Data Representation

COE 301

Computer Organization Prof. Muhamed Mudawar

College of Computer Sciences and Engineering King Fahd University of Petroleum and Minerals

Presentation Outline

- Positional Number Systems
- Binary and Hexadecimal Numbers
- Base Conversions
- Integer Storage Sizes
- Binary and Hexadecimal Addition
- Signed Integers and 2's Complement Notation
- Sign Extension
- Binary and Hexadecimal subtraction
- Carry and Overflow
- Character Storage

Positional Number Systems

Different Representations of Natural Numbers

- XXVII Roman numerals (not positional)
 - 27 Radix-10 or decimal number (positional)
- 11011₂ Radix-2 or binary number (also positional)

Fixed-radix positional representation with *k* digits

Number *N* in radix $r = (d_{k-1}d_{k-2} \dots d_1d_0)_r$

Value = $d_{k-1} \times r^{k-1} + d_{k-2} \times r^{k-2} + \dots + d_1 \times r + d_0$

Examples: $(11011)_2 = 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2 + 1 = 27$

$$(2103)_4 = 2 \times 4^3 + 1 \times 4^2 + 0 \times 4 + 3 = 147$$

Binary Numbers

Each binary digit (called bit) is either 1 or 0

- Bits have no inherent meaning, can represent
 - ♦ Unsigned and signed integers
 - ♦ Characters
 - ♦ Floating-point numbers
 - ♦ Images, sound, etc.
- Bit Numbering

- ♦ Least significant bit (LSB) is rightmost (bit 0)
- ♦ Most significant bit (MSB) is leftmost (bit 7 in an 8-bit number)

Converting Binary to Decimal

- Each bit represents a power of 2
- Every binary number is a sum of powers of 2
- ✤ Decimal Value = $(d_{n-1} \times 2^{n-1}) + ... + (d_1 \times 2^1) + (d_0 \times 2^0)$
- Sinary $(10011101)_2 = 2^7 + 2^4 + 2^3 + 2^2 + 1 = 157$

7 6 5 4 3 2 1 0	2 ⁿ	Decimal Value	2 ⁿ	Decimal Value
1 0 0 1 1 1 0 1	2 ⁰	1	2 ⁸	256
2^7 2^6 2^5 2^4 2^3 2^2 2^1 2^0	2 ¹	2	2 ⁹	512
	2 ²	4	210	1024
	2 ³	8	211	2048
0	24	16	212	4096
Some common	2 ⁵	32	213	8192
powers of 2	2 ⁶	64	214	16384
	27	128	2 ¹⁵	32768
Data Representation COE 301 – Co	omputer Organi	zation – KFUPM	© /	Muhamed Mudawar – slide 5

Convert Unsigned Decimal to Binary

Repeatedly divide the decimal integer by 2

Each remainder is a binary digit in the translated value

Hexadecimal Integers

- ✤ 16 Hexadecimal Digits: 0 9, A F
- More convenient to use than binary numbers

Binary, Decimal, and Hexadecimal Equivalents

Binary	Decimal	Hexadecimal	Binary	Decimal	Hexadecimal
0000	0	0	1000	8	8
0001	1	1	1001	9	9
0010	2	2	1010	10	А
0011	3	3	1011	11	В
0100	4	4	1100	12	С
0101	5	5	1101	13	D
0110	6	6	1110	14	Е
0111	7	7	1111	15	F

Converting Binary to Hexadecimal

- Each hexadecimal digit corresponds to 4 binary bits
- ✤ Example:

Convert the 32-bit binary number to hexadecimal

1110 1011 0001 0110 1010 0111 1001 0100

Solution:

E	B 1		6 A		7	9	4
1110	1011	0001	0110	1010	0111	1001	0100

Converting Hexadecimal to Decimal

Multiply each digit by its corresponding power of 16

Value = $(d_{n-1} \times 16^{n-1}) + (d_{n-2} \times 16^{n-2}) + \dots + (d_1 \times 16) + d_0$

Examples:

$$(1234)_{16} = (1 \times 16^3) + (2 \times 16^2) + (3 \times 16) + 4 =$$

Decimal Value 4660

 $(3BA4)_{16} = (3 \times 16^3) + (11 \times 16^2) + (10 \times 16) + 4 =$

Decimal Value 15268

Converting Decimal to Hexadecimal

Repeatedly divide the decimal integer by 16

Each remainder is a hex digit in the translated value

Decimal 422 = 1A6 hexadecimal

COE 301 – Computer Organization – KFUPM

Integer Storage Sizes

Byte	8	
Half Word	16	Storage Sizes
Word	32	
Double Word		64

Storage Type	Unsigned Range	Powers of 2
Byte	0 to 255	0 to (2 ⁸ – 1)
Half Word	0 to 65,535	0 to (2 ¹⁶ – 1)
Word	0 to 4,294,967,295	0 to (2 ³² – 1)
Double Word	0 to 18,446,744,073,709,551,615	0 to (2 ⁶⁴ – 1)

What is the largest 20-bit unsigned integer?

Answer: $2^{20} - 1 = 1,048,575$

Binary Addition

- Start with the least significant bit (rightmost bit)
- ✤ Add each pair of bits
- Include the carry in the addition, if present

Hexadecimal Addition

Start with the least significant hexadecimal digits

- Let Sum = summation of two hex digits
- ✤ If Sum is greater than or equal to 16
 - \diamond Sum = Sum 16 and Carry = 1
- Example:

carry: 1 1 1 1
+
$$\begin{array}{c} 1 \ C \ 3 \ 7 \ 2 \ 8 \ 6 \ A \\ \hline 9 \ 3 \ 9 \ 5 \ E \ 8 \ 4 \ B \\ \hline A \ F \ C \ D \ 1 \ 0 \ B \ 5 \\ \end{array}$$
 A F C D 1 0 B 5

Signed Integers

Several ways to represent a signed number

- ♦ Sign-Magnitude
- ♦ Biased
- ♦ 1's complement
- Divide the range of values into 2 equal parts
 - ↔ First part corresponds to the positive numbers (≥ 0)
 - \diamond Second part correspond to the negative numbers (< 0)
- Focus will be on the 2's complement representation
 - \diamond Has many advantages over other representations
 - ♦ Used widely in processors to represent signed integers

Two's Complement Representation

Positive numbers

♦ Signed value = Unsigned value

Negative numbers

- ♦ Signed value = Unsigned value -2^n
- \Rightarrow *n* = number of bits

Negative weight for MSB

 Another way to obtain the signed value is to assign a negative weight to most-significant bit

= -128 + 32 + 16 + 4 = -76

8-bit Binary value	Unsigned value	Signed value
00000000	0	0
0000001	1	+1
00000010	2	+2
01111110	126	+126
01111111	127	+127
10000000	128	-128
10000001	129	-127
11111110	254	-2
11111111	255	-1

Forming the Two's Complement

starting value	00100100 = +36			
step1: reverse the bits (1's complement)	11011011			
step 2: add 1 to the value from step 1	+ 1			
sum = 2's complement representation	11011100 = -36			

Sum of an integer and its 2's complement must be zero:

00100100 + 11011100 = 00000000 (8-bit sum) \Rightarrow Ignore Carry

Another way to obtain the 2's complement:	Binary Value
Start at the least significant 1	= 00100100 significant 1
Leave all the 0s to its right unchanged	2's Complement
Complement all the bits to its left	= 11011100

Sign Bit

Highest bit indicates the sign

For Hexadecimal Numbers, check most significant digit

If highest digit is > 7, then value is negative

Examples: 8A and C5 are negative bytes

B1C42A00 is a negative word (32-bit signed integer)

Sign Extension

Step 1: Move the number into the lower-significant bits

- Step 2: Fill all the remaining higher bits with the sign bit
- This will ensure that both magnitude and sign are correct

Examples

- Infinite 0s can be added to the left of a positive number
- Infinite 1s can be added to the left of a negative number

Data Representation

Two's Complement of a Hexadecimal

To form the two's complement of a hexadecimal

- ♦ Subtract each hexadecimal digit from 15
- ♦ Add 1
- Examples:

2's complement of 6A3D = 95C2 + 1 = 95C3

2's complement of 92F15AC0 = 6D0EA53F + 1 = 6D0EA540

2's complement of FFFFFFF = 00000000 + 1 = 0000001

No need to convert hexadecimal to binary

Binary Subtraction

When subtracting A – B, convert B to its 2's complement
Add A to (–B)

Final carry is ignored, because

- \diamond Negative number is sign-extended with 1's
- $\diamond\,$ You can imagine infinite 1's to the left of a negative number
- \diamond Adding the carry to the extended 1's produces extended zeros

Hexadecimal Subtraction

- When a borrow is required from the digit to the left, then Add 16 (decimal) to the current digit's value
- Last Carry is ignored

Ranges of Signed Integers

For *n*-bit signed integers: Range is -2^{n-1} to $(2^{n-1} - 1)$

Positive range: 0 to $2^{n-1} - 1$

Negative range: -2^{n-1} to -1

Storage Type	Signed Range	Powers of 2	
Byte	-128 to +127	-2^7 to $(2^7 - 1)$	
Half Word	-32,768 to +32,767	-2 ¹⁵ to (2 ¹⁵ - 1)	
Word	-2,147,483,648 to +2,147,483,647	-2 ³¹ to (2 ³¹ - 1)	
Double Word	-9,223,372,036,854,775,808 to	$263 \pm (263 \pm 1)$	
	+9,223,372,036,854,775,807	$-2^{00} (0 (2^{00} - 1))$	

Practice: What is the range of signed values that may be stored in 20 bits?

Carry and Overflow

- ✤ Carry is important when …
 - ♦ Adding or subtracting unsigned integers
 - ♦ Indicates that the unsigned sum is out of range
 - ♦ Either < 0 or >maximum unsigned *n*-bit value
- ✤ Overflow is important when …
 - ♦ Adding or subtracting signed integers
 - $\diamond\,$ Indicates that the signed sum is out of range
- Overflow occurs when
 - $\diamond\,$ Adding two positive numbers and the sum is negative
 - $\diamond\,$ Adding two negative numbers and the sum is positive
 - \diamond Can happen because of the fixed number of sum bits

Carry and Overflow Examples

We can have carry without overflow and vice-versa

Four cases are possible (Examples are 8-bit numbers)

Range, Carry, Borrow, and Overflow

Unsigned Integers: n-bit representation

Signed Integers: n-bit 2's complement representation

Character Storage

- Character sets
 - \diamond Standard ASCII: 7-bit character codes (0 127)
 - \diamond Extended ASCII: 8-bit character codes (0 255)
 - \diamond Unicode: 16-bit character codes (0 65,535)
 - \diamond Unicode standard represents a universal character set
 - Defines codes for characters used in all major languages
 - Used in Windows-XP: each character is encoded as 16 bits
 - ♦ UTF-8: variable-length encoding used in HTML
 - Encodes all Unicode characters
 - Uses 1 byte for ASCII, but multiple bytes for other characters
- Null-terminated String
 - $\diamond\,$ Array of characters followed by a NULL character

Printable ASCII Codes

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Ε	F
2	space	!		#	\$	%	&	T	()	*	+	,	-	•	/
3	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
4	@	Α	в	C	D	Е	F	G	н	I	J	K	L	М	Ν	0
5	Р	Q	R	S	Т	U	v	W	x	Y	Z	[١]	•	_
6	`	a	b	С	d	е	f	g	h	i	j	k	1	m	n	ο
7	p	q	r	s	t	u	\mathbf{v}	w	x	Y	Z	{		}	~	DEL

Examples:

- \Rightarrow ASCII code for space character = 20 (hex) = 32 (decimal)
- \Rightarrow ASCII code for 'L' = 4C (hex) = 76 (decimal)
- \Rightarrow ASCII code for 'a' = 61 (hex) = 97 (decimal)

Control Characters

- The first 32 characters of ASCII table are used for control
- Control character codes = 00 to 1F (hexadecimal)
 - ♦ Not shown in previous slide
- Examples of Control Characters
 - \diamond Character 0 is the NULL character \Rightarrow used to terminate a string
 - ♦ Character 9 is the Horizontal Tab (HT) character
 - \diamond Character 0A (hex) = 10 (decimal) is the Line Feed (LF)
 - ♦ Character 0D (hex) = 13 (decimal) is the Carriage Return (CR)
 - ♦ The LF and CR characters are used together
 - They advance the cursor to the beginning of next line
- One control character appears at end of ASCII table
 - ♦ Character 7F (hex) is the Delete (DEL) character