
 307

Filename: LMAPGC12.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 307 of 1 Printed: 10/02/00 04:21 PM

C H A P T E R 1 2

Mixed-language programming allows you to combine the unique strengths of
Microsoft Basic, C, C++, and FORTRAN with your assembly-language
routines. Any one of these languages can call MASM routines, and you can call
any of these languages from within your assembly-language programs. This
makes virtually all the routines from high-level–language libraries available to a
mixed-language program.

MASM 6.1 provides mixed-language features similar to those in high-level
languages. For example, you can use the INVOKE directive to call high-level-
language procedures, and the assembler handles the argument-passing details for
you. You can also use H2INC to translate C header files to MASM include files,
as explained in Chapter 20 of Environment and Tools.

The mixed-language features of MASM 6.1 do not make older methods of
defining mixed-language interfaces obsolete. In most cases, mixed-language
programs written with earlier versions of MASM will assemble and link correctly
under MASM 6.1. (For more information, see Appendix A.)

This chapter explains how to write assembly routines that can be called from
high-level–language modules and how to call high-level language routines from
MASM. You should already understand the languages you want to combine and
should know how to write, compile, and link multiple-module programs with
these languages.

This chapter covers only assembly-language interface with C, C++, Basic, and
FORTRAN; it does not cover mixed-language programming between high-level
languages. The focus here is the Microsoft versions of C, C++, Basic, and
FORTRAN, but the same principles apply to other languages and compilers.
Many of the techniques used in this chapter are explained in the material in
Chapter 7 on writing procedures in assembly language, and in Chapter 8 on
multiple-module programming.

The first section of this chapter discusses naming and calling conventions. The
next section, “Writing an Assembly Procedure for a Mixed-Language Program,”
provides a template for writing an assembly-language procedure that can be

Mixed-Language Programming

308 Programmer’s Guide

Filename: LMAPGC12.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 308 of 2 Printed: 10/02/00 04:21 PM

called from another module written in a high-level language. This represents the
essence of mixed-language programming. Assembly language is often used for
creating fast secondary routines in a large program written in a high-level
language.

The third section describes specific conventions for linking assembly-language
procedures with modules in C, C++, Basic, and FORTRAN. These language-
specific sections also provide details on how the language manages various data
structures so that your MASM programs are compatible with the data from the
high-level language.

Naming and Calling Conventions
Each language has its own set of conventions, which fall into two categories:

u The “naming convention” specifies how or if the compiler or assembler alters
the name of an identifier before placing it into an object file.

u The “calling convention” determines how a language implements a call to a
procedure and how the procedure returns to the caller.

MASM supports several different conventions. The assembler uses C
convention when you specify a language type (langtype) of C, and Pascal
convention for language types PASCAL, BASIC, or FORTRAN. To the
assembler, the keywords BASIC, PASCAL, and FORTRAN are synonymous.
MASM also supports the SYSCALL and STDCALL conventions, which mix
elements of the C and Pascal conventions.

MASM gives you several ways to set the naming and calling conventions in your
assembly-language program. Using .MODEL with a langtype sets the default
for the module. This can also be done with the OPTION directive. This is
equivalent to the /Gc or /Gd option from the command line. Procedure
prototypes and declarations can specify a langtype to override the default.

When you write mixed-language routines, the easiest way to ensure convention
compatibility is to adopt the conventions of the called procedure’s language.
However, Microsoft languages can change the naming and calling conventions
for different procedures. If your program must call a procedure that uses an
argument-passing method different from that of the default language, prototype
the procedure first with the desired language type. This tells the assembler to
override the conventions of the default language and assume the proper
conventions for the prototyped procedure. “The MASM/High-Level–Language
Interface” section in this chapter explains how to change the default
conventions. The following sections provide more detail on the information
summarized in Table 12.1.

 Chapter 12 Mixed-Language Programming 309

Filename: LMAPGC12.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 309 of 3 Printed: 10/02/00 04:21 PM

Table 12.1 Naming and Calling Conventions

Convention C SYSCALL STDCALL BASIC FORTRAN PASCAL

Leading
underscore

X X

Capitalize all X X X

Arguments
pushed left to
right

 X X X

Arguments
pushed right to
left

X X X

Caller stack
cleanup

X X *

:VARARG
allowed

X X X

 * The STDCALL language type uses caller stack cleanup if the :VARARG parameter is used. Otherwise, the called routine must
clean up the stack.

Naming Conventions
“Naming convention” refers to the way a compiler or assembler stores the
names of identifiers. The first two rows of Table 12.1 show how each language
type affects symbol names. SYSCALL leaves symbol names as they appear in
the source code, but C and STDCALL add an underscore prefix. PASCAL,
BASIC, and FORTRAN change symbols to all uppercase.

The following list describes how these naming conventions affect a variable
called Big Time in your source code:

Langtype Specified Characteristics

SYSCALL Leaves the name unmodified. The linker sees the variable as
Big Time.

C, STDCALL The assembler (or compiler) adds a leading underscore to the
name, but does not change case. The linker sees the variable as
_Big Time.

PASCAL, FORTRAN,
BASIC

Converts all names to uppercase. The linker sees the variable as
Big Time.

The C Calling Convention
Specify the C language type for assembly-language procedures called from
programs that assume the C calling convention. Note that such programs are not
necessarily written in C, since other languages can mimic C conventions.

310 Programmer’s Guide

Filename: LMAPGC12.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 310 of 4 Printed: 10/02/00 04:21 PM

Argument Passing
With the C calling convention, the caller pushes arguments from right to left as
they appear in the caller’s argument list. The called procedure returns without
removing the arguments from the stack. It is the caller’s responsibility to clean
the stack after the call, either by popping the arguments or by adding an
appropriate value to the stack pointer SP.

Register Preservation
The called routine must return with the original values in BP, SI, DI, DS, and
SS. It must also preserve the direction flag.

Varying Number of Arguments
The additional overhead of cleaning the stack after each call has compensations.
It frees the caller from having to pass a set number of arguments to the called
procedure each time. Because the first argument in the list is always the last one
pushed, it is always on the top of the stack. Thus, it has the same address
relative to the frame pointer, regardless of how many arguments were actually
passed.

For example, consider the C library function printf, which accepts different
numbers of arguments. A C program calls the function like this:

printf("Numbers: %f %f %.2f\n", n1, n2, n3);
printf("Also: %f", n4);

The first line passes four arguments (including the string in quotes) and the
second line passes only two arguments. Notice that printf has no reliable way of
determining how many arguments the caller has pushed. Therefore, the function
returns without adjusting the stack. The C calling convention requires the caller
to take responsibility for removing the arguments from the stack, since only the
caller knows how many arguments it passed.

Use INVOKE to call a C-callable function from your assembly-language
program, since INVOKE automatically generates the necessary stack-cleaning
code after the call. You must also prototype the function with the VARARG
keyword if appropriate, as explained in “Procedures,” Chapter 7. Similarly,
when you write a C-callable procedure that accepts a varying number of
arguments, include VARARG in the procedure’s PROC statement.

The Pascal Calling Convention
By default, the langtype for FORTRAN, BASIC, and PASCAL selects the
Pascal calling convention. This convention pushes arguments left to right so that
the last argument is lowest on the stack, and it requires that the called routine
remove arguments from the stack.

 Chapter 12 Mixed-Language Programming 311

Filename: LMAPGC12.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 311 of 5 Printed: 10/02/00 04:21 PM

Argument Passing
Arguments are placed on the stack in the same order in which they appear in the
source code. The first argument is highest in memory (because it is also the first
argument to be placed on the stack), and the stack grows downward.

Register Preservation
A routine that uses the Pascal calling convention must preserve SI, DI, BP, DS,
and SS. For 32-bit code, the EBX, ES, FS, and GS registers must be preserved
as well as EBP, ESI, and EDI. The direction flag is also cleared upon entry and
must be preserved.

Varying Number of Arguments
Passing a variable number of arguments is not possible with the Pascal calling
convention.

The STDCALL and SYSCALL Calling Conventions
A STDCALL procedure adopts the C name and calling conventions when
prototyped with the VARARG keyword. Refer to the section “Declaring
Parameters with the PROC Directive” in Chapter 7. Without VARARG, the
procedure uses the C naming and Pascal calling conventions. STDCALL
provides compatibility with 32-bit versions of Microsoft compilers.

As Table 12.1 shows, SYSCALL is identical to the C calling convention, but
does not add an underscore prefix to symbols.

Argument Passing
Argument passing order for both STDCALL and SYSCALL is the same as the
C calling convention. The caller pushes the arguments from right to left and
must remove the parameters from the stack after the call. However, STDCALL
requires the called procedure to clean the stack if the procedure does not accept
a variable number of arguments.

Register Preservation
Both conventions require the called procedure to preserve the registers BP, SI,
DI, DS, and SS. Under STDCALL, the direction flag is clear on entry and must
be returned clear.

Varying Number of Arguments
SYSCALL allows a variable number of arguments in the same way as the C
calling convention. STDCALL also mimics the C convention when VARARG
appears in the called procedure’s declaration or definition. It allows a varying
number of arguments and requires the caller to clean the stack. If not declared

312 Programmer’s Guide

Filename: LMAPGC12.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 312 of 6 Printed: 10/02/00 04:21 PM

or defined with VARARG, the called procedure does not accept a variable
argument list and must clean the stack before it returns.

Writing an Assembly Procedure
For a Mixed-Language Program

MASM 6.1 simplifies the coding required for linking MASM routines to high-
level– language routines. You can use the PROTO directive to write procedure
prototypes, and the INVOKE directive to call external routines. MASM
simplifies procedure-related tasks in the following ways:

u The PROTO directive improves error checking on argument types.

uu INVOKE pushes arguments onto the stack and converts argument types to
types expected when possible. These arguments can be referenced by their
parameter label, rather than as offsets of the stack pointer.

u The LOCAL directive following the PROC statement saves places on the
stack for local variables. These variables can also be referenced by name,
rather than as offsets of the stack pointer.

uu PROC sets up the appropriate stack frame according to the processor mode.

u The USES keyword preserves registers given as arguments.

u The C calling conventions specified in the PROC syntax allow for a variable
number of arguments to be passed to the procedure.

u The RET keyword adjusts the stack upward by the number of bytes in the
argument list, removes local variables from the stack, and pops saved
registers.

u The PROC statement lists parameter names and types. The parameters can
be referenced by name inside the procedure.

The complete syntax and parameter descriptions for these procedure directives
are explained in “Procedures” in Chapter 7. This section provides a template
that you can use for writing a MASM routine to be called from a high-level
language.

The template looks like this:

Label PROC [[distance langtype visibility <prologueargs> USES reglist
parmlist]]
 LOCAL varlist
 .
 .
 .

 Chapter 12 Mixed-Language Programming 313

Filename: LMAPGC12.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 313 of 7 Printed: 10/02/00 04:21 PM

 RET
Label ENDP

Replace the italicized words with appropriate keywords, registers, or variables as
defined by the syntax in “Declaring Parameters with the PROC Directive” in
Chapter 7.

The distance (NEAR or FAR) and visibility (PUBLIC, PRIVATE, or
EXPORT) that you give in the procedure declaration override the current
defaults. In some languages, the model can also be specified with command-line
options.

The langtype determines the calling convention for accessing arguments and
restoring the stack. For information on calling conventions, see “Naming and
Calling Conventions” earlier in this chapter.

The types for the parameters listed in the parmlist must be given. Also, if any of
the parameters are pointers, the assembler does not generate code to get the
value of the pointer references. You must write this code yourself. An example
of how to write such code is provided in “Declaring Parameters with the PROC
Directive” in Chapter 7.

If you need to code your own stack-frame setup manually, or if you do not
want the assembler to generate the standard stack setup and cleanup, see
“Passing Arguments on the Stack” and “User-Defined Prologue and Epilogue
Code” in Chapter 7.

The MASM/High-Level–Language Interface
Since high-level–language programs require initialization, you must write the
main routine of a mixed-language program in the high-level language, or link
with the startup code supplied by the high-level–language compiler. This gives
the assembly code access to high-level routines or library functions. The next
section explains how to link an assembly-language program with C-language
startup code.

For procedures with prototypes, INVOKE makes calls from MASM to high-
level–
language programs, much like procedure or function calls in the high-level
language. INVOKE calls procedures and generates the code to push arguments
in the order specified by the procedure’s calling convention, and to remove
arguments from the stack at the end of the procedure.

INVOKE can also do type checking and data conversion for the argument types
so that the procedure receives compatible data. For explanations of how to write
procedure prototypes and several examples of procedure declarations and the
corresponding prototypes, see “Declaring Procedure Prototypes” in Chapter 7.

314 Programmer’s Guide

Filename: LMAPGC12.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 314 of 8 Printed: 10/02/00 04:21 PM

For programs that mix assembly language and C, the H2INC utility makes it
easy to write prototypes and data declarations for the C procedures you want to
call from MASM. H2INC translates the C prototypes and declarations into the
corresponding MASM prototypes and declarations, which INVOKE can use to
call the procedure. The use of H2INC is explained in Chapter 20 in
Environment and Tools.

Mixed-language programming also allows the main program or a routine to use
external data — data defined in the other module. External data is the data that is
stored in a set place in memory (unlike dynamic and local data, which is
allocated on the stack and heap) and is visible to other modules.

External data is shared by all routines. One of the modules must define the static
data, which causes the compiler to allocate storage for the data. The other
modules that access the data must declare the data as external.

Argument Passing
Each language has its own convention for how an argument is actually passed. If
the argument-passing conventions of your routines do not agree, then a called
routine receives bad data. Microsoft languages support three different methods
for passing an argument:

u Near reference. Passes a variable’s near (offset) address, expressed as an
offset from the default data segment. This method gives the called routine
direct access to the variable itself. Any change the routine makes to the
parameter is reflected in the calling routine.

u Far reference. Passes a variable’s far (segmented) address. Though slower
than passing a near reference, this method is necessary for passing data that
lies outside the default data segment. (This is not an issue in Basic unless you
have specifically requested far memory.)

u Value. Passes only a copy of the variable, not its address. With this method,
the called routine gets a copy of the argument on the stack, but has no access
to the original variable. The copy is discarded when the routine returns, and
the variable retains its original value.

When you pass arguments between routines written in different languages, you
must ensure that the caller and the called routine use the same conventions for
passing and receiving arguments. In most cases, you should check the argument-
passing defaults used by each language and make any necessary adjustments.
Most languages have features that allow you to change argument-passing
methods.

 Chapter 12 Mixed-Language Programming 315

Filename: LMAPGC12.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 315 of 9 Printed: 10/02/00 04:21 PM

Register Preservation
A procedure called from any high-level language should preserve the direction
flag and the values of BP, SI, DI, SS, and DS. Routines called from MASM
must not alter SI, DI, SS, DS, or BP.

Pushing Addresses
Microsoft high-level languages push segment addresses before offsets. This lets
the called routine use the LES and LDS instructions to read far addresses from
the stack. Furthermore, each word of an argument is placed on the stack in
order of significance. Thus, the high word of a long integer is pushed first,
followed by the low word.

Array Storage
Most high-level-language compilers store arrays in row-major order. This means
that all elements of a row are stored consecutively. The first five elements of an
array with four rows and three columns are stored in row-major order as

A[1, 1], A[1, 2], A[1, 3], A[2, 1], A[2, 2]

In column-major order, the column elements are stored consecutively. For
example, this same array would be stored in column-major order as

A[1, 1], A[2, 1], A[3, 1], A[4, 1], A[1, 2], A[2, 2]

The C/MASM Interface
This section summarizes the characteristics of the interface between MASM and
Microsoft C and QuickC compilers. With the default naming and calling
convention, the assembler (or compiler) pushes arguments right to left and adds
a leading underscore to routine names.

Compatible Data Types
This list shows the 16-bit C data types and equivalent data types in MASM 6.1.
For 32-bit C compilers, int and unsigned int are equivalent to the MASM types
SDWORD and DWORD, respectively.

C Type Equivalent MASM Type

unsigned char BYTE

char SBYTE

unsigned short, unsigned int WORD

int, short SWORD

unsigned long DWORD

long SDWORD

316 Programmer’s Guide

Filename: LMAPGC12.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 316 of 10 Printed: 10/02/00 04:21 PM

float REAL4

double REAL8

long double REAL10

Naming Restrictions
C is case-sensitive and does not convert names to uppercase. Since C normally
links with the /NOI command-line option, you should assemble MASM modules
with the /Cx or /Cp option to prevent the assembler from converting names to
uppercase.

 Chapter 12 Mixed-Language Programming 317

Filename: LMAPGC12.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 317 of 11 Printed: 10/02/00 04:21 PM

Argument-Passing Defaults
C always passes arrays by reference and all other variables (including structures)
by value. C programs in tiny, small, and medium model pass near addresses for
arrays, unless another distance is specified. Compact-, large-, and huge-model
programs pass far addresses by default. To pass by reference a variable type
other than array, use the C-language address-of operator (&).

If you need to pass an array by value, declare the array as a structure member
and pass a copy of the entire structure. However, this practice is rarely
necessary and usually impractical except for very small arrays, since it can make
substantial demands on stack space. If your program must maintain an array
through a procedure call, create a temporary copy of the array in heap and
provide the copy to the procedure by reference.

Changing the Calling Convention
Put _pascal or _fortran in the C function declaration to specify the Pascal
calling convention.

Array Storage
Array declarations give the number of elements. A1[a][b] declares a two-
dimensional array in C with a rows and b columns. By default, the array’s
lower bound is zero. Arrays are stored by the compiler in row-major order. By
default, passing arrays from C passes a pointer to the first element of the array.

String Format
C stores strings as arrays of bytes and uses a null character as the end-of-string
delimiter. For example, consider the string declared as follows:

char msg[] = "string of text"

The string occupies 15 bytes of memory as:

Figure 12.1 C String Format

Since msg is an array of characters, it is passed by reference.

External Data
In C, the extern keyword tells the compiler that the data or function is external.
You can define a static data object in a C module by defining a data object
outside all functions and subroutines. Do not use the static keyword in C with a
data object that you want to be public.

318 Programmer’s Guide

Filename: LMAPGC12.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 318 of 12 Printed: 10/02/00 04:21 PM

Structure Alignment
By default, C uses word alignment (unpacked storage) for all data objects longer
than 1 byte. This storage method specifies that occasional bytes may be added
as padding, so that word and doubleword objects start on an even boundary. In
addition, all nested structures and records start on a word boundary. MASM
aligns on byte boundaries by default.

When converting .H files with H2INC, you can use the /Zp command-line
option to specify structure alignment. If you do not specify the /Zp option,
H2INC uses word-alignment. Without H2INC, set the alignment to 2 when
declaring the MASM structure, compile the C module with /Zp1, or assemble
the MASM module with /Zp2.

Compiling and Linking
Use the same memory model for both C and MASM.

Returning Values
The assembler returns simple data types in registers. Table 12.2 shows the
register conventions for returning simple data types to a C program.

Table 12.2 Register Conventions for Simple Return Values

Data Type Registers

char AL

short, near, int (16-bit) AX

short, near, int (32-bit) EAX

long, far (16-bit) High-order portion (or segment address) in DX;
low-order portion (or offset address) in AX

long, far (32-bit) High-order portion (or segment address) in EDX;
low-order portion (or offset address) in EAX

Procedures using the C calling convention and returning type float or type
double store their return values into static variables. In multi-threaded
programs, this could mean that the return value may be overwritten. You can
avoid this by using the Pascal calling convention for multi-threaded programs so
float or double values are passed on the stack.

Structures less than 4 bytes long are returned in DX:AX. To return a longer
structure from a procedure that uses the C calling convention, you must copy
the structure to a global variable and then return a pointer to that variable in the
AX register (DX:AX, if you compiled in compact, large, or huge model or if the
variable is declared as a far pointer).

 Chapter 12 Mixed-Language Programming 319

Filename: LMAPGC12.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 319 of 13 Printed: 10/02/00 04:21 PM

Structures, Records, and User-Defined Data Types
You can pass structures, records, and user-defined types as arguments by value
or by reference.

Writing Procedure Prototypes
The H2INC utility simplifies the task of writing prototypes for the C functions
you want to call from MASM. The C prototype converted by H2INC into a
MASM prototype allows INVOKE to correctly call the C function. Here are
some examples of C functions and the MASM prototypes created with H2INC.

/* Function Prototype Declarations to Convert with H2INC */

long checktypes (
 char *name,
 unsigned char a,
 int b,
 float d,
 unsigned int *num);

my_func (float fNum, unsigned int x);

extern my_func1 (char *argv[]);

struct videoconfig _far * _far pascal my_func2 (int, scri);

For these C prototypes, H2INC generates this code:

@proto_0 TYPEDEF PROTO C :PTR SBYTE, :BYTE,
 :SWORD, :REAL4, :PTR WORD
checktypes PROTO @proto_0

@proto_1 TYPEDEF PROTO C :REAL4, :WORD
my_func PROTO @proto_1

@proto_2 TYPEDEF PROTO C :PTR PTR SBYTE
my_func1 PROTO @proto_2

@proto_3 TYPEDEF PROTO FAR PASCAL :SWORD, :scri
my_func2 PROTO @proto_3

320 Programmer’s Guide

Filename: LMAPGC12.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 320 of 14 Printed: 10/02/00 04:21 PM

Example
As shown in the following short example, the main module (written in C) calls
an assembly routine, Power2.

#include <stdio.h>

extern int Power2(int factor, int power);

void main()
{
 printf("3 times 2 to the power of 5 is %d\n", Power2(3, 5));
}

 Chapter 12 Mixed-Language Programming 321

Filename: LMAPGC12.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 321 of 15 Printed: 10/02/00 04:21 PM

Figure 12.2 shows how functions that observe the C calling convention use the
stack frame.

Figure 12.2 C Stack Frame

322 Programmer’s Guide

Filename: LMAPGC12.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 322 of 16 Printed: 10/02/00 04:21 PM

The MASM module that contains the Power2 routine looks like this:

 .MODEL small, c

Power2 PROTO C factor:SWORD, power:SWORD
 .CODE

Power2 PROC C factor:SWORD, power:SWORD
 mov ax, factor ; Load Arg1 into AX
 mov cx, power ; Load Arg2 into CX
 shl ax, cl ; AX = AX * (2 to power of CX)
 ; Leave return value in AX
 ret
Power2 ENDP
 END

The MASM procedure declaration for the Power2 routine specifies the C
langtype and the parameters expected by the procedure. The langtype specifies
the calling and naming conventions for the interface between MASM and C.
The routine is public by default. When the C module calls Power2, it passes
two arguments, 3 and 5 by value.

Using the C Startup Code
This section explains how to write an assembly-language program that can call C
library functions. It links with the C startup module, which performs the
necessary initialization required by the library functions.

You must follow these steps when writing such a program:

 1. Specify the C convention in the .MODEL statement.

 2. Include the following (optional) statement to note linkage with the C startup
module:

 EXTERN _acrtused:abs

 3. Prototype or declare as external all C functions the program references.

 4. Include a public procedure called main in your assembly-language module.
The C startup code calls _main (which is why all C programs begin with a
main function). This procedure serves as the effective entry point for your
program.

 5. Omit an entry point in the program’s END directive. The C startup code
serves as the true entry point when the program runs.

 6. Assemble with ML’s /Cx switch to preserve the case of nonlocal names.

 Chapter 12 Mixed-Language Programming 323

Filename: LMAPGC12.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 323 of 17 Printed: 10/02/00 04:21 PM

The following example serves as a template for these steps. The program calls
the C run-time function printf to display two variables.

.MODEL small, c ; Step 1: declare C conventions
EXTERN _acrtused:abs ; Step 2: bring in C startup
 .
 .
 .
printf PROTO NEAR, ; Step 3: prototype
 pstring:NEAR PTR BYTE, ; external C
 num1:WORD, num2:VARARG ; routines
 .DATA
format BYTE '%i %i', 13, 0

 .CODE

main PROC PUBLIC ; Step 4: C startup calls here
 .
 .
 .
 INVOKE printf, OFFSET format, ax, bx
 .
 .
 .
 END ; Step 5: no label on END

The C++/MASM Interface
C++ can apply a protocol called a “linkage specification” to mixed-language
procedures. This lets you link C++ code in the same way as C code. All
information in the preceding section applies when linking assembly-language and
C++ routines through the C linkage specification.

The C linkage specification forces the C++ compiler to adopt C conventions —
which are not the same as C++ conventions — for listed routines. Since MASM
does not specifically support C++ conventions, set the C linkage specification in
your C++ code for all mixed-language routines, as shown here:

extern “C” declaration

where declaration is the prototype of an exported C++ function or an imported
assembly-language procedure. You can bracket a list of declarations:

extern "C"
{
 int WriteLine(short attr, char *string);
 void GoExit(int err);
}

324 Programmer’s Guide

Filename: LMAPGC12.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 324 of 18 Printed: 10/02/00 04:21 PM

or apply the specification to individual prototypes:

extern "C" int WriteLine(short attr, char *string);
extern "C" void GoExit(int err);

Note the syntax remains the same whether WriteLine and GoExit are
exported C++ functions or imported assembly-language routines. The linkage
specification applies only to called routines, not to external variables. Use the
extern keyword (without the “C”) as you normally would when identifying
objects external to the C++ module.

The FORTRAN/MASM Interface
This section summarizes the specific details important to calling FORTRAN
procedures or receiving arguments from FORTRAN routines that call MASM
routines. It includes a sample MASM and FORTRAN module.

A FORTRAN procedure follows the Pascal calling convention by default. This
convention passes arguments in the order listed, and the calling procedure
removes the arguments from the stack. The naming convention converts all
exported names to uppercase.

Compatible Data Types
This list shows the FORTRAN data types that are equivalent to the MASM 6.1
data types.

FORTRAN Type Equivalent MASM Type

CHARACTER*1 BYTE

INTEGER*1 SBYTE

INTEGER*2 SWORD

REAL*4 REAL4

INTEGER*4 SDWORD

REAL*8, DOUBLE PRECISION REAL8

Naming Restrictions
FORTRAN allows 31 characters for identifier names. A digit or an underscore
cannot be the first character in an identifier name.

Argument-Passing Defaults
By default, FORTRAN passes arguments by reference as far addresses if the
FORTRAN module is compiled in large or huge memory model. It passes them
as near addresses if the FORTRAN module is compiled in medium model.
Versions of FORTRAN prior to Version 4.0 always require large model.

 Chapter 12 Mixed-Language Programming 325

Filename: LMAPGC12.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 325 of 19 Printed: 10/02/00 04:21 PM

The FORTRAN compiler passes an argument by value when declared with the
VALUE attribute. This declaration can occur either in a FORTRAN
INTERFACE block (which determines how to pass an argument) or in a
function or subroutine declaration (which determines how to receive an
argument).

In FORTRAN you can apply the NEAR (or FAR) attribute to reference
parameters. These keywords override the default. They have no effect when
they specify the same method as the default.

Changing the Calling Convention
A call to a FORTRAN function or subroutine declared with the PASCAL or C
attribute passes all arguments by value in the parameter list (except for
parameters declared with the REFERENCE attribute). This change in default
passing method applies to function and subroutine definitions as well as to the
functions and subroutines described by INTERFACE blocks.

Array Storage
When you declare FORTRAN arrays, you can specify any integer for the lower
bound (the default is 1). The FORTRAN compiler stores all arrays in column-
major order — that is, the leftmost subscript increments most rapidly. For
example, the first seven elements of an array defined as A[3,4] are stored as

A[1,1], A[2,1], A[3,1], A[1,2], A[2,2], A[3,2], A[1,3]

String Format
FORTRAN stores strings as a series of bytes at a fixed location in memory, with
no delimiter at the end of the string. When passing a variable-length FORTRAN
string to another language, you need to devise a method by which the target
routine can find the end of the string.

Consider the string declared as

CHARACTER*14 MSG
MSG = 'String of text'

The string is stored in 14 bytes of memory like this:

Figure 12.3 FORTRAN String Format

326 Programmer’s Guide

Filename: LMAPGC12.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 326 of 20 Printed: 10/02/00 04:21 PM

Strings are passed by reference. Although FORTRAN has a method for passing
length, the variable-length FORTRAN strings cannot be used in a mixed-
language interface because other languages cannot access the temporary variable
that FORTRAN uses to communicate string length. However, fixed-length
strings can be passed if the FORTRAN INTERFACE statement declares the
length of the string in advance.

External Data
FORTRAN routines can directly access external data. In FORTRAN you can
declare data to be external by adding the EXTERN attribute to the data
declaration. You can also access a FORTRAN variable from MASM if it is
declared in a COMMON block.

A FORTRAN program can call an external assembly procedure with the use of
the INTERFACE statement. However, the INTERFACE statement is not
strictly necessary unless you intend to change one of the FORTRAN defaults.

Structure Alignment
By default, FORTRAN uses word alignment (unpacked storage) for all data
objects larger than 1 byte. This storage method specifies that occasional bytes
may be added as padding, so that word and doubleword objects start on an even
boundary. In addition, all nested structures and records start on a word
boundary. The MASM default is byte-alignment, so you should specify an
alignment of 2 for MASM structures or use the /Zp1 option when compiling in
FORTRAN.

Compiling and Linking
Use the same memory model for the MASM and FORTRAN modules.

Returning Values
You must use a special convention to return floating-point values, records, user-
defined types, arrays, and values larger than 4 bytes to a FORTRAN module
from an assembly procedure. The FORTRAN module creates space in the stack
segment to hold the actual return value. When the call to the assembly
procedure is made, an extra parameter is passed. This parameter is the last one
pushed. The segment address of the return value is contained in SS.

In the assembly procedure, put the data for the return value at the location
pointed to by the return value offset. Then copy the return-value offset (located
at BP + 6) to AX, and copy SS to DX. This is necessary because the calling
module expects DX:AX to point to the return value.

 Chapter 12 Mixed-Language Programming 327

Filename: LMAPGC12.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 327 of 21 Printed: 10/02/00 04:21 PM

Structures, Records, and User-Defined Data Types
The FORTRAN structure variable, defined with the STRUCTURE keyword
and declared with the RECORD statement, is equivalent to the Pascal
RECORD and the C struct. You can pass structures as arguments by value or
by reference (the default).

The FORTRAN types COMPLEX*8 and COMPLEX*16 are not directly
implemented in MASM. However, you can write structures that are equivalent.
The type COMPLEX*8 has two fields, both of which are 4-byte floating-point
numbers; the first contains the real component, and the second contains the
imaginary component. The type COMPLEX is equivalent to the type
COMPLEX*8.

The type COMPLEX*16 is similar to COMPLEX*8. The only difference is
that each field of the former contains an 8-byte floating-point number.

A FORTRAN LOGICAL*2 is stored as a 1-byte indicator value (1=true,
0=false) followed by an unused byte. A FORTRAN LOGICAL*4 is stored as a
1-byte indicator value followed by three unused bytes. The type LOGICAL is
equivalent to LOGICAL*4, unless $STORAGE:2 is in effect.

To pass or receive a FORTRAN LOGICAL type, declare a MASM structure
with the appropriate fields.

Varying Number of Arguments
In FORTRAN, you can call routines with a variable number of arguments by
including the VARYING attribute in your interface to the routine, along with the
C attribute. You must use the C attribute because a variable number of
arguments is possible only with the C calling convention. The VARYING
attribute prevents FORTRAN from enforcing a matching number of parameters.

Pointers and Addresses
FORTRAN programs can determine near and far addresses with the
LOCNEAR and LOCFAR functions. Store the result as INTEGER*2 (with
the LOCNEAR function) or as INTEGER*4 (with the LOCFAR function). If
you pass the result of LOCNEAR or LOCFAR to another language, be sure to
pass by value.

328 Programmer’s Guide

Filename: LMAPGC12.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 328 of 22 Printed: 10/02/00 04:21 PM

Example
In the following example, the FORTRAN module calls an assembly procedure
that calculates A*2^B, where A and B are the first and second parameters,
respectively. This is done by shifting the bits in A to the left B times.

 INTERFACE TO INTEGER*2 FUNCTION POWER2(A, B)
 INTEGER*2 A, B
 END

 PROGRAM MAIN
 INTEGER*2 POWER2
 INTEGER*2 A, B
 A = 3
 B = 5
 WRITE (*, *) '3 TIMES 2 TO THE B OR 5 IS ',POWER2(A, B)
 END

To understand the assembly procedure, consider how the parameters are placed
on the stack, as illustrated in Figure 12.4.

Figure 12.4 FORTRAN Stack Frame

Figure 12.4 assumes that the FORTRAN module is compiled in large model. If
you compile the FORTRAN module in medium model, then each argument is
passed as a 2-byte, not 4-byte, address. The return address is 4 bytes long
because procedures called from FORTRAN must always be FAR.

 Chapter 12 Mixed-Language Programming 329

Filename: LMAPGC12.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 329 of 23 Printed: 10/02/00 04:21 PM

The assembler code looks like this:

 .MODEL LARGE, FORTRAN

Power2 PROTO FORTRAN, pFactor:FAR PTR SWORD, pPower:FAR PTR SWORD

 .CODE

Power2 PROC FORTRAN, pFactor:FAR PTR SWORD, pPower:FAR PTR SWORD

 les bx, pFactor ; ES:BX points to factor
 mov ax, es:[bx] ; AX = value of factor
 les bx, pPower ; ES:BX points to power
 mov cx, es:[bx] ; CX = value of power
 shl ax, cl ; Multiply by 2^power
 ret ; Return result in AX
Power2 ENDP
 END

The Basic/MASM Interface
This section explains how to call MASM procedures or functions from Basic
and how to receive Basic arguments for the MASM procedure. Pascal is the
default naming and calling convention, so all lowercase letters are converted to
uppercase. Routines defined with the FUNCTION keyword return values, but
routines defined with SUB do not. Basic DEF FN functions and GOSUB
routines cannot be called from another language.

The information provided pertains to Microsoft’s Basic and QuickBasic
compilers. Differences between the two compilers are noted when necessary.

Compatible Data Types
The following list shows the Basic data types that are equivalent to the MASM
6.1 data types.

Basic Type Equivalent MASM Type

STRING*1 WORD

INTEGER (X%) SWORD

SINGLE (X!) REAL4

LONG (X&),
CURRENCY

SDWORD

DOUBLE (X#) REAL8

Naming Conventions
Basic recognizes up to 40 characters of a name. In the object code, Basic also
drops any of its reserved characters: %, &, !, #, @, &.

330 Programmer’s Guide

Filename: LMAPGC12.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 330 of 24 Printed: 10/02/00 04:21 PM

Argument-Passing Defaults
Basic can pass data in several ways and can receive it by value or by near
reference. By default, Basic arguments are passed by near reference as 2-byte
addresses. To pass a near address, pass only the offset; if you need to pass a far
address, pass the segment and offset separately as integer arguments. Pass the
segment address first, unless you have specified C compatibility with the
CDECL keyword.

Basic passes each argument in a call by far reference when CALLS is used to
invoke a routine. You can also use SEG to modify a parameter in a preceding
DECLARE statement so that Basic passes that argument by far reference. To
pass any other variable type by value, apply the BYVAL keyword to the
argument in the DECLARE statement. You cannot pass arrays and user-
defined types by value.

DECLARE SUB Test(BYVAL a%, b%, SEG c%)

CALL Test(x%, y%, z%)
CALLS Test(x%, y%, z%)

This CALL statement passes the first argument (a%) by value, the second
argument (b%) by near reference, and the third argument (c%) by far reference.
The statement

CALLS Test2(x%, y%, z%)

passes each argument by far reference.

Changing the Calling Convention
Including the CDECL keyword in the Basic DECLARE statement enables the
C calling and naming conventions. This also allows a call to a MASM procedure
with a varying number of arguments.

Array Storage
The DIM statement sets the number of dimensions for a Basic array and also
sets the array’s maximum subscript value. In the array declaration DIM
x(a,b), the upper bounds (the maximum number of values possible) of the
array are a and b. The default lower bound is 0. The default upper bound for an
array subscript is 10.

The default for column storage in Basic is column-major order, as in
FORTRAN. For an array defined as DIM Arr%(3,3), reference the last
element as Arr%(3,3). The first five elements of Arr (3,3) are

Arr(0,0), Arr(1,0), Arr(2,0), Arr(0,1), Arr(1,1)

 Chapter 12 Mixed-Language Programming 331

Filename: LMAPGC12.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 331 of 25 Printed: 10/02/00 04:21 PM

When you pass an array from Basic to a language that stores arrays in row-
major order, use the command-line option /R when compiling the Basic module.

Most Microsoft languages permit you to reference arrays directly. Basic uses an
array descriptor, however, which is similar in some respects to a Basic string
descriptor. The array descriptor is necessary because Basic handles memory
allocation for arrays dynamically, and thus may shift the location of the array in
memory.

A reference to an array in Basic is really a near reference to an array descriptor.
Array descriptors are always in DGROUP, even though the data may be in far
memory. Array descriptors contain information about type, dimensions, and
memory locations of data. You can safely pass arrays to MASM routines only if
you follow three rules:

u Pass the array’s address by applying the VARPTR function to the first
element of the Basic array and passing the result by value. To pass the far
address of the array, apply both the VARPTR and VARSEG functions and
pass each result by value. The receiving language gets the address of the first
element and considers it to be the address of the entire array. It can then
access the array with its normal array-indexing syntax.

u The MASM routine that receives the array should not call back to one of the
calling program’s routines before it has finished processing the array.
Changing data within the caller’s heap — even data unrelated to the array —
may change the array’s location in the heap. This would invalidate any
further work the called routine performs, since the routine would be
operating on the array’s old location.

u Basic can pass any member of an array by value. When passing individual
array elements, these restrictions do not apply.

You can apply LBOUND and UBOUND to a Basic array to determine lower
and upper bounds, and then pass the results to another routine. This way, the
size of the array does not need to be determined in advance.

String Format
Basic maintains a 4-byte string descriptor for each string, as shown in the
following. The first field of the string descriptor contains a 2-byte integer
indicating the length of the actual string text. The second field contains the offset
address of this text within the caller’s data segment.

Figure 12.5 Basic String Descriptor Format

332 Programmer’s Guide

Filename: LMAPGC12.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 332 of 26 Printed: 10/02/00 04:21 PM

An assembly-language procedure can store a Basic string descriptor as a simple
structure, like this:

DESC STRUCT
 len WORD ? ; Length of string
 off WORD ? ; Offset of string
DESC ENDS

string BYTE "This text referenced by a string descriptor"
sdesc DESC (LENGTHOF string, string)

Version 7.0 or later of the Microsoft Basic Compiler provides new functions that
access string descriptors. These functions simplify the process of sharing Basic
string data with routines written in other languages.

Earlier versions of Basic offer the LEN (Length) and SADD (String Address)
functions, which together obtain the information stored in a string descriptor.
LEN returns the length of a string in bytes. SADD returns the offset address of
a string in the data segment. The caller must provide both pieces of information
so the called procedure can locate and read the entire string. The address
returned by SADD is declared as type INTEGER but is actually equivalent to a
C near pointer.

If you need to pass the far address of a string, use the SSEGADD (String
Segment Address) function of Microsoft Basic version 7.0 or later. You can also
determine the segment address of the first element with VARSEG.

External Data
Declaring global data in Basic follows the same two-step process as in other
languages:

 1. Declare shareable data in Basic with the COMMON statement.

 2. Identify the shared variables in your assembly-language procedures with the
EXTERN keyword. Place the EXTERN statement outside of a code or data
segment when declaring far data.

Structure Alignment
Basic packs user-defined types. For MASM structures to be compatible, select
byte-alignment.

Compiling and Linking
Always use medium model in assembly-language procedures linked with Basic
modules. If you are listing other libraries on the LINK command line, specify
Basic libraries first. (There are differences between the QBX and command-line
compilation. See your Basic documentation.)

 Chapter 12 Mixed-Language Programming 333

Filename: LMAPGC12.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 333 of 27 Printed: 10/02/00 04:21 PM

Returning Values
Basic follows the usual convention of returning values in AX or DX:AX. If the
value is not floating point, an array, or a structured type, or if it is less than 4
bytes long, then the 2-byte integers should be returned from the MASM
procedure in AX and 4-byte integers should be returned in DX:AX. For all other
types, return the near offset in AX.

User-Defined Data Types
The Basic TYPE statement defines structures composed of individual fields.
These types are equivalent to the C struct, FORTRAN record (declared with
the STRUCTURE keyword), and Pascal Record types.

You can use any of the Basic data types except variable-length strings or
dynamic arrays in a user-defined type. Once defined, Basic types can be passed
only by reference.

Varying Number of Arguments
You can vary the number of arguments in Basic when you change the calling
convention with CDECL. To call a function with a varying number of
arguments, you also need to suppress the type checking that normally forces a
call to be made with a fixed number of arguments. In Basic, you can remove
this type checking by omitting a parameter list from the DECLARE statement.

Pointers and Addresses
VARSEG returns a variable’s segment address, and VARPTR returns a
variable’s offset address. These intrinsic Basic functions enable your program to
pass near or far addresses.

Example
This example calls the Power2 procedure in the MASM 6.1 module.

DEFINT A-Z

DECLARE FUNCTION Power2 (A AS INTEGER, B AS INTEGER)
PRINT "3 times 2 to the power of 5 is ";
PRINT Power2(3, 5)

END

The first argument, A, is higher in memory than B because Basic pushes
arguments in the same order in which they appear.

334 Programmer’s Guide

Filename: LMAPGC12.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 334 of 28 Printed: 10/02/00 04:21 PM

Figure 12.6 shows how the arguments are placed on the stack.

Figure 12.6 Basic Stack Frame

The assembly procedure can be written as follows:

 .MODEL medium

Power2 PROTO PASCAL, factor:PTR WORD, power:PTR WORD
 .CODE
Power2 PROC PASCAL, factor:PTR WORD, power:PTR WORD

 mov bx, WORD PTR factor ; BX points to factor
 mov ax, [bx] ; Load factor into AX
 mov bx, WORD PTR power ; BX points to power
 mov cx, [bx] ; Load power into CX
 shl ax, cl ; AX = AX * (2 to power of CX)
 ret
Power2 ENDP
 END

Note that each parameter must be loaded in a two-step process because the
address of each is passed rather than the value. The return address is 4 bytes
long because procedures called from Basic must be FAR.

334 Programmer’s Guide

Filename: LMAPGC12.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 334 of 30 Printed: 10/02/00 04:21 PM

