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12 
Single-Cycle CPU 

Design  
 

12.1 Objectives 

After completing this lab, you will: 

• Learn how to design a single-cycle CPU  

• Verify the correct operation of your single-cycle CPU design  
 
 

12.2 Subset of the MIPS Instructions included in CPU Design 

In this section, we will illustrate the design of a single-cycle CPU for a subset of the MIPS 
instructions, shown in Table 12.1. These include the following instructions: 

� ALU instructions (R-type): add, sub, and, or, xor, slt 
� Immediate instructions (I-type): addi, slti, andi, ori, xori 
� Load and Store (I-type): lw, sw 
� Branch (I-type): beq, bne 
� Jump (J-type): j 

Although this subset does not include all the integer instructions, it is sufficient to illustrate the 
design of datapath and control. Concepts used to implement the MIPS subset are used to construct a 
broad spectrum of computers. For each instruction to be implemented, you need to identify all the 
steps that need to be performed for the execution of each instruction expressed in register transfer 
level (RTL) notation. These steps are summarized below for all the instructions to be implemented: 

� R-type Fetch instruction: Instruction ← MEM[PC] 

Fetch operands: data1 ← Reg(Rs), data2 ← Reg(Rt) 

  Execute operation: ALU_result ← func(data1, data2) 

  Write ALU result: Reg(Rd) ← ALU_result 

  Next PC address: PC ← PC + 4 
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Table 12.1: MIPS instructions subset implemented in CPU design. 

  

 

� I-type Fetch instruction: Instruction ← MEM[PC] 

  Fetch operands: data1 ← Reg(Rs), data2 ← Extend(imm16) 

  Execute operation: ALU_result ← op(data1, data2) 

  Write ALU result: Reg(Rt) ← ALU_result 

  Next PC address: PC ← PC + 4 

� BEQ Fetch instruction: Instruction ← MEM[PC] 

  Fetch operands: data1 ← Reg(Rs), data2 ← Reg(Rt) 

  Equality:  zero ← subtract(data1, data2)  

  Branch:  if (zero) PC ← PC + 4 + 4×sign_ext(imm16) 

     else PC ← PC + 4 

� LW Fetch instruction: Instruction ← MEM[PC] 

  Fetch base register: base ← Reg(Rs) 

  Calculate address: address ← base + sign_extend(imm16) 

  Read memory:  data ← MEM[address] 

  Write register Rt: Reg(Rt) ← data 

  Next PC address: PC ← PC + 4 

� SW Fetch instruction: Instruction ← MEM[PC] 

  Fetch registers: base ← Reg(Rs), data ← Reg(Rt) 
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  Calculate address: address ← base + sign_extend(imm16) 

  Write memory: MEM[address] ← data 

  Next PC address: PC ← PC + 4 

� Jump Fetch instruction: Instruction ← MEM[PC] 

  Target PC address: target ← PC[31:28] , Imm26 ,  ‘00’ 

  Jump:   PC ← target 

 

 

12.3 Data Path  Design 

The first step in designing a datapath is to determine the requirements of the instruction set in terms 
of components. These include the following: 

� Memory 
� Instruction memory where instructions are stored 
� Data memory where data is stored 

� Registers 
� 32 × 32-bit general purpose registers, R0 is always zero 
� Read source register Rs 
� Read source register Rt 
� Write destination register Rt or Rd 

� Program counter PC register and Adder to increment PC 
� Sign and Zero extender for immediate constant 
� ALU for executing instructions 

The needed components are summarized below: 

� Combinational Elements 
� ALU, Adder 
� Immediate extender 
� Multiplexers 

� Storage Elements 
� Instruction memory 
� Data memory 
� PC register 
� Register file 
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We can now assemble the datapath from its components. For instruction fetching, we need: 

� Program Counter (PC) register 
� Instruction Memory 
� Adder for incrementing PC 

The implementation of the instruction fetch process is illustrated in Figure 12.1. Since all the MIPS 
instructions are 32-bit instructions (i.e. each instruction is stored in 4 address locations) and since 
the instruction memory will be aligned on 4-byte boundary, the least significant 2-bits of instruction 
addresses will always be 0. Thus, it is sufficient the update the most significant 30 bits of the PC. 

 

Figure 12.1: Data path component for instruction fetching. 

 

To execute R-type instructions, we need to read the content of registers Rs and Rt, perform an ALU 
operation on their contents and then store the result in the register file to register Rd. The datapath 
for executing R-type instructions is shown in Figure 12.2. 

 

Figure 12.2: Data path implementation of R-type instructions. 
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The control signals needed for the execution of R-type instructions are: 

� ALUCtrl  is derived from the funct field because Op = 0 for R-type 
� RegWrite is used to enable the writing of the ALU result 

The execution of the I-type instructions is similar to the R-type instructions with the difference that 
the second operand is an immediate value instead of a register and that the destination register is 
determined by Rt instead of Rd. The 16-bit immediate value needs to be extended to a 32-bit value 
by either adding 16 0's or by extending the sign bit. The datapath for the execution of I-type 
instructions is given in Figure 12.3. 

 

Figure 12.3: Data path implementation of I-type instructions. 

 

The control signals needed for the execution of I-type instructions are: 

� ALUCtrl  is derived from the Op field 
� RegWrite is used to enable the writing of the ALU result 
� ExtOp is used to control the extension of the 16-bit immediate 

Next we combine the datapath for executing both the R-type and I-type instructions as shown in 
Figure 12.4. A multiplexer is added to select between Rd and Rt to be connected to Rw in the 
register file to determine the destination register. Another multiplexer is added to select the  second 
ALU input as either the source register Rt data on BusB or the extended immediate. 

The control signals needed for the execution of either R-type or I-type instructions are: 

� ALUCtrl  is derived from either the Op or the funct field 
� RegWrite enables the writing of the ALU result 
� ExtOp controls the extension of the 16-bit immediate 
� RegDst selects the register destination as either Rt or Rd 
� ALUSrc selects the 2nd ALU source as BusB or extended immediate 
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Figure 12.4: Data path implementation of R-type and  I-type instructions. 

To execute the load and store instructions, we need to add data memory to the datapath. For the load 
and store instructions, the ALU will be used to compute the memory address by adding the content 
of register Rs coming through BusA and the sign-extended immediate value. For the load 
instruction, we need to write the output of the data memory to register file. Thus, a third multiplexer 
is added to select between the output of the ALU and the data memory to be written to the register 
file. BusB is connected to Datain of Data Memory for store instructions. The updated CPU with the 
capability for executing load and store instructions is shown in Figure 12.5. 

 

Figure 12.5: Data path implementation with load/store instructions. 

 

The additional control signals needed for the execution of load and store instructions are: 

� MemRead for load instructions 
� MemWrite for store instructions 
� MemtoReg selects data on BusW as ALU result or Memory Data_out 

For executing jump and branch instructions, we need to add a block, called NextPC, to compute the 
target address. In addition, we need to add a multiplexer to select the input to the PC register to be 
either the incremented PC address or the target address generated by NextPC block. For branch 
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instructions, the ALU is used to perform subtract operation to subtract the content of the two 
compared registers Rs and Rt. The updated data path to include the execution of the jump and 
branch instructions is given in Fig 12.6. 

 

 

Figure 12.6: Data path implementation with jump/branch instructions. 

 

The additional control signals needed for the execution of jump and branch instructions are: 

� J, Beq, Bne for jump and branch instructions 
� Zero condition of the ALU is examined 
� PCSrc = 1 for Jump & taken Branch 

The details of the NextPC block are illustrated in Fug. 12.7. For the jump instruction, the target 
address is computed by concatenating the  upper 4 bits of PC with Imm26 (i.e. the 26-bit immediate 
value). However, for branch instructions the target address is computed by adding the sign-extended 
version of the 16-bit immediate value with the incremented value of PC. Note that the immediate 
value is computed by the assembler as [Terget – (PC + 4)]/4. Thus, to restore the target address we 
need to multiply the immediate value by 4 (i.e. shift it 2 bits to the left) and then add PC+4 to it. 
Since we are updating the most significant 30-bits of PC, this is achieved by adding PC+1 to the 
immediate value. The PCSrc signal is set when a branch instruction is taken or a jump instruction is 
executed, which is implemented by the equation PCSrc = J + (Beq . Zero) + (Bne . Zero'). 
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Figure 12.7: Implementation of Next PC block. 

 

12.4 Control Unit Design 

The control unit of the single-cycle CPU can be decomposed into two parts Main Control and ALU 
Control. The Main Control unit receives a 6-input opcode and generates all the needed control 
signals other than the ALU control. However, the ALU Control gets a 6-bit function field from the 
instruction and ALUCtrl signal from the Main Control. The single cycle CPU including the 
datapath and control unit is illustrated in Figure 12.8. 

 

Figure 12.8: Single-cycle CPU. 
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To design the Main Control unit, we need to generate the control table which lists for each 
instruction, the control values needed to execute the instruction. This is illustrated in Table 12.2. 

Table 12.2: Main Control Signal Values. 

 

 

One we have the Control Table, the control unit can be design easily using a 6x64 decoder that has 
the 6-bit opcode as input and a signal for each instruction as output. Then each control signal will 
be either an OR gate of the instructions signals that make this signal 1 or a NOR gate of the 
instructions signals that make this signal 0, which ever results in a smaller gate size. The decoder 
and the logic equations for the Main Control signals are shown in Figure 12.9. 

 

Figure 12.9: Main control unit design. 
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Similarly, the ALU control signals equations can be derived based on the 6-bit function field and 
the ALUOp signal generated by the Main Control unit.  

It should be observed that the control unit signals equation can also be derived using K-map 
technique without using a decoder. However, using a decoder makes the design of the control unit 
simple. 

 

 

12.5 In-Lab Tasks 

1. For the instructions in the CPU that you are going to design, list all the steps that are needed 
for the execution of each instruction in RTL notation. 

2. Ensure that you have all the needed components for constructing your datapath. 
3. Design the datapath for your CPU and model it using logisim. 
4. Apply the needed values for the control signals needed for the execution of each instruction 

to ensure correct functionality of the datapath. 
5. Design the control unit of your CPU and model it using logisim. 
6. Test the correct functionality of the control unit by ensuring that it generates the correct 

control signal values for each instruction. 
7. Model the single cycle CPU design in logisim by combining the datapath and control units.   
8. Test the correct functionality of your CPU by storing all the implemented instructions in the 

instruction memory and verifying the correct execution of each instruction. 

 


