12 Single-Cycle CPU
Design

12.1 Objectives

After completing this lab, you will:

. Learn how to design a single-cycle CPU
. Verify the correct operation of your single-cycl@@ design

12.2 Subset of the MIPS Instructions included in CPU Design

In this section, we will illustrate the design ofsingle-cycle CPU for a subset of the MIPS
instructions, shown in Table 12.1. These includeftdtiowing instructions:

<~ ALU instructions (R-type)add, sub, and, or, xor, slt
< Immediate instructions (I-typedddi, slti, andi, ori, xori

< Load and Store (I-type)w, sw

< Branch (I-type)beq, bne

< Jump (J-type);

Although this subset does not include all the iatemstructions, it is sufficient to illustrate the
design of datapath and control. Concepts used ptement the MIPS subset are used to construct a
broad spectrum of computers. For each instructiobet implemented, you need to identify all the
steps that need to be performed for the executi@ach instruction expressed in register transfer
level (RTL) notation. These steps are summarizéalbor all the instructions to be implemented:

% R-typeFetch instruction: Instructior- MEM[PC]
Fetch operands: datat Reg(Rs), data2- Reg(Rt)

Execute operation: ALU_result func(datal, data2)
Write ALU result: Reg(Rd}— ALU_result
Next PC address: PC PC +4

12: Single-Cycle CPU Design Page 1

Table 12.1: MIPS instructions subset implemented in CPU desig

Instruction | Meaning | Format

add rd, rs,rt addition op®=0| rs® | 5 | rd® 0 0x20
sub rd, rs,rt subtraction opf=0| rs® | ° | rd® 0 0x22
and rd, rs, rt bitwise and opf=0| rs® | 5 | rd® 0 0x24
or rd,rs,rt bitwise or opf=0| rs® | i® | rd® 0 0x25
xor rd,rs,rt exclusive or opf=0| rs® | > | rd® 0 0x26
st rd, rs, rt setonlessthan |opf=0] rs® | > | rd® 0 Ox2a
addi rt, rs,im'® | add immediate | Ox08 | rs® | rt® im18

siti rt, rs, im' | sltimmediate Ox0a | rs® | 3 im1é

andi rt,rs,im' | and immediate | OxOc | rs® | r® im?16é

ofi i rs, im'® or immediate Ox0d | rs® | 5 im16

xori rt, im16 xor immediate Ox0e | rs® | 5 im16

tw rt, im'5(rs) load word 0x23 | rs® | td im*6

sw i, im'%(rs) store word Ox2b | rs® | 15 im'6

beq rs,rt, im' | branch if equal 0x04 | rs® | r® im18

bne rs, rt,im'% | branch notequal | 0x05 | rs® | ri® im18

j im26 jump 0x02 im=26

% I-type Fetch instruction:
Fetch operands:

Execute operation:
Write ALU result;
Next PC address:

« BEQ Fetch instruction:

Fetch operands:
Equality:

Branch:

< LW Fetch instruction:

Fetch base register:
Calculate address:
Read memory:
Write register Rt:
Next PC address:

% SW Fetch instruction:
Fetch registers:

PC PC +4

Instructior- MEM[PC]
datal Reg(Rs), data2- Extend(imm16)

Reg(Rt}— ALU_result

Instructior- MEM[PC]
datal Reg(Rs), data2- Reg(Rt)

ALU_resuit op(datal, data2)

zero— subtract(datal, data2)

if (zero) PG— PC + 4 + 4xsign_ext(imm16)

else

PG-PC +4

Reg(R%- data
PC PC + 4

Instructior- MEM[PC]
baseReg(Rs)

data- MEM[address]

Instruction- MEM[PC]
base Reg(Rs), data— Reg(Rt)

addressbase + sign_extend(imm16)

12: Single-Cycle CPU Design

Calculate address: addressbase + sign_extend(imm216)
Write memory: MEM[address} data
Next PC address: PS PC +4

s Jump Fetch instruction: Instruction- MEM[PC]
Target PC address: targetPC[31:28] , Imm26, ‘00’

Jump: PG— target

12.3 Data Path Design

The first step in designing a datapath is to detesrthe requirements of the instruction set in g&erm
of components. These include the following:

% Memory
< Instruction memory where instructions are stored
<~ Data memory where data is stored
+ Registers
< 32 x 32-bit general purpose registers, RO is alveays
<~ Read source register Rs
< Read source register Rt
< Write destination register Rt or Rd
Program counter PC register and Adder to increrRént
Sign and Zero extender for immediate constant
ALU for executing instructions

*

X/ X/
LA X4

X3

*

The needed components are summarized below:

«» Combinational Elements

< ALU, Adder i =
< Immediate extender

<> Multiplexers jres
+ Storage Elements nstruction (- L
. 5 i = 2 Memao
< Instruction memory .:.2..3‘ | cliress = e
. 3z Diata_ ot e
<~ Data memory Sentica | Data_in
< PC register LR
< Register file 2. R
—|re Fiee g
= B S

Chock T t
FRiegWVite 32

12: Single-Cycle CPU Design

We can now assemble the datapath from its compsnieot instruction fetching, we need:

< Program Counter (PC) register
< Instruction Memory
<> Adder for incrementing PC

The implementation of the instruction fetch procissfiustrated in Figure 12.1. Since all the MIPS
instructions are 32-bit instructions (i.e. eachtrunstion is stored in 4 address locations) andesinc
the instruction memory will be aligned on 4-bytaibdary, the least significant 2-bits of instruction
addresses will always be 0. Thus, it is sufficiet update the most significant 30 bits of the PC.

Improved datapath
increments upper
30 bits of PC by 1

e - The least significant 2 bits next PC
of the PC are ‘00 since Improved
2 qa_zh PC is a multiple of 4 a0 Datapath
[=] N =il R E:
H 2l e > [Datapath does not | L, g
Instruction .handl.e branc.h or Instruction
Memory jump instructions Memory

Figure 12.1: Data path component for instructidnlfang.

To execute R-type instructions, we need to reactdimeent of registers Rs and Rt, perform an ALU
operation on their contents and then store thdtrasthe register file to register Rd. The dat&pat
for executing R-type instructions is shown in Fgde.2.

1

Opf RsA Rt5 Rd sa® funct®

ﬁ RegWrite
B} +1 l ALUCEH
| Instruction Registers 3z \i\

- Memory 22 Re 2 RA BusA —r_.‘ Al

5] Instruction 5 >L 3_"

a2 RB
I
+E A= R RV - _LEEF// AL result
e resu
BusWV

Figure 12.2: Data path implementation of R-typéringions.

12: Single-Cycle CPU Design

The control signals needed for the execution ofpe-tinstructions are:

< ALUCItrl is derived from the funct field because Op = ORetype
<~ RegWriteis used to enable the writing of the ALU result

The execution of the I-type instructions is simiiarthe R-type instructions with the differencettha
the second operand is an immediate value insteadregister and that the destination register is
determined by Rt instead of Rd. The 16-bit immexliatlue needs to be extended to a 32-bit value
by either adding 16 O's or by extending the sign Bhe datapath for the execution of I-type
instructions is given in Figure 12.3.

QOp® Rs= Rt immediate®
_l RegWrite _
. + 1 l ALLUCEr
1 Instruction Registers 32
ae s
Instrsciion 5 -
32 —i | RE 2
-0 Address o s BusE e -
e | 54151 BusW ALL result
ExtOp *‘

Figure 12.3: Data path implementation of I-typdrnstions.

The control signals needed for the execution gpktinstructions are:

<> ALUCItrl is derived from the Op field
< RegWriteis used to enable the writing of the ALU result
< ExtOpis used to control the extension of the 16-bit iedate

Next we combine the datapath for executing bothRkgpe and I-type instructions as shown in
Figure 12.4. A multiplexer is added to select betw&®d and Rt to be connected to Rw in the
register file to determine the destination regiséarother multiplexer is added to select the sdcon
ALU input as either the source register Rt dat&asB or the extended immediate.

The control signals needed for the execution ¢iegiR-type or I-type instructions are:

<~ ALUCIrl is derived from either the Op or the funct field
RegWriteenables the writing of the ALU result

ExtOp controls the extension of the 16-bit immediate
RegDstselects the register destination as either Rtdor R
ALUSrc selects the 2nd ALU source as BusB or extendeckitnte

12: Single-Cycle CPU Design

RegWfrits
l AL

Instruction Registers 3z

Memory SN

Im=truction

Address

Figure 12.4: Data path implementation of R-type a+tgpe instructions.

To execute the load and store instructions, we t@add data memory to the datapath. For the load
and store instructions, the ALU will be used to pute the memory address by adding the content
of register Rs coming through BusA and the sigreedéd immediate value. For the load
instruction, we need to write the output of theadaemory to register file. Thus, a third multiplexe
is added to select between the output of the ALU the data memory to be written to the register
file. BusB is connected to Datain of Data Memory $tore instructions. The updated CPU with the
capability for executing load and store instrucsiemshown in Figure 12.5.

ExtOp AL MemRead MemWrite

MemtoReg

AL result

Data |
Memory 12
Address 1
Data_out s

Diata_in

Instruction
Memory

Insfruction

RA Bus&
Registers

RB BusB

I

E
Replst RepWrite

aaaaaaaaa

Addrass

Bus\W

Figure 12.5: Data path implementation with loadéstiastructions.

The additional control signals needed for the eitenwf load and store instructions are:

< MemReador load instructions
< MemWritefor store instructions
< MemtoRegselects data on BusW as ALU result or Memory Datia

For executing jump and branch instructions, we rieeatld a block, called NextPC, to compute the
target address. In addition, we need to add a phexier to select the input to the PC register to be
either the incremented PC address or the targeessidjenerated by NextPC block. For branch

12: Single-Cycle CPU Design

instructions, the ALU is used to perform subtrapemtion to subtract the content of the two
compared registers Rs and Rt. The updated datatpaticlude the execution of the jump and
branch instructions is given in Fig 12.6.

30 Jurng or Branch Target Address

30

& 5 emRes Mem\Write
MemtoReg
ALL result
Instruction Rs § Dat
Memory . |RA) Mem:nr
32 Registers
Instruction ey o 5 Address
= RB]
Address L. Data_out
Data_i
RW BusWW/ L% I =
Rd
iy T 1 Fy
Reglst RegWrite

ALUSrc ALUCH J, Beq, Bne

Figure 12.6: Data path implementation with jumpAmfainstructions.

The additional control signals needed for the eitenwf jump and branch instructions are:

< J, Beg Bnefor jump and branch instructions
< Zerocondition of the ALU is examined
< PCSrc=1 for Jump & taken Branch

The details of the NextPC block are illustratedFung. 12.7. For the jump instruction, the target
address is computed by concatenating the uppis 4ftPC with Imm26 (i.e. the 26-bit immediate
value). However, for branch instructions the taagress is computed by adding the sign-extended
version of the 16-bit immediate value with the smaented value of PC. Note that the immediate
value is computed by the assembler as [Terget —H{R{l/4. Thus, to restore the target address we
need to multiply the immediate value by 4 (i.e ftshi2 bits to the left) and then add PC+4 to it.
Since we are updating the most significant 30-bit®C, this is achieved by adding PC+1 to the
immediate value. The PCSrc signal is set when achranstruction is taken or a jump instruction is
executed, which is implemented by the equation EGSK+ (Beqg Zero) + (Bne Zero').

12: Single-Cycle CPU Design

Branch or Jump Target Address 4 PCSrc
| 2 |
Inc PC ; — |
| A |30 |
| D (0) i
Sign-Extension: % [D |
Most-significant m| 30 i i B
oy s . L1 f— | eq
bit is replicated x |
i Imm16 msb 1 i Bne
IMM26 e , 1 |
| 26 \f’ i
Imm16 is sign-extended to 30 bits Zero

Figure 12.7: Implementation of Next PC block.

12.4 Control Unit Design

The control unit of the single-cycle CPU can beatkegosed into two parts Main Control and ALU
Control. The Main Control unit receives a 6-inpytcode and generates all the needed control
signals other than the ALU control. However, thelAControl gets a 6-bit function field from the
instruction and ALUCtrl signal from the Main Contrarhe single cycle CPU including the
datapath and control unit is illustrated in Figi28.

5:” Jump or Branch Target Address

el R I
! " .
I Next J. Beq. Bne
ImmizE]
Y PC AL result
PCSrc +1 Immiid TZ__.m
Instruction Rs § ma Bush Data
3p| Memory 12 i A Memory
HET Instruction el gy 5 | REDISErS Ext > L b | 1
— TEss
= RE == - U
o Addrass o Data_out
x a -
1 RW BusW * F,..-:""f g
Rd | |
7 .

R

Reglst RegWrite ExiOp | ALUSe ALUCH

func
Op I_—"
MemResad

ALUOp MemWrite MemtoReg

—\ Control /

Figure 12.8: Single-cycle CPU.

12: Single-Cycle CPU Design

To design the Main Control unit, we need to gereertéie control table which lists for each
instruction, the control values needed to exedwtartstruction. This is illustrated in Table 12.2.

Table 12.2: Main Control Signal Values.

Op Reg Re_:g Ext ﬁ:LU AlLU Beq el J Mem Mgm Mem

Dst | Wnte | Op Src Op Read | Wrte | toReg
R-type(1=Rd| 1 X 0=BusB |R-type| 0O 0|0 0 0 0
addi |0=Rt| 1 1=sign| 1=lmm | ADD | 0 | 0 | O 0 0 0
sl |0=Rt| 1 T=sign| 1=lmm | SLT [@ | O | O 0 0 0
andi |0=Rt| 1 |0O=zero| 1=lmm | AND | O 0|0 0 0 0
oi |0=Rt| 1 |0=zero| 1=lmm | OR 0 0|0 0 0 0
xorn |0=Rt| 1 |0=zero| 1=lmm | XOR | 0 00 0 0 0
w |0=Rt| 1 1=sign| 1=lmm | ADD | 0 | 0 | O 1 0 1
SW X 0 (1=sign| 1=lmm | ADD | O 0|0 0 1 X
beq X 0 X 0=BusB | SUB | 1 0|0 0 0 X
bne X 0 X 0=BusB| SUB | 0 110 0 0 X
I X 0 X X X 0 0|1 0 0 X

One we have the Control Table, the control unit lbardesign easily using a 6x64 decoder that has
the 6-bit opcode as input and a signal for eactrtuoBon as output. Then each control signal will
be either an OR gate of the instructions signadd thake this signal 1 or a NOR gate of the
instructions signals that make this signal 0, wheekr results in a smaller gate size. The decoder
and the logic equations for the Main Control sigrezle shown in Figure 12.9.

RegDst <= R-type Opal
RegWrite <= (sw + beq + bne + j) Decoder |
ExtOp <= (andi + ori + xori) e s s.-
ALUSTrc <= (R-type +beq+bne) | 1111111
i Logic i
MemRead <= |w Equations
B 0
MemWrite <= sw sz2sg 388 _.
ER S E-E5 B 5 LI
MemtoReg <= Iw A A

Figure 12.9: Main control unit design.

12: Single-Cycle CPU Design

Similarly, the ALU control signals equations candexived based on the 6-bit function field and
the ALUOp signal generated by the Main Control unit

It should be observed that the control unit sigredsiation can also be derived using K-map
technique without using a decoder. However, usitg@der makes the design of the control unit
simple.

12.5 In-Lab Tasks

1.For the instructions in the CPU that you are gdmgesign, list all the steps that are needed

2.
3.
4.

for the execution of each instruction in RTL natati

Ensure that you have all the needed componentohstructing your datapath.

Design the datapath for your CPU and modelirtgu®gisim.

Apply the needed values for the control sigmaeded for the execution of each instruction
to ensure correct functionality of the datapath.

. Design the control unit of your CPU and modeising logisim.
. Test the correct functionality of the controlituby ensuring that it generates the correct

control signal values for each instruction.

. Model the single cycle CPU design in logisimdoynbining the datapath and control units.
. Test the correct functionality of your CPU bgrstg all the implemented instructions in the

instruction memory and verifying the correct exemuof each instruction.

12: Single-Cycle CPU Design Page 10

