

7: MIPS Functions and the Stack Segment Page 1

7
MIPS Functions and the

Stack Segment

7.1 Objectives

After completing this lab, you will:

• Write MIPS functions, pass parameters, and return results

• Understand the stack segment, allocate, and free stack frames

• Understand the MIPS register usage convention

• Write recursive functions in MIPS

7.2 MIPS Functions

A function (or a procedure) is a tool that programmers use to structure programs, to make them
easier to understand, and to allow the function’s code to be reused. A function is a block of
instructions that can be called and used when required at several different points in the program.

The function that initiates the call to another function is known as the caller. The function that
receives and executes the call is known as the callee. When the callee function finishes execution,
control is transferred back to the caller function.

A function can receive parameters and return results. The parameters and results act as an interface
between a function and the rest of the program.

To execute a function, the program must follow these steps:

1. The caller must put the parameters in a place where the callee function can access them

2. Transfer control to the callee function

3. Execute the callee function

4. The callee function must put the results in a place where the caller can access them

5. Return control to the caller (point of origin) next to where the call was made

Registers are the fastest place to pass parameters and return results. The MIPS architecture follows
the following software conventions for passing parameters and returning results:

• $a0-$a3: four argument registers in which to pass parameters

• $v0-$v1: two value registers in which to return function results

• $ra: one return address register to return back to the caller

7: MIPS Functions and the Stack Segment Page 2

The jal (jump-and-link) instruction initiates the call to a function and the jr (jump register)
instruction returns control back to the caller.

To call a function, use the jal instruction as follows:

jal label

The jal instruction saves the return address in register $ra and jumps to the first instruction in the

function after label. The return address is the address of the next instruction that appears after the

jal instruction in the caller function.

To return from a function, use the jr instruction as follows:

jr $ra

The jr instruction jumps to the address stored in $ra. It modifies the program counter PC register

according to the value stored in register $ra.

An example of a C function that checks whether a character ch is a lowercase letter or not is shown
in Figure 7.1. The function is translated into MIPS assembly language as shown to the right. The

function islower assumes that the parameter ch is passed in register $a0. The function result is

passed in register $v0.

int islower(char ch) {

 if (ch>='a' && ch<='z')

 return 1;

 else

 return 0;

}

islower:

 blt $a0, 'a', else # branch if $a0 < 'a'

 bgt $a0, 'z', else # branch if $a0 > 'z'

 li $v0, 1 # $v0 = 1

 jr $ra # return to caller

else:

 li $v0, 0 # $v0 = 0

 jr $ra # return to caller

Figure 7.1: Example of a C function and its translation into MIPS assembly code

To call the function islower, the caller must first copy the character ch into register $a0 and then
make the function call. This is shown in Figure 7.2:

move $a0, ... # move into register $a0 the character ch

jal islower # call function islower

. . . # return here after executing function islower

Figure 7.2: Using the jal instruction in MIPS to initiate a function call

Remember that the jal instruction saves the return address in register $ra and that jr jumps into

the return address in register $ra to achieve a function return.

The MIPS architecture provides three instructions to support functions and methods in high-level

programming languages. The jal (jump-and-link) instruction is used to call functions whose

addresses are constants known at compile time, while the jalr (jump-and-link register) instruction

7: MIPS Functions and the Stack Segment Page 3

is used to call methods whose addresses are variables known at runtime. The jr (jump register)
instruction can be used to return from function calls and methods. These instructions, their meaning,
and format are summarized in Figure 7.3.

Figure 7.3: The jal, jr, and jalr instructions in MIPS

7.3 The Stack Segment and the Stack Pointer Register

Every program has three segments when it is loaded into memory by the operating system. There is
the text segment where the machine language code is stored, the data segment where space is
allocated for constants and variables, and the stack segment that provides an area that can be
allocated and freed by functions. The programmer has no control over where these segments are
located in memory. The stack segment can be used by functions for passing many parameters, for
allocating space for local variables, and for saving and preserving registers across calls. Without the
stack segment in memory, it would be impossible to write recursive functions, or pure functions that
have no side effects.

When a program is loaded into memory, the operating system initializes the stack pointer $sp

(register $29) to the base address of the stack segment. The stack segment grows downwards

towards lower memory addresses as shown in Figure 7.4.

Figure 7.4: The text, data, and stack segments of a program

When a program starts execution, the operating system initializes the stack pointer $sp register
with a valid address to point to the top of the stack. For example, when executing a MIPS program

under the MARS tool, the initial value of register $sp is 0x7fffeffc.

A function can allocate space on the stack for saving registers and for its local variables. The space
that a function allocates on the stack is called a stack frame (called also an activation record).

Stack Segment

Heap Area

Static Area

Data Segment

0x00000000
Reserved

0x10000000

Text Segment

0x7fffffff

0x00400000

0x10040000

Stack grows

Downwards

7: MIPS Functions and the Stack Segment Page 4

To allocate a stack frame of n bytes, decrement the stack pointer by n at the start of a function:

addiu $sp, $sp, -n # n must be a constant number of bytes

To free a stack frame of n bytes, increment the stack pointer by n just before a function return:

addiu $sp, $sp, n # n must be a constant number of bytes

Figure 7.5 illustrates the stack allocation before calling a function, during the execution of function,

and after returning from a function call. The stack pointer register $sp points to the top of the

caller’s stack frame before making a call to function f. The $sp register points to the stack frame of

function f during its execution. The $sp register points back to the top of the caller’s stack frame

after returning from function f. The stack frame can be used to pass arguments to a function, to
save registers across function calls, and to allocate space for local variables declared inside the

function. In particular, register $ra should be saved before a function can call another function,

because the jal instruction modifies the $ra register. Arguments are typically passed in registers

$a0 thru $a3. However, if a function has more than four arguments then the additional arguments
should be passed on the stack.

Figure 7.5: Stack allocation (a) before (b) while executing, and (c) after returning from function f

An example of a function f that allocates a stack frame is shown in Figure 7.6. The function f is

non-leaf, because it calls functions read, reverse, and print. Therefore, the return address of

function f (register $ra) must be saved on the stack. In addition, the stack frame of function f must

allocate space for the local array (10 integer elements = 40 bytes), as shown in Figure 7.6.

Example function Stack Frame

void f() {

 int array[10];

 read(array, 10);

 reverse(array, 10);

 print(array, 10);

}

saved $ra = 4 bytes

int array[10]

(40 bytes)

Figure 7.6: Example of a function f and its corresponding stack frame

Stack

Frame of

Function f

$sp

Caller’s

Stack Frame

Arguments

(if any)
Saved Regs

(if any)

Local vars

(if any)

High address

Low address

$sp

Caller’s

Stack Frame

High address

Low address

$sp

Caller’s

Stack Frame

High address

Low address

a) Before calling f b) While executing f c) After returning from f

7: MIPS Functions and the Stack Segment Page 5

The translation of function f into MIPS assembly code is shown in Figure 7.7. Function f allocates
a stack frame of 44 bytes. The stack is accessed using the same load and store instructions used to

access the data segment. The base address register is $sp. A displacement is used to access

different elements on the stack.

f: addiu $sp, $sp, -44 # allocate stack frame = 44 bytes

 sw $ra, 40($sp) # save $ra on the stack

 move $a0, $sp # $a0 = address of array on the stack

 li $a1, 10 # $a1 = 10

 jal read # call function read

 move $a0, $sp # $a0 = address of array on the stack

 li $a1, 10 # $a1 = 10

 jal reverse # call function reverse

 move $a0, $sp # $a0 = address of array on the stack

 li $a1, 10 # $a1 = 10

 jal print # call function print

 lw $ra, 40($sp) # load $ra from the stack

 addiu $sp, $sp, 44 # Free stack frame = 44 bytes

 jr $ra # return to caller

Figure 7.7: Translation of function f into MIPS assembly code

Some MIPS software uses the frame pointer register $fp (register $30) to point to the base address

of a stack frame. This might be needed if the stack pointer $sp changes during the execution of a

function, or arrays and objects are allocated dynamically on the stack. The frame pointer $fp
register provides a stable address for a stack frame within a function.

7.4 MIPS Register Usage

A convention regarding the usage of registers is necessary because software is written by many
programmers. In this case, each programmer must know how registers are supposed to be used,
such that his piece of the software does not conflict with pieces written by other programmers.

Since programming is done today using high-level programming languages, you may ask why such
a register convention is still needed. Well, it is the compiler who needs to know about it. This is
because a program can be created from different pieces that are compiled separately. To compile a
function, the compiler must know which registers are used to pass parameters, which registers are
used to return results, and which registers must be preserved across function calls. These rules for
register usage are also known as function call conventions.

The MIPS hardware does not prevent you from ignoring these rules, from not preserving registers,
from using any register in passing parameters and returning results. However, if you ignore these
rules, you will easily run into trouble and have software bugs that are difficult to eliminate.

7: MIPS Functions and the Stack Segment Page 6

The following table presents the MIPS register usage convention:

Register

Name

Register

Number
Register Usage

$zero $0 Always zero. Cannot be modified

$at $1 Reserved for assembler use

$v0 - $v1 $2 - $3 Function results are returned in $v0 and $v1

$a0 - $a3 $4 - $7 Function arguments are passed in $a0 thru $a3

$t0 - $t7 $8 - $15 Temporary registers. Not preserved across function calls

$s0 - $s7 $16 - $23 Saved registers. Must be preserved across function calls

$t8 - $t9 $24 - $25 Additional temporary registers. Not preserved

$k0 - $k1 $26 - $27 Reserved for OS kernel usage

$gp $28 Global pointer to global data. Must be preserved

$sp $29 Stack pointer. Must be preserved

$fp $30 Frame pointer. Must be preserved

$ra $31 Return address register. Must be preserved

Figure 7.8: MIPS register usage convention

A function is free to modify the value registers $v0-$v1, the argument registers $a0-$a3, and the

temporary registers $t0-$t7 and $t8-$t9 without saving their old values. However, it should not

modify registers $s0-$s7, $gp, $sp, $fp, and $ra except after saving their old values in memory

on the stack. A function must restore the value of registers $s0-$s7, $gp, $sp, $fp, and $ra by

loading their old values from the stack, just before returning back to the caller. Registers $sp and

$fp must be preserved if a new stack frame is allocated by a function. Register $ra must be

preserved if a function makes a call to another function, because the jal instruction modifies the

return address register $ra.

7.5 Recursive Functions

A recursive function is a function that calls itself. For example, the recursive function fact

(factorial) and its translation into MIPS assembly code are shown in Figure 7.9. If (n<2) then there

is no need to allocate a stack frame. However, if (n>=2) then the factorial function allocates a

stack frame of 8 bytes to save registers $a0 and $ra.

Register $a0 (argument n) is saved on the stack because its value is changed in the recursive call,

and because it is needed after returning from the recursive call. Register $ra is saved on the stack

because its value is changed by the recursive call (jal fact).

7: MIPS Functions and the Stack Segment Page 7

int fact(int n) {

 if (n<2) return 1;

 else return (n * fact(n-1));

}

fact:

 bge $a0, 2, else # branch if (n >= 2) to else

 li $v0, 1 # $v0 = 1

 jr $ra # return to caller

else:

 addi $sp, $sp, -8 # allocate a stack frame of 8 bytes

 sw $a0, 0($sp) # save the argument n

 sw $ra, 4($sp) # save the return address

 addi $a0, $a0, -1 # argument $a0 = n-1

 jal fact # call fact(n-1)

 lw $a0, 0($sp) # restore $a0 = n

 lw $ra, 4($sp) # restore return address

 mul $v0, $a0, $v0 # $v0 = n * fact(n-1)

 addi $sp, $sp, 8 # free stack frame

 jr $ra # return to the caller

Figure 7.9: A recursive function and its translation into MIPS assembly language code

7.6 In-Lab Tasks

1. The function islower, shown in Figure 7.1, tests whether a character ch is lowercase or not.

Write the main function of a program that reads a character ch, calls the function islower,

and then prints a message to indicate whether ch is a lowercase character or not.

2. Write a function that reads an array of n integers. The function read must receive two

arguments: $a0 = address of the array, and $a1 = number n of elements to read.

3. Write a function that prints an array of n integers. The function print must receive two

arguments: $a0 = address of the array, and $a1 = number n of elements to print.

4. Write a function that reverses the elements of an array of n integers. The function reverse

must receive two arguments: $a0 = address of the array, and $a1 = number n of elements.

5. Suppose we rewrite function f (Figures 7.6) to have an integer parameter n. The local array is

now declared to have n integers (rather than 10). This means that the size of the stack frame size

7: MIPS Functions and the Stack Segment Page 8

of function f will depend on n. Rewrite the function f in MIPS assembly language. Hint: you

may use the $fp register (in addition to $sp) to implement the function f.

void f(int n) {

 int array[n];

 read(array, n);

 reverse(array, n);

 print(array, n);

}

6. The function f(n) implemented in problem 5 calls the functions read, reverse, and print

implemented in problems 2 to 4. Write a complete program that includes the main function as

well as functions f, read, reverse, and print. The main function should call function f

twice as: f(5) and f(8).

7. The recursive function fib(n) computes the nth element in the Fibonacci sequence. Implement

this function in MIPS. Write a main function to call fib.

int fib(int n) {

 if (n < 2) return n;

 return (fib(n-1) + fib(n-2));

}

7.7 Bonus Question

8. The function quick_sort sorts an array recursively. Translate this function into MIPS code.
Write a main function to call and test this function.

void quick_sort(int array[], int low, int high) {

 int i = low, j = high; // low and high index

 int pivot = array[(low+high)/2]; // pivot = middle value

 while (i <= j) {

 while (array[i] < pivot) i++;

 while (array[j] > pivot) j--;

 if (i <= j) {

 int temp=array[i];

 array[i]=array[j]; // swap array[i]

 array[j]=temp; // with array[j]

 i++;

 j--;

 }

 }

 if (low < j) quick_sort(array, low, j); // Recursive call 1

 if (i < high) quick_sort(array, i, high); // Recursive call 2

}

