
 397

Filename: LMAPGAPC.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 397 of 1 Printed: 10/02/00 04:19 PM

A P P E N D I X

A listing file shows precisely how the assembler translates your source file into
machine code. The listing documents the assembler’s assumptions, memory
allocations, and optimizations.

MASM creates an assembly listing of your source file whenever you do one of
the following:

u Select the appropriate option in PWB.

u Use one of the related source code directives.

u Specify the /Fl option on the MASM command line.

The assembly listing contains both the statements in the source file and the
binary code (if any) generated for each statement. The listing also shows the
names and values of all labels, variables, and symbols in your file.

The assembler creates tables for macros, structures, unions, records, segments,
groups, and other symbols, and places the tables at the end of the assembly
listing. Only the types of symbols encountered in the program are included. For
example, if your program has no macros, the symbol table does not have a
macros section.

Generating Listing Files
To generate a listing file from within PWB, follow these steps:

 1. From the Options menu, choose MASM Options.
 2. In the MASM Options dialog box, choose Set Debug or Release Options.

The dialog box for Set Debug or Release Options lists the choices summarized
in Table C.1. This table also shows the equivalent source code directives and
command-line options.

Generating and Reading
Assembly Listings

398 Programmer’s Guide

Filename: LMAPGAPC.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 398 of 2 Printed: 10/02/00 04:19 PM

Table C.1 Options for Generating or Modifying Listing Files

To generate this information:

To generate this
information:

In PWB1, select:

In source
code, enter:

From command
line, enter:

Default listing — includes all
assembled lines

Generate Listing File .LIST (default) /Fl

Turn off all source
listings (overrides all listing
directives)

Generate Listing File (turn
off)

.NOLIST
(synonym = .SFCOND)

—

List all source lines, including
false conditionals and
generated code

Include All Source Lines .LISTALL /Fl /Sa

Show instruction timings List Instruction
Timings

— /Fl /Sc

Show assembler-generated
code

List Generated
Instructions

— /Fl /Sg

Include false conditionals2 List False
Conditionals

.LISTIF
(synonym = .LFCOND)

/Fl /Sx

Suppress listing of any
subsequent conditional blocks
whose condition is false

List False Conditionals
(turn off)

.NOLISTIF
(synonym = .SFCOND)

—

Toggle between .LISTIF and
.NOLISTIF

— .TFCOND —

Suppress symbol table
generation

Generate Symbol Table
(turn off the default)

— /Fl /Sn

List all processed macro
statements

— .LISTMACROALL
(synonym = .LALL)

—

List only instructions, data,
and segment directives in
macros

— .LISTMACRO
(default)
(synonym = .XALL)

—

Turn off all listing during
macro expansion

— .NOLISTMACRO
(synonym = .SALL)

—

Specify title for each page
(use only once per file)

— TITLE name /St name

Specify subtitle for page — SUBTITLE name /Ss name

Designate page length and line
width, increment section
number, or generate page
breaks

— PAGE
[[length,width]][[+]]

/Sp length
/Sl width

Generate first-pass listing — — /Ep
1 Select MASM Options from the Options menu, then choose Set Dialog Options from the MASM Options dialog box.

 Appendix C Generating and Reading Assembly Listings 399

Filename: LMAPGAPC.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 399 of 3 Printed: 10/02/00 04:19 PM

2 See “Conditional Directives” in Chapter 1

Precedence of Command-Line Options and Listing Directives
Since command-line options and source code directives can specify opposite
behavior for the same listing file option, the assembler interprets the commands
according to the following precedence levels. Selecting PWB options is
equivalent to specifying /Fl /Sx on the command line:

u /Sa overrides any source code directives that suppress listing.

u Source code directives override all command-line options except /Sa.

u .NOLIST overrides other listing directives such as .NOLISTIF and
.LISTMACROALL.

u The /Sx, /Ss, /Sp, and /Sl options set initial values for their respective
features. Directives in the source file can override these command-line
options.

Reading the Listing File
The first half of the listing shows macros from the include file DOS.MAC,
structure declarations, and data. After the .DATA directive, the columns on the
left show offsets and initialized byte values within the data segment.

Instructions begin after the .CODE directive. The three columns on the left
show offsets, instruction timings, and binary code generated by the assembler.
The columns on the right list the source statements exactly as they appear in the
source file or as expanded by a macro. Various symbols and abbreviations in the
middle column provide information about the code, as explained in the following
section. The subsequent section, “Symbols and Abbreviations,” explains the
meanings of listing symbols.

Generated Code
The assembler lists the code generated from the statements of a source file.
With the /Sc command-line switch, which generates instruction timings, each
line has this syntax:

offset [[timing]] [[code]]

The offset is the offset from the beginning of the current code segment. The
timing shows the number of cycles the processor needs to execute the
instruction. The value of timing reflects the CPU type; for example, specifying
the .386 directive produces instruction timings for the 80386 processor. If the
statement generates code or data, code shows the numeric value in hexadecimal

400 Programmer’s Guide

Filename: LMAPGAPC.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 400 of 4 Printed: 10/02/00 04:19 PM

notation if the value is known at assembly time. If the value is calculated at run
time, the assembler indicates what action is necessary to compute the value.

When assembling under the default .8086 directive, timing includes an effective
address value if the instruction accesses memory. The 80186/486 processors do
not use effective address values. For more information on effective address
timing, see the “Processor” section in the Reference book.

Error Messages
If any errors occur during assembly, each error message and error number
appears directly below the statement where the error occurred. An example of
an error line and message is:

mov ax, [dx][di]
listtst.asm(77): error A2031: must be index or base register

Symbols and Abbreviations
The assembler uses the symbols and abbreviations shown in Table C.2 to
indicate addresses that need to be resolved by the linker or values that were
generated in a special way. The example in this section illustrates many of these
symbols.

The example listing was produced using “List Generated Instructions” and “List
Instruction Timings” in PWB. These options correspond to the ML command-
line switches /Fl /Sg /Sc.

Table C.2 Symbols and Abbreviations in Listings

Character Meaning

C Line from include file

= EQU or equal-sign (=) directive

nn[xx] DUP expression: nn copies of the value xx

---- Segment/group address (linker must resolve)

R Relocatable address (linker must resolve)

* Assembler-generated code

E External address (linker must resolve)

n Macro-expansion nesting level (+ if more than 9)

| Operator size override

& Address size override

nn: Segment override in statement

nn/ REP or LOCK prefix instruction

 Appendix C Generating and Reading Assembly Listings 401

Filename: LMAPGAPC.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 401 of 5 Printed: 10/02/00 04:19 PM

Table C.3 explains the five symbols that may follow timing values in your
listing. The Reference book will help you determine correct timings for those
values marked with a symbol.

402 Programmer’s Guide

Filename: LMAPGAPC.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 402 of 6 Printed: 10/02/00 04:19 PM

Table C.3 Symbols in Timing Column

Symbol Meaning

m Add cycles depending on next executed instruction.

n Add cycles depending on number of iterations or size of data.

p Different timing value in protected mode.

+ Add cycles depending on operands or combination of the preceding.

, Separates two values for “jump taken” and “jump not taken.”

Microsoft (R) Macro Assembler Version 6.10 09/20/00 12:00:00
listtst.asm Page 1 - 1

 .MODEL small, c
 .386
 .DOSSEG
 .STACK 256
 INCLUDE dos.mac
 C StrDef MACRO name1, text
 C name1 BYTE &text
 C BYTE 13d, 10d, '$'
 C l&name1 EQU LENGTHOF name1
 C ENDM
 C
 C Display MACRO string
 C mov ah, 09h
 C mov dx, OFFSET string
 C int 21h
 C ENDM
 = 0020 num EQU 20h
 COLOR RECORD b:1, r:3=1, i:1=1, f:3=7
 = 35 value TEXTEQU %3 + num
 = 32 tnum TEXTEQU %num
 = 04 strpos TEXTEQU @InStr(, <person>,
<son>)

 PutStr PROTO pMsg:PTR BYTE

 0004 DATE STRUCT
 0000 01 month BYTE 1
 0001 01 day BYTE 1
 0002 0000 year WORD ?
 DATE ENDS

 Appendix C Generating and Reading Assembly Listings 403

Filename: LMAPGAPC.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 403 of 7 Printed: 10/02/00 04:19 PM

 0002 U1 UNION
 0000 0028 fsize WORD 40
 bsize BYTE 60
 U1 ENDS

 0000 .DATA

 0000 00000000 ddData DWORD ?
 0004 1F text COLOR <>
 0005 01 14 07C9 today DATE <01, 20, 1993>
 0009 00 flag BYTE 0
 000A 001E [buffer WORD 30 DUP (0)
 0000
]

 StrDef ending, "Finished."
 0046 46 69 6E 69 73 68 1 ending BYTE "Finished."
 65 64 2E
 004F 0D 0A 24 1 BYTE 13d, 10d, '$'
 = 0009 1 lending EQU LENGTHOF ending
 0052 54 68 69 73 20 69 Msg BYTE "This is a
string","0"
 73 20 61 20
 73 74 72 69
 6E 67 30

 float TYPEDEF REAL4
 FPBYTE TYPEDEF FAR PTR BYTE
 0063 ---- 0052 R FPMSG FPBYTE Msg
 PBYTE TYPEDEF PTR BYTE
 NPWORD TYPEDEF NEAR PTR WORD
 PVOID TYPEDEF PTR
 PPBYTE TYPEDEF PTR PBYTE

 0000 .CODE
 .STARTUP
 0000 *@Startup:
 0000 2 B8 ---- R * mov ax, DGROUP
 0003 2p 8E D8 * mov ds, ax
 0005 2 8C D3 * mov bx, ss
 0007 2 2B D8 * sub bx, ax
 0009 3 C1 E3 04 * shl bx, 004h
 000C 2p 8E D0 * mov ss, ax
 000E 2 03 E3 * add sp, bx

 EXTERNDEF work:NEAR
 0010 7m E8 0000 E call work

404 Programmer’s Guide

Filename: LMAPGAPC.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 404 of 8 Printed: 10/02/00 04:19 PM

 INVOKE PutStr, ADDR msg
 0013 2 68 0052 R * push OFFSET Msg
 0016 7m E8 0029 * call PutStr
 0019 2 83 C4 02 * add sp, 00002h

 001C 2 B8 ---- R mov ax, @data
 001F 2p 8E C0 mov es, ax
 0021 2 B0 63 mov al, 'c'
 0023 4 26: 8B 0E mov cx, es:num
 0020
 0028 2 BF 0052 mov di, 82
 002B 7n F2/ AE repne scasb
 002D 4 66| A1 0000 R mov eax, ddData
 0031 6 67& FE 03 inc BYTE PTR [ebx]

 EXTERNDEF morework:NEAR
 0034 7m E8 0000 E call morework

 Display ending
 0037 2 B4 09 1 mov ah, 09h
 0039 2 BA 0046 R 1 mov dx, OFFSET ending
 003C 37 CD 21 1 int 21h

 .EXIT
 003E 2 B4 4C * mov ah, 04Ch
 0040 37 CD 21 * int 021h

 0042 PutStr PROC pMsg:PTR BYTE

 0042 2 55 * push bp
 0043 4 8B EC * mov bp, sp
 0045 2 B4 02 mov ah, 02H
 0047 4 8B 7E 04 mov di, pMsg
 004A 4 8A 15 mov dl, [di]
 mov ax, [dx][di]
listtst.asm(77): error A2031: must be index or base register

 .WHILE (dl)
 004C 7m EB 10 * jmp @C0001
 0059 *@C0002:
 0059 37 CD 21 int 21h
 005B 2 47 inc di
 005C 4 8A 15 mov dl, [di]
 .ENDW
 005E *@C0001:
 005E 2 0A D2 * or dl, dl
 0060 7m,3 75 F7 * jne @C0002
 ret

 Appendix C Generating and Reading Assembly Listings 405

Filename: LMAPGAPC.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 405 of 9 Printed: 10/02/00 04:19 PM

 0062 4 5D * pop bp
 0063 10m C3 * ret 00000h
 0064 PutStr ENDP

 END

Reading Tables in a Listing File
The tables at the end of a listing file list the macros, structures, unions, records,
segments, groups, and symbols that appear in a source file. These tables are not
printed in the previous sample listing, but are summarized as follows.

Macro Table
Lists all macros in the main file or the include files. Differentiates between
macro functions and macro procedures.

Structures and Unions Table
Provides the size in bytes of the structure or union and the offset of each field.
The type of each field is also given.

Record Table
“Width” gives the number of bits of the entire record. “Shift” provides the offset
in bits from the low-order bit of the record to the low-order bit of the field.
“Width” for fields gives the number of bits in the field. “Mask” gives the
maximum value of the field, expressed in hexadecimal notation. “Initial” gives
the initial value supplied for the field.

Type Table
The “Size” column in this table gives the size of the TYPEDEF type in bytes,
and the “Attr” column gives the base type for the TYPEDEF definition.

Segment and Group Table
“Size” specifies whether the segment is 16 bit or 32 bit. “Length” gives the size
of the segment in bytes. “Align” gives the segment alignment (WORD, PARA,
and so on). “Combine” gives the combine type (PUBLIC, STACK, and so on).
“Class” gives the segment’s class (CODE, DATA, STACK, or CONST).

Procedures, Parameters, and Locals
Gives the types and offsets from BP of all parameters and locals defined in each
procedure, as well as the size and memory location of each procedure.

Symbol Table
All symbols (except names for macros, structures, unions, records, and
segments) are listed in a symbol table at the end of the listing. The “Name”

406 Programmer’s Guide

Filename: LMAPGAPC.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 406 of 10 Printed: 10/02/00 04:19 PM

column lists the names in alphabetical order. The “Type” column lists each
symbol’s type.

The length of a multiple-element variable, such as an array or string, is the
length of a single element, not the length of the entire variable.

If the symbol represents an absolute value defined with an EQU or equal sign
(=) directive, the “Value” column shows the symbol’s value. The value may be
another symbol, a string, or a constant numeric value (in hexadecimal),
depending on the type. If the symbol represents a variable or label, the “Value”
column shows the symbol’s hexadecimal offset from the beginning of the
segment in which it is defined.

The “Attr” column shows the attributes of the symbol. The attributes include
the name of the segment (if any) in which the symbol is defined, the scope of
the symbol, and the code length. A symbol’s scope is given only if the symbol is
defined using the EXTERN and PUBLIC directives. The scope can be external,
global, or communal. The “Attr” column is blank if the symbol has no attribute.

406 Programmer’s Guide

Filename: LMAPGAPC.DOC Project:

Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 406 of 12 Printed: 10/02/00 04:19 PM

