .space 20 # array of 20 bytes

str1: .asciiz "Null-terminated string"

Control Flow and Arrays COE 301 / ICS 233 – Computer Organization – KFUPM © Muhamed Mudawar – slide 19

Watching Values in the Data Segment

� The labels window is the symbol table

� Shows labels and corresponding addresses

� The la pseudo-instruction loads the address
of any label into a register

Control Flow and Arrays COE 301 / ICS 233 – Computer Organization – KFUPM © Muhamed Mudawar – slide 20

Dynamic Memory Allocation

� One of the functions of the OS is to manage memory

� A program can allocate memory on the heap at runtime

� The heap is part of the data segment that can grow at runtime

� The program makes a system call ($v0=9) to allocate memory

.text

. . .

li $a0, 100 # $a0 = number of bytes to allocate

li $v0, 9 # system call 9

syscall # allocate 100 bytes on the heap

move $t0, $v0 # $t0 = address of allocated block

. . .

Control Flow and Arrays COE 301 / ICS 233 – Computer Organization – KFUPM © Muhamed Mudawar – slide 21

Allocating Dynamic Memory on the Heap

Stack Segment

Heap Area

Static Area

Data Segment

0x00000000
Reserved

0x10000000

Text Segment

0x7fffffff

0x00400000

0x10040000

Control Flow and Arrays COE 301 / ICS 233 – Computer Organization – KFUPM © Muhamed Mudawar – slide 22

Computing the Addresses of Elements

� In a high-level programming language, an array is indexed

array[0] is the first element in the array

array[i] is the element at index i

&array[i] is the address of the element at index i

&array[i] = &array + i × element_size

� For a 2D array, the array is stored linearly in memory

matrix[Rows][Cols] has (Rows × Cols) elements

&matrix[i][j] = &matrix + (i×Cols + j) × element_size

� For example, to allocate a matrix[10][20] of integers:

matrix: .word 0:200 # 200 words (initialized to 0)

&matrix[1][5] = &matrix + (1×20 + 5)×4 = &matrix + 100

Control Flow and Arrays COE 301 / ICS 233 – Computer Organization – KFUPM © Muhamed Mudawar – slide 23

Element Addresses in a 2D Array

&matrix[i][j] = &matrix + (i×COLS + j) × Element_size

0

1

…

i

…

ROWS-1

0 1 … j … COLS-1

COLS

R
O
W
S

Address calculation is essential when programming in assembly

Control Flow and Arrays COE 301 / ICS 233 – Computer Organization – KFUPM © Muhamed Mudawar – slide 24

Load and Store Instructions

� Instructions that transfer data between memory & registers

� Programs include variables such as arrays and objects

� These variables are stored in memory

� Load Instruction:

� Transfers data from memory to a register

� Store Instruction:

� Transfers data from a register to memory

� Memory address must be specified by load and store

MemoryRegisters

load

store

Control Flow and Arrays COE 301 / ICS 233 – Computer Organization – KFUPM © Muhamed Mudawar – slide 25

� Load Word Instruction (Word = 4 bytes in MIPS)

lw Rt, imm(Rs) # Rt ���� MEMORY[Rs+imm]

� Store Word Instruction

sw Rt, imm(Rs) # Rt ���� MEMORY[Rs+imm]

� Base / Displacement addressing is used

�Memory Address = Rs (base) + Immediate (displacement)

� Immediate16 is sign-extended to have a signed displacement

Load and Store Word

Op6 Rs5 Rt5 immediate16

Base or Displacement Addressing

Memory Word

Base address

+

Control Flow and Arrays COE 301 / ICS 233 – Computer Organization – KFUPM © Muhamed Mudawar – slide 26

Example on Load & Store
� Translate: A[1] = A[2] + 5 (A is an array of words)

� Given that the address of array A is stored in register $t0

lw $t1, 8($t0) # $t1 = A[2]

addiu $t2, $t1, 5 # $t2 = A[2] + 5

sw $t2, 4($t0) # A[1] = $t2

� Index of A[2] and A[1] should be multiplied by 4. Why?

Registers

sw

lw

Memory

A[2]

A[1]

A[3]

. . .

. . .

&A + 12

&A + 8

&A + 4

&A

$t0

$t1

$t2

&A

A[2]

A[2] + 5

. . .

. . . A[0]

Control Flow and Arrays COE 301 / ICS 233 – Computer Organization – KFUPM © Muhamed Mudawar – slide 27

0 0

s s s

s s

0 0

s

bu

b

h

hu

sign – extend

zero – extend

sign – extend

zero – extend

32-bit Register

� The MIPS processor supports the following data formats:

�Byte = 8 bits, Half word = 16 bits, Word = 32 bits

� Load & store instructions for bytes and half words

� lb = load byte, lbu = load byte unsigned, sb = store byte

� lh = load half, lhu = load half unsigned, sh = store halfword

� Load expands a memory value to fit into a 32-bit register

� Store reduces a 32-bit register value to fit in memory

Load and Store Byte and Halfword

Control Flow and Arrays COE 301 / ICS 233 – Computer Organization – KFUPM © Muhamed Mudawar – slide 28

Load and Store Instructions

Instruction Meaning I-Type Format

lb Rt, imm(Rs) Rt ����1 MEM[Rs+imm] 0x20 Rs Rt 16-bit immediate

lh Rt, imm(Rs) Rt ����2 MEM[Rs+imm] 0x21 Rs Rt 16-bit immediate

lw Rt, imm(Rs) Rt ����4 MEM[Rs+imm] 0x23 Rs Rt 16-bit immediate

lbu Rt, imm(Rs) Rt ����1 MEM[Rs+imm] 0x24 Rs Rt 16-bit immediate

lhu Rt, imm(Rs) Rt ����2 MEM[Rs+imm] 0x25 Rs Rt 16-bit immediate

sb Rt, imm(Rs) Rt ����1 MEM[Rs+imm] 0x28 Rs Rt 16-bit immediate

sh Rt, imm(Rs) Rt ����2 MEM[Rs+imm] 0x29 Rs Rt 16-bit immediate

sw Rt, imm(Rs) Rt ����4 MEM[Rs+imm] 0x2b Rs Rt 16-bit immediate

� Base / Displacement Addressing is used
� Memory Address = Rs (Base) + Immediate (displacement)

� If Rs is $zero then Address = Immediate (absolute)

� If Immediate is 0 then Address = Rs (register indirect)

Control Flow and Arrays COE 301 / ICS 233 – Computer Organization – KFUPM © Muhamed Mudawar – slide 29

Next . . .

� Control Flow: Branch and Jump Instructions

� Translating If Statements and Boolean Expressions

� Arrays

� Load and Store Instructions

� Translating Loops and Traversing Arrays

� Addressing Modes

Control Flow and Arrays COE 301 / ICS 233 – Computer Organization – KFUPM © Muhamed Mudawar – slide 30

Translating a WHILE Loop

� Consider the following WHILE loop:

i = 0; while (A[i] != value && i<n) i++;

Where A is an array of integers (4 bytes per element)

� Translate WHILE loop: $a0 = &A, $a1 = n, and $a2 = value

&A[i] = &A + i*4 = &A[i-1] + 4

li $t0, 0 # $t0 = i = 0

loop: lw $t1, 0($a0) # $t1 = A[i]

beq $t1, $a2, done # (A[i] == value)?

beq $t0, $a1, done # (i == n)?

addiu $t0, $t0, 1 # i++

addiu $a0, $a0, 4 # $a0 = &A[i]

j loop # jump backwards to loop

done: . . .

Control Flow and Arrays COE 301 / ICS 233 – Computer Organization – KFUPM © Muhamed Mudawar – slide 31

Copying a String

loop:

lb $t0, 0($a1) # load byte: $t0 = source[i]

sb $t0, 0($a0) # store byte: target[i]= $t0

addiu $a0, $a0, 1 # $a0 = &target[i]

addiu $a1, $a1, 1 # $a1 = &source[i]

bnez $t0, loop # loop until NULL char

A string in C is an array of chars terminated with null char

i = 0;

do { ch = source[i]; target[i] = ch; i++; }

while (ch != '\0');

Given that: $a0 = &target and $a1 = &source

Control Flow and Arrays COE 301 / ICS 233 – Computer Organization – KFUPM © Muhamed Mudawar – slide 32

Initializing a Column of a Matrix

M = new int[10][5]; // allocate M on the heap

int i;

for (i=0; i<10; i++) { M[i][3] = i; }

&M[i][3] = &M + (i*5 + 3) * 4 = &M + i*20 + 12

li $a0, 200 # $a0 = 10*5*4 = 200 bytes

li $v0, 9 # system call 9

syscall # allocate 200 bytes

move $t0, $v0 # $t0 = &M

li $t1, 0 # $t1 = i = 0

li $t2, 10 # $t2 = 10

L: sw $t1, 12($t0) # store M[i][3] = i

addiu $t1, $t1, 1 # i++

addiu $t0, $t0, 20 # $t0 = &M[i][3]

bne $t1, $t2, L # if (i != 10) loop back

Control Flow and Arrays COE 301 / ICS 233 – Computer Organization – KFUPM © Muhamed Mudawar – slide 33

Addressing Modes

Op6 Rs5 Rt5 16-bit immediate

Base / Displacement Addressing

Word

Memory Addressing (load/store)

Register = Base address

+ HalfwordByte

Op6 Rs5 Rt5 16-bit immediate

Immediate Addressing

One Operand is a constant

Op6 Rs5 Rt5 Rd5 funct6sa5

Register Addressing

Register

Operands are in registers

� Where are the operands?

� How memory addresses are computed?

Control Flow and Arrays COE 301 / ICS 233 – Computer Organization – KFUPM © Muhamed Mudawar – slide 34

Branch / Jump Addressing Modes

Used by branch (beq, bne, …)

Word = Target Instruction

Op6 Rs5 Rt5 16-bit Offset

PC-Relative Addressing

PC30 00

+1

Branch Target Address
PC = PC + 4 × (1 + Offset)

PC30 + Offset16 + 1 00

26-bit addressPC4 00Jump Target Address

Word = Target Instruction

26-bit addressOp6

Pseudo-direct Addressing

PC30

:
00

Used by jump instruction

Control Flow and Arrays COE 301 / ICS 233 – Computer Organization – KFUPM © Muhamed Mudawar – slide 35

Jump and Branch Limits

� Jump Address Boundary = 226 instructions = 256 MB

� Jump cannot reach outside its 256 MB segment boundary

� Upper 4 bits of PC are unchanged

� Branch Address Boundary

� Branch instructions use I-Type format (16-bit Offset)

� PC-relative addressing:

Branch Target address = PC + 4 × (1 + Offset)

Count the number of instructions to skip starting at next instruction

Positive offset � Forward branch, Negative offset � Backward branch

Most branches are near : At most ±215 instructions can be skipped

26-bit address PC4 00Jump Target Address

PC30 + Offset16 + 1 00

Control Flow and Arrays COE 301 / ICS 233 – Computer Organization – KFUPM © Muhamed Mudawar – slide 36

Summary of RISC Design

� All instructions are of the same size

� Few instruction formats

� All arithmetic and logic operations are register to register

� Operands are read from registers

� Result is stored in a register

� General purpose registers for data and memory addresses

� Memory access only via load and store instructions

� Load and store: bytes, half words, and words

� Few simple addressing modes

