
 273

Filename: LMAPGC11.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 273 of 1 Printed: 10/02/00 04:22 PM

C H A P T E R 1 1

Through its memory-management system, MS-DOS allows a program to remain
resident in memory after terminating. The resident program can later regain
control of the processor to perform tasks such as background printing or
“popping up” a calculator on the screen. Such a program is commonly called a
TSR, from the terminate-and-stay-resident function it uses to return to MS-
DOS.

This chapter explains the techniques of writing memory-resident software. The
first two sections present introductory material. Following sections describe
important MS-DOS and BIOS interrupts and focus on how to write safe,
compatible, memory-resident software. Two example programs illustrate the
techniques described in the chapter. The MASM 6.1 disks contain complete
source code for the two example TSR programs.

Terminate-and-Stay-Resident Programs
MS-DOS maintains a pointer to the beginning of unused memory. Programs
load into memory at this position and terminate execution by returning control to
MS-DOS. Normally, the pointer remains unchanged, allowing MS-DOS to reuse
the same memory when loading other programs.

A terminating program can, however, prevent other programs from loading on
top of it. These programs exit to MS-DOS through the terminate-and-stay-
resident function, which resets the free-memory pointer to a higher position.
This leaves the program resident in a protected block of memory, even though it
is no longer running.

Writing Memory-Resident Software

274 Programmer’s Guide

Filename: LMAPGC11.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 274 of 2 Printed: 10/02/00 04:22 PM

The terminate-and-stay-resident function (Function 31h) is one of the MS-DOS
services invoked through Interrupt 21h. The following fragment shows how a
TSR program terminates through Function 31h and remains resident in a 1000h-
byte block of memory:

 mov ah, 31h ; Request DOS Function 31h
 mov al, err ; Set return code
 mov dx, 100h ; Reserve 100h paragraphs
 ; (1000h bytes)
 int 21h ; Terminate-and-stay-resident

In current versions of MS-DOS, Interrupt 27h also provides a terminate-
and-stay-resident service. However, Microsoft cannot guarantee future support
for Interrupt 27h and does not recommend its use.

Structure of a TSR
TSRs consist of two distinct parts that execute at different times. The first part
is the installation section, which executes only once, when MS-DOS loads the
program. The installation code performs any initialization tasks required by the
TSR and then exits through the terminate-and-stay-resident function.

The second part of the TSR, called the resident section, consists of code and
data left in memory after termination. Though often identified with the TSR
itself, the resident section makes up only part of the entire program.

The TSR’s resident code must be able to regain control of the processor and
execute after the program has terminated. Methods of executing a TSR are
classified as either passive or active.

Passive TSRs
The simplest way to execute a TSR is to transfer control to it explicitly from
another program. Because the TSR in this case does not solicit processor
control, it is said to be passive. If the calling program can determine the TSR’s
memory address, it can grant control via a far jump or call. More commonly, a
program activates a passive TSR through a software interrupt. The installation
section of the TSR writes the address of its resident code to the proper position
in the interrupt vector table (see “MS-DOS Interrupts” in Chapter 7). Any
subsequent program can then execute the TSR by calling the interrupt.

Passive TSRs often replace existing software interrupts. For example, a passive
TSR might replace Interrupt 10h, the BIOS video service. By intercepting calls
that read or write to the screen, the TSR can access the video buffer directly,
increasing display speed.

Note

 Chapter 11 Writing Memory-Resident Software 275

Filename: LMAPGC11.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 275 of 3 Printed: 10/02/00 04:22 PM

Passive TSRs allow limited access since they can be invoked only from another
program. They have the advantage of executing within the context of the calling
program, and thus run no risk of interfering with another process. Such a risk
does exist with active TSRs.

Active TSRs
The second method of executing a TSR involves signaling it through some
hardware event, such as a predetermined sequence of keystrokes. This type of
TSR is “active” because it must continually search for its startup signal. The
advantage of active TSRs lies in their accessibility. They can take control from
any running application, execute, and return, all on demand.

An active TSR, however, must not seize processor control blindly. It must
contain additional code that determines the proper moment at which to execute.
The extra code consists of one or more routines called “interrupt handlers,”
described in the following section.

Interrupt Handlers in Active TSRs
The memory-resident portion of an active TSR consists of two parts. One part
contains the body of the TSR — the code and data that perform the program’s
main tasks. The other part contains the TSR’s interrupt handlers.

An interrupt handler is a routine that takes control when a specific interrupt
occurs. Although sometimes called an “interrupt service routine,” a TSR’s
handler usually does not service the interrupt. Instead, it passes control to the
original interrupt routine, which does the actual interrupt servicing. (See the
section “Replacing an Interrupt Routine” in Chapter 7 for information on how to
write an interrupt handler.)

Collectively, interrupt handlers ensure that a TSR operates compatibly with the
rest of the system. Individually, each handler fulfills one or more of the
following functions:

u Auditing hardware events that may signal a request for the TSR
u Monitoring system status

u Determining whether a request for the TSR should be honored, based on
current system status

Auditing Hardware Events for TSR Requests
Active TSRs commonly use a special keystroke sequence or the timer as a
request signal. A TSR invoked through one of these channels must be equipped
with handlers that audit keyboard or timer events.

276 Programmer’s Guide

Filename: LMAPGC11.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 276 of 4 Printed: 10/02/00 04:22 PM

A keyboard handler receives control at every keystroke. It examines each key,
searching for the proper signal or “hot key.” Generally, a keyboard handler
should not attempt to call the TSR directly when it detects the hot key. If the
TSR cannot safely interrupt the current process at that moment, the keyboard
handler is forced to exit to allow the process to continue. Since the handler
cannot regain control until the next keystroke, the user has to press the hot key
repeatedly until the handler can comply with the request.

Instead, the handler should merely set a request flag when it detects a hot-key
signal and then exit normally. Examples in the following paragraphs illustrate this
technique.

For computers other than MCA (IBM PS/2 and compatible), an active TSR
audits keystrokes through a handler for Interrupt 09, the keyboard interrupt:

Keybrd PROC FAR
 sti ; Interrupts are okay
 push ax ; Save AX register
 in al, 60h ; AL = key scan code
 call CheckHotKey ; Check for hot key
 .IF carry? ; If hot key pressed,
 mov cs:TsrRequestFlag, TRUE ; raise flag and
 . ; set up for exit
 .
 .

A TSR running on a PS/2 computer cannot reliably read key scan codes using
this method. Instead, the TSR must search for its hot key through a handler for
Interrupt 15h (Miscellaneous System Services). The handler determines the
current keypress from the AL register when AH equals 4Fh, as shown here:

MiscServ PROC FAR
 sti ; Interrupts okay
 .IF ah == 4Fh ; If Keyboard Intercept Service:
 call CheckHotKey ; Check for hot key
 .IF carry? ; If hot key pressed,
 mov cs:TsrRequestFlag, TRUE ; raise flag and
 . ; set up for exit
 .
 .

The example program on page 293 shows how a TSR tests for a PS/2 machine
and then sets up a handler for either Interrupt 09 or Interrupt 15h to audit
keystrokes.

Setting a request flag in the keyboard handler allows other code, such as the
timer handler (Interrupt 08), to recognize a request for the TSR. The timer
handler gains control at every timer interrupt, which occurs an average of 18.2
times per second.

 Chapter 11 Writing Memory-Resident Software 277

Filename: LMAPGC11.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 277 of 5 Printed: 10/02/00 04:22 PM

The following fragment shows how a timer handler tests the request flag and
continually polls until it can safely execute the TSR.

NewTimer PROC FAR
 .
 .
 .
 cmp TsrRequestFlag, FALSE ; Has TSR been requested?
 .IF !zero? ; If so, can system be
 call CheckSystem ; interrupted safely?
 .IF carry? ; If so,
 call ActivateTsr ; activate TSR
 .
 .
 .

Monitoring System Status
A TSR that uses a hardware device such as the video or disk must not interrupt
while the device is active. A TSR monitors a device by handling the device’s
interrupt. Each interrupt handler simply sets a flag to indicate the device is in
use, and then clears the flag when the interrupt finishes.

The following shows a typical monitor handler:

NewHandler PROC FAR
 mov cs:ActiveFlag, TRUE ; Set active flag
 pushf ; Simulate interrupt by
 ; pushing flags, then
 call OldHandler ; far-calling original routine
 mov cs:ActiveFlag, FALSE ; Clear active flag
 iret ; Return from interrupt
NewHandler ENDP

Only hardware used by the TSR requires monitoring. For example, a TSR that
performs disk input/output (I/O) must monitor disk use through Interrupt 13h.
The disk handler sets an active flag that prevents the TSR from executing during
a read or write operation. Otherwise, the TSR’s own I/O would move the disk
head. This would cause the suspended disk operation to continue with the head
incorrectly positioned when the TSR returned control to the interrupted
program.

In the same way, an active TSR that displays to the screen must monitor calls to
Interrupt 10h. The Interrupt 10h BIOS routine does not protect critical sections
of code that program the video controller. The TSR must therefore ensure it
does not interrupt such nonreentrant operations.

The activities of the operating system also affect the system status. With few
exceptions, MS-DOS functions are not reentrant and must not be interrupted.

278 Programmer’s Guide

Filename: LMAPGC11.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 278 of 6 Printed: 10/02/00 04:22 PM

However, monitoring MS-DOS is somewhat more complicated than monitoring
hardware. This subject is discussed in “Using MS-DOS in Active TSRs,” later
in this chapter.

Figure 11.1 illustrates the process described so far. It shows a time line for a
typical TSR signaled from the keyboard. When the keyboard handler detects the
proper hot key, it sets a request flag called TsrRequestFlag. Thereafter, the
timer handler continually checks the system status until it can safely call the
TSR.

Figure 11.1 Time Line of Interactions Between Interrupt Handlers for a Typical TSR

The following comments describe the chain of events depicted in Figure 11.1.
Each comment refers to one of the numbered pointers in the figure.

 1. At time = t, the timer handler activates. It finds the flag TsrRequestFlag
clear, indicating the user has not requested the TSR. The handler terminates
without taking further action. Notice that Interrupt 13h is currently
processing a disk I/O operation.

 2. Before the next timer interrupt, the keyboard handler detects the hot key,
signaling a request for the TSR. The keyboard handler sets
TsrRequestFlag and returns.

 3. At time = t + 1/18 second, the timer handler again activates and finds
TsrRequestFlag set. The handler checks other active flags to determine if
the TSR can safely execute. Since Interrupt 13h has not yet completed its
disk operation, the timer handler finds DiskActiveFlag set. The handler
therefore terminates without activating the TSR.

 Chapter 11 Writing Memory-Resident Software 279

Filename: LMAPGC11.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 279 of 7 Printed: 10/02/00 04:22 PM

 4. At time = t + 2/18 second, the timer handler again finds TsrRequestFlag
set and repeats its scan of the active flags. DiskActiveFlag is now clear,
but in the interim, Interrupt 10h has activated as indicated by the flag
VideoActiveFlag. The timer handler accordingly terminates without
activating the TSR.

 5. At time = t + 3/18 second, the timer handler repeats the process. This time it
finds all active flags clear, indicating the TSR can safely execute. The timer
handler calls the TSR, which sets its own active flag to ensure it will not
interrupt itself if requested again.

 6. The timer and other interrupts continue to function normally while the TSR
executes.

The timer itself can serve as the startup signal if the TSR executes periodically.
Screen clocks that continuously show seconds and minutes are examples of
TSRs that use the timer this way. ALARM.ASM, a program described in the
next section, shows another example of a timer-driven TSR.

Determining Whether to Invoke the TSR
Once a handler receives a request signal for the TSR, it checks the various
active flags maintained by the handlers that monitor system status. If any of the
flags are set, the handler ignores the request and exits. If the flags are clear, the
handler invokes the TSR, usually through a near or far call. Figure 11.1
illustrates how a timer handler detects a request and then periodically scans
various active flags until all the flags are clear.

A TSR that changes stacks must not interrupt itself. Otherwise, the second
execution would overwrite the stack data belonging to the first. A TSR prevents
this by setting its own active flag before executing, as shown in Figure 11.1. A
handler must check this flag along with the other active flags when determining
whether the TSR can safely execute.

Example of a Simple TSR: ALARM
This section presents a simple alarm clock TSR that demonstrates some of the
material covered so far. The program accepts an argument from the command
line that specifies the alarm setting in military form, such as 1635 for 4:35 P.M.
For simplicity, the argument must consist of four digits, including leading zeros.
To set the alarm at 7:45 A.M., for example, enter the command:

ALARM 0745

The installation section of the program begins with the Install procedure.
Install computes the number of five-second intervals that must elapse before
the alarm sounds and stores this number in the word CountDown. The

280 Programmer’s Guide

Filename: LMAPGC11.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 280 of 8 Printed: 10/02/00 04:22 PM

procedure then obtains the vector for Interrupt 08 (timer) through MS-DOS
Function 35h and stores it in the far pointer OldTimer. Function 25h replaces
the vector with the far address of the new timer handler NewTimer. Once
installed, the new timer handler executes at every timer interrupt. These
interrupts occur 18.2 times per second or 91 times every five seconds.

Each time it executes, NewTimer subtracts one from a secondary counter called
Tick91. By counting 91 timer ticks, Tick91 accurately measures a period of
five seconds. When Tick91 reaches zero, it’s reset to 91 and CountDown is
decremented by one. When CountDown reaches zero, the alarm sounds.

;* ALARM.ASM - A simple memory-resident program that beeps the speaker
;* at a prearranged time. Can be loaded more than once for multiple
;* alarm settings. During installation, ALARM establishes a handler
;* for the timer interrupt (Interrupt 08). It then terminates through
;* the terminate-and-stay-resident function (Function 31h). After the
;* alarm sounds, the resident portion of the program retires by setting
;* a flag that prevents further processing in the handler.

 .MODEL tiny ; Create ALARM.COM
 .STACK
 .CODE
 ORG 5Dh ; Location of time argument in PSP,
CountDown LABEL WORD ; converted to number of 5-second
 ; intervals to elapse
 .STARTUP
 jmp Install ; Jump over data and resident code

; Data must be in code segment so it won’t be thrown away with Install code.
OldTimer DWORD ? ; Address of original timer routine
tick_91 BYTE 91 ; Counts 91 clock ticks (5 seconds)
TimerActiveFlag BYTE 0 ; Active flag for timer handler

;* NewTimer - Handler routine for timer interrupt (Interrupt 08).
;* Decrements CountDown every 5 seconds. No other action is taken
;* until CountDown reaches 0, at which time the speaker sounds.

NewTimer PROC FAR
 .IF cs:TimerActiveFlag != 0 ; If timer busy or retired,
 jmp cs:OldTimer ; jump to original timer routine
 .ENDIF
 inc cs:TimerActiveFlag ; Set active flag
 pushf ; Simulate interrupt by pushing flags,
 call cs:OldTimer ; then far-calling original routine
 sti ; Enable interrupts
 push ds ; Preserve DS register
 push cs ; Point DS to current segment for
 pop ds ; further memory access
 dec tick_91 ; Count down for 91 ticks

 Chapter 11 Writing Memory-Resident Software 281

Filename: LMAPGC11.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 281 of 9 Printed: 10/02/00 04:22 PM

 .IF zero? ; If 91 ticks have elapsed,
 mov tick_91, 91 ; reset secondary counter and
 dec CountDown ; subtract one 5-second interval
 .IF zero? ; If CountDown drained,
 call Sound ; sound speaker
 inc TimerActiveFlag ; Alarm has sounded--inc flag
 .ENDIF ; again so it remains set
 .ENDIF

 dec TimerActiveFlag ; Decrement active flag
 pop ds ; Recover DS
 iret ; Return from interrupt handler
NewTimer ENDP

;* Sound - Sounds speaker with the following tone and duration:

BEEP_TONE EQU 440 ; Beep tone in hertz
BEEP_DURATION EQU 6 ; Number of clocks during beep,
 ; where 18 clocks = approx 1 second

Sound PROC USES ax bx cx dx es ; Save registers used in this routine
 mov al, 0B6h ; Initialize channel 2 of
 out 43h, al ; timer chip
 mov dx, 12h ; Divide 1,193,180 hertz
 mov ax, 34DCh ; (clock frequency) by
 mov bx, BEEP_TONE ; desired frequency
 div bx ; Result is timer clock count
 out 42h, al ; Low byte of count to timer
 mov al, ah
 out 42h, al ; High byte of count to timer
 in al, 61h ; Read value from port 61h
 or al, 3 ; Set first two bits
 out 61h, al ; Turn speaker on
; Pause for specified number of clock ticks

 mov dx, BEEP_DURATION ; Beep duration in clock ticks
 sub cx, cx ; CX:DX = tick count for pause
 mov es, cx ; Point ES to low memory data
 add dx, es:[46Ch] ; Add current tick count to CX:DX
 adc cx, es:[46Eh] ; Result is target count in CX:DX
 .REPEAT
 mov bx, es:[46Ch] ; Now repeatedly poll clock
 mov ax, es:[46Eh] ; count until the target
 sub bx, dx ; time is reached
 sbb ax, cx
 .UNTIL !carry?

282 Programmer’s Guide

Filename: LMAPGC11.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 282 of 10 Printed: 10/02/00 04:22 PM

 in al, 61h ; When time elapses, get port value
 xor al, 3 ; Kill bits 0-1 to turn
 out 61h, al ; speaker off
 ret
Sound ENDP

;* Install - Converts ASCII argument to valid binary number, replaces
;* NewTimer as the interrupt handler for the timer, then makes program
;* memory-resident by exiting through Function 31h.
;*
;* This procedure marks the end of the TSR's resident section and the
;* beginning of the installation section. When ALARM terminates through
;* Function 31h, the above code and data remain resident in memory. The
;* memory occupied by the following code is returned to DOS.

Install PROC

; Time argument is in hhmm military format. Converts ASCII digits to
; number of minutes since midnight, then converts current time to number
; of minutes since midnight. Difference is number of minutes to elapse
; until alarm sounds. Converts to seconds-to-elapse, divides by 5 seconds,
; and stores result in word CountDown.
DEFAULT_TIME EQU 3600 ; Default alarm setting = 1 hour
 ; (in seconds) from present time
 mov ax, DEFAULT_TIME
 cwd ; DX:AX = default time in seconds
 .IF BYTE PTR CountDown != ' ' ; If not blank argument,
 xor CountDown[0], '00' ; convert 4 bytes of ASCII
 xor CountDown[2], '00' ; argument to binary

 mov al, 10 ; Multiply 1st hour digit by 10
 mul BYTE PTR CountDown[0] ; and add to 2nd hour digit
 add al, BYTE PTR CountDown[1]
 mov bh, al ; BH = hour for alarm to go off
 mov al, 10 ; Repeat procedure for minutes
 mul BYTE PTR CountDown[2] ; Multiply 1st minute digit by 10
 add al, BYTE PTR CountDown[3] ; and add to 2nd minute digit
 mov bl, al ; BL = minute for alarm to go off
 mov ah, 2Ch ; Request Function 2Ch
 int 21h ; Get Time (CX = current hour/min)

 Chapter 11 Writing Memory-Resident Software 283

Filename: LMAPGC11.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 283 of 11 Printed: 10/02/00 04:22 PM

 mov dl, dh
 sub dh, dh
 push dx ; Save DX = current seconds
 mov al, 60 ; Multiply current hour by 60
 mul ch ; to convert to minutes
 sub ch, ch
 add cx, ax ; Add current minutes to result
 ; CX = minutes since midnight
 mov al, 60 ; Multiply alarm hour by 60
 mul bh ; to convert to minutes
 sub bh, bh
 add ax, bx ; AX = number of minutes since
 ; midnight for alarm setting
 sub ax, cx ; AX = time in minutes to elapse
 ; before alarm sounds
 .IF carry? ; If alarm time is tomorrow,
 add ax, 24 * 60 ; add minutes in a day
 .ENDIF

 mov bx, 60
 mul bx ; DX:AX = minutes-to-elapse-times-60
 pop bx ; Recover current seconds
 sub ax, bx ; DX:AX = seconds to elapse before
 sbb dx, 0 ; alarm activates
 .IF carry? ; If negative,
 mov ax, 5 ; assume 5 seconds
 cwd
 .ENDIF
 .ENDIF
 mov bx, 5 ; Divide result by 5 seconds
 div bx ; AX = number of 5-second intervals
 mov CountDown, ax ; to elapse before alarm sounds

 mov ax, 3508h ; Request Function 35h
 int 21h ; Get Vector for timer (Interrupt 08)
 mov WORD PTR OldTimer[0], bx ; Store address of original
 mov WORD PTR OldTimer[2], es ; timer interrupt
 mov ax, 2508h ; Request Function 25h
 mov dx, OFFSET NewTimer ; DS:DX points to new timer handler
 int 21h ; Set Vector with address of NewTimer

 mov dx, OFFSET Install ; DX = bytes in resident section
 mov cl, 4
 shr dx, cl ; Convert to number of paragraphs
 inc dx ; plus one
 mov ax, 3100h ; Request Function 31h, error code=0
 int 21h ; Terminate-and-stay-resident
Install ENDP
 END

284 Programmer’s Guide

Filename: LMAPGC11.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 284 of 12 Printed: 10/02/00 04:22 PM

Note the following points about ALARM:

u The constant BEEP_TONE specifies the alarm tone. Practical values for the
tone range from approximately 100 to 4,000 hertz.

u The Install procedure marks the beginning of the installation section of
the program. Execution begins here when ALARM.COM is loaded. A TSR
generally places its installation code after the resident section. This allows the
terminating TSR to include the installation code with the rest of the memory
it returns to MS-DOS. Since the installation section executes only once, the
TSR can discard it after becoming resident.

u You can install ALARM any number of times in quick succession, each time
with a new alarm setting. The timer handler does not restore the original
vector for Interrupt 08 after the alarm sounds. In effect, the multiple
installations remain daisy-chained in memory. The address in OldTimer for
one installation is the address of NewTimer in the preceding installation.

u Until a system reboot, NewTimer remains in place as the Interrupt 08
handler, even after the alarm sounds. To save unnecessary activity, the byte
TimerActiveFlag remains set after the alarm sounds. This forces an
immediate jump to the original handler for all subsequent executions of
NewTimer.

u NewTimer and Sound alter registers DS, AX, BX, CX, DX, and ES. To
preserve the original values in these registers, the procedures first push them
onto the stack and then restore the original values before exiting. This
ensures that the process interrupted by NewTimer continues with valid
registers after NewTimer returns.

u ALARM requires little stack space. It assumes the current stack is adequate
and makes no attempt to set up a new one. More sophisticated TSRs,
however, should as a matter of course provide their own stacks to ensure
adequate stack depth. The example program presented in “Example of an
Advanced TSR: SNAP,” later in this chapter, demonstrates this safety
measure.

 Chapter 11 Writing Memory-Resident Software 285

Filename: LMAPGC11.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 285 of 13 Printed: 10/02/00 04:22 PM

Using MS-DOS in Active TSRs
This section explains how to write active TSRs that can safely call MS-DOS
functions. The material explores the problems imposed by the nonreentrant
nature of MS-DOS and explains how a TSR can resolve those problems. The
solution consists of four parts:

u Understanding how MS-DOS uses stacks

u Determining when MS-DOS is active

u Determining whether a TSR can safely interrupt an active MS-DOS function

u Monitoring the Critical Error flag

Understanding MS-DOS Stacks
MS-DOS functions set up their own stacks, which makes them nonreentrant. If
a TSR interrupts an MS-DOS function and then executes another function that
sets up the same stack, the second function will overwrite everything placed on
the stack by the first function. The problem occurs when the second function
returns and the first is left with unusable stack data. A TSR that calls an MS-
DOS function must not interrupt any function that uses the same stack.

MS-DOS versions 2.0 and later use three internal stacks: an I/O stack, a disk
stack, and an auxiliary stack. The current stack depends on the MS-DOS
function. Functions 01 through 0Ch set up the I/O stack. Functions higher than
0Ch (with few exceptions) use the disk stack, as do Interrupts 25h and 26h.
MS-DOS normally uses the auxiliary stack only when it executes Interrupt 24h
(Critical Error Handler).

Determining MS-DOS Activity
A TSR’s handlers can determine when MS-DOS is active by consulting a 1-byte
flag called the InDos flag. Every MS-DOS function sets this flag upon entry and
clears it upon termination. During installation, a TSR locates the flag through
Function 34h (Get Address of InDos Flag), which returns the address as ES:BX.
The installation portion then stores the address so the handlers can later find the
flag without again calling Function 34h.

Theoretically, a TSR can wait to execute until the InDos flag is clear, thus
sidestepping the entire issue of interrupting MS-DOS. However, several low-
order functions — such as Function 0Ah (Get Buffered Keyboard Input) — wait
idly for an expected keystroke before they terminate. If a TSR were allowed to
execute only after MS-DOS returned, it too would have to wait for the
terminating event.

286 Programmer’s Guide

Filename: LMAPGC11.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 286 of 14 Printed: 10/02/00 04:22 PM

The solution lies in determining when the low-order functions 01 through 0Ch
are active. MS-DOS provides another service for this purpose: Interrupt 28h,
the Idle Interrupt.

Interrupting MS-DOS Functions
MS-DOS continually calls Interrupt 28h from the low-order polling functions as
they wait for keyboard input. This signal says that MS-DOS is idle and that a
TSR may interrupt provided it does not overwrite the I/O stack. Put another
way, a TSR can safely interrupt MS-DOS Functions 01 through 0Ch provided it
does not call them.

An active TSR that calls MS-DOS must monitor Interrupt 28h with a handler.
When the handler gains control, it checks the TSR request flag. If the flag
indicates the TSR has been requested and if system hardware is inactive, the
handler executes the TSR. Since control must eventually return to the idle MS-
DOS function which has stored data on the I/O stack, the TSR in this case must
not call any MS-DOS function that also uses the I/O stack. Table 11.1 shows
which functions set up the I/O stack for various versions of MS-DOS.

Table 11.1 MS-DOS Internal Stacks

Function

Critical
Error flag

MS-DOS
2.x

MS-DOS
3.0

MS-DOS
3.1+

01–0Ch Clear
Set

I/O*
Aux*

I/O
Aux

I/O
Aux

33h Clear
Set

Disk*
Disk

Disk
Disk

Caller*
Caller

50h–51h Clear
Set

I/O
Aux

Caller
Caller

Caller
Caller

59h Clear
Set

n/a*
n/a

I/O
Aux

Disk
Disk

5D0Ah Clear
Set

n/a
n/a

n/a
n/a

Disk
Disk

62h Clear
Set

n/a
n/a

Caller
Caller

Caller
Caller

All others Clear
Set

Disk
Disk

Disk
Disk

Disk
Disk

* I/O=I/O stack, Aux = auxiliary stack, Disk = disk stack, Caller = caller’s stack, n/a = function not
available.

 Chapter 11 Writing Memory-Resident Software 287

Filename: LMAPGC11.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 287 of 15 Printed: 10/02/00 04:22 PM

TSRs that perform tasks of long or indefinite duration should themselves call
Interrupt 28h. For example, a TSR that polls for keyboard input should include
an INT 28h instruction in the polling loop, as shown here:

poll: int 28h ; Signal idle state
 mov ah, 1
 int 16h ; Key waiting?
 jnz poll ; If not, repeat polling loop
 sub ah, ah
 int 16h ; Otherwise, get key

This courtesy gives other TSRs a chance to execute if the InDos flag happens to
be set.

Monitoring the Critical Error Flag
MS-DOS sets the Critical Error flag to a nonzero value when it detects a critical
error. It then invokes Interrupt 24h (Critical Error Handler) and clears the flag
when Interrupt 24h returns. MS-DOS functions higher than 0Ch are illegal
during critical error processing. Therefore, a TSR that calls MS-DOS must not
execute while the Critical Error flag is set.

MS-DOS versions 3.1 and later locate the Critical Error flag in the byte
preceding the InDos flag. A single call to Function 34h (Get Address of InDos
Flag) thus effectively returns the addresses of both flags. For earlier versions of
MS-DOS or for the compatibility version of MS-DOS in OS/2 1.x, a TSR must
call Function 34h and then scan the segment returned in the ES register for one
of the two following sequences of instructions:

; Sequence of instructions in DOS Versions 2.0 - 3.0
 cmp ss:[CriticalErrorFlag], 0
 jne @F
 int 28h

; Sequence of instructions in DOS compatibility version for OS/2 1.x
 test [CriticalErrorFlag], 0FFh
 jnz @F
 push ss:[?]
 int 28h

The question mark inside brackets in the preceding PUSH statement indicates
that the operand for the PUSH instruction can be any legal operand.

In either version of MS-DOS, the operand field in the first instruction gives the
flag’s offset. The value in ES determines the segment address. “Example of an
Advanced TSR: SNAP,” later in the chapter, presents a program that shows
how to locate the Critical Error flag with this technique.

288 Programmer’s Guide

Filename: LMAPGC11.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 288 of 16 Printed: 10/02/00 04:22 PM

Preventing Interference
This section describes how an active TSR can avoid interfering with the process
it interrupts. Interference occurs when a TSR commits an error or performs an
action that affects the interrupted process after the TSR returns. Examples of
interference range from relatively harmless, such as moving the cursor, to
serious, such as overrunning a stack.

Although a TSR can interfere with another process in many different ways,
protection against interference involves only three steps:

 1. Recording a current configuration

 2. Changing the configuration so it applies to the TSR

 3. Restoring the original configuration before terminating

The example program described on page 293 demonstrates all the
noninterference safeguards described in this section. These safeguards by no
means exhaust the subject of noninterference. More sophisticated TSRs may
require more sophisticated methods. However, noninterference methods
generally fall into one of the following categories:

u Trapping errors

u Preserving an existing condition

u Preserving existing data

Trapping Errors
A TSR committing an error that triggers an interrupt must handle the interrupt to
trap the error. Otherwise, the existing interrupt routine, which belongs to the
underlying process, would attempt to service an error the underlying process did
not commit.

For example, a TSR that accepts keyboard input should include handlers for
Interrupts 23h and 1Bh to trap keyboard break signals. When MS-DOS detects
CTRL+C from the keyboard or input stream, it transfers control to Interrupt 23h
(CTRL+C Handler). Similarly, the BIOS keyboard routine calls Interrupt 1Bh
(CTRL+BREAK Handler) when it detects a CTRL+BREAK key combination. Both
routines normally terminate the current process.

A TSR that calls MS-DOS should also trap critical errors through Interrupt 24h
(Critical Error Handler). MS-DOS functions call Interrupt 24h when they
encounter certain hardware errors. The TSR must not allow the existing
interrupt routine to service the error, since the routine might allow the user to
abort service and return control to MS-DOS. This would terminate both the

 Chapter 11 Writing Memory-Resident Software 289

Filename: LMAPGC11.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 289 of 17 Printed: 10/02/00 04:22 PM

TSR and the underlying process. By handling Interrupt 24h, the TSR retains
control if a critical error occurs.

An error-trapping handler differs in two ways from a TSR’s other handlers:

 1. It is temporary, in service only while the TSR executes. At startup, the TSR
copies the handler’s address to the interrupt vector table; it then restores the
original vector before returning.

 2. It provides complete service for the interrupt; it does not pass control on to
the original routine.

Error-trapping handlers often set a flag to let the TSR know the error has
occurred. For example, a handler for Interrupt 1Bh might set a flag when the
user presses CTRL+BREAK. The TSR can check the flag as it polls for keyboard
input, as shown here:

BrkHandler PROC FAR ; Handler for Interrupt 1Bh
 .
 .
 .
 mov cs:BreakFlag, TRUE ; Raise break flag
 iret ; Terminate interrupt

BrkHandler ENDP
 .
 .
 .
 mov BreakFlag, FALSE ; Initialize break flag
poll: .
 .
 .
 cmp BreakFlag, TRUE ; Keyboard break pressed?
 je exit ; If so, break polling loop
 mov ah, 1
 int 16h ; Key waiting?
 jnz poll ; If not, repeat polling loop

Preserving an Existing Condition
A TSR and its interrupt handlers must preserve register values so that all
registers are returned intact to the interrupted process. This is usually done by
pushing the registers onto the stack before changing them, then popping the
original values before returning.

Setting up a new stack is another important safeguard against interference. A
TSR should usually provide its own stack to avoid the possibility of overrunning
the current stack. Exceptions to this rule are simple TSRs such as the sample
program ALARM that make minimal stack demands.

290 Programmer’s Guide

Filename: LMAPGC11.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 290 of 18 Printed: 10/02/00 04:22 PM

A TSR that alters the video configuration should return the configuration to its
original state upon return. Video configuration includes cursor position, cursor
shape, and video mode. The services provided through Interrupt 10h enable a
TSR to determine the existing configuration and alter it if necessary.

However, some applications set video parameters by directly programming the
video controller. When this happens, BIOS remains unaware of the new
configuration and consequently returns inaccurate information to the TSR.
Unfortunately, there is no solution to this problem if the controller’s data
registers provide write-only access and thus cannot be queried directly. For
more information on video controllers, refer to Richard Wilton, Programmer’s
Guide to the PC & PS/2 Video Systems. (See “Books for Further Reading” in
the Introduction.)

Preserving Existing Data
A TSR requires its own disk transfer area (DTA) if it calls MS-DOS functions
that access the DTA. These include file control block functions and Functions
11h, 12h, 4Eh, and 4Fh. The TSR must switch to a new DTA to avoid
overwriting the one belonging to the interrupted process. On becoming active,
the TSR calls Function 2Fh to obtain the address of the current DTA. The TSR
stores the address and then calls Function 1Ah to establish a new DTA. Before
returning, the TSR again calls Function 1Ah to restore the address of the original
DTA.

MS-DOS versions 3.1 and later allow a TSR to preserve extended error
information. This prevents the TSR from destroying the original information if it
commits an MS-DOS error. The TSR retrieves the current extended error data
by calling MS-DOS Function 59h. It then copies registers AX, BX, CX, DX, SI,
DI, DS, and ES to an 11-word data structure in the order given. MS-DOS
reserves the last three words of the structure, which should each be set to zero.
Before returning, the TSR calls Function 5Dh with AL = 0Ah and DS:DX
pointing to the data structure. This call restores the extended error data to their
original state.

Communicating Through the Multiplex Interrupt
The Multiplex interrupt (Interrupt 2Fh) provides the Microsoft-approved way
for a program to verify the presence of an installed TSR and to exchange
information with it. MS-DOS version 2.x uses Interrupt 2Fh only as an interface
for the resident print spooler utility PRINT.COM. Later MS-DOS versions
standardize calling conventions so that multiple TSRs can share the interrupt.

A TSR chains to the Multiplex interrupt by setting up a handler. The TSR’s
installation code records the Interrupt 2Fh vector and then replaces it with the
address of the new multiplex handler.

 Chapter 11 Writing Memory-Resident Software 291

Filename: LMAPGC11.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 291 of 19 Printed: 10/02/00 04:22 PM

The Multiplex Handler
A program communicates with a multiplex handler by calling Interrupt 2Fh with
an identity number in the AH register. As each handler in the chain gains
control, it compares the value in AH with its own identity number. If the handler
finds that it is not the intended recipient of the call, it passes control to the
previous handler. The process continues until control reaches the target handler.
When the target handler finishes its tasks, it returns via an IRET instruction to
terminate the interrupt.

The target handler determines its tasks from the function number in AL.
Convention reserves Function 0 as a request for installation status. A multiplex
handler must respond to Function 0 by setting AL to 0FFh, to inform the caller
of the handler’s presence in memory. The handler should also return other
information to provide a completely reliable identification. For example, it might
return in ES:BX a far pointer to the TSR’s copyright notice. This assures the
caller it has located the intended TSR and not another TSR that has already
claimed the identity number in AH.

Identity numbers range from 192 to 255, since MS-DOS reserves lesser values
for its own use. During installation, a TSR must verify the uniqueness of its
number. It must not set up a multiplex handler identified by a number already in
use. A TSR usually obtains its identity number through one of the following
methods:

u The programmer assigns the number in the program.

u The user chooses the number by entering it as an argument in the command
line, placing it into an environment variable, or by altering the contents of an
initialization file.

u The TSR selects its own number through a process of trial and error.

The last method offers the most flexibility. It finds an identity number not
currently in use among the installed multiplex handlers and does not require
intervention from the user.

To use this method, a TSR calls Interrupt 2Fh during installation with AH = 192
and AL = 0. If the call returns AL = 0FFh, the program tests other registers to
determine if it has found a prior installation of itself. If the test fails, the program
resets AL to zero, increments AH to 193, and again calls Interrupt 2Fh. The
process repeats with incrementing values in AH until the TSR locates a prior
installation of itself — in which case it should abort with an appropriate message
to the user — or until AL returns as zero. The TSR can then use the value in AH
as its identity number and proceed with installation.

The SNAP.ASM program in this chapter demonstrates how a TSR can use this
trial-and-error method to select a unique identity number. During installation, the
program calls Interrupt 2Fh to verify that SNAP is not already installed. When

292 Programmer’s Guide

Filename: LMAPGC11.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 292 of 20 Printed: 10/02/00 04:22 PM

deinstalling, the program again calls Interrupt 2Fh to locate the resident TSR in
memory. SNAP’s multiplex handler services the call and returns the address of
the resident code’s program-segment prefix. The calling program can then locate
the resident code and deinstall it, as explained in “Deinstalling a TSR,”
following.

Using the Multiplex Interrupt Under MS-DOS Version 2.x
A TSR can use the Multiplex interrupt under MS-DOS version 2.x, with certain
limitations. Under version 2.x, only MS-DOS’s print spooler PRINT, itself a
TSR program, provides an Interrupt 2Fh service. The Interrupt 2Fh vector
remains null until PRINT or another TSR is installed that sets up a multiplex
handler.

Therefore, a TSR running under version 2.x must first check the existing
Interrupt 2Fh vector before installing a multiplex handler. The TSR locates the
current Interrupt 2Fh handler through Function 35h (Get Interrupt Vector). If
the function returns a null vector, the TSR’s handler will be last in the chain of
Interrupt 2Fh handlers. The handler must terminate with an IRET instruction
rather than pass control to a nonexistent routine.

PRINT in MS-DOS version 2.x does not pass control to the previous handler. If
you intend to run PRINT under version 2.x, the program must be installed
before other TSRs that also handle Interrupt 2Fh. This places PRINT’s
multiplex handler last in the chain of handlers.

Deinstalling a TSR
A TSR should provide a means for the user to remove or “deinstall” it from
memory. Deinstallation returns occupied memory to the system, offering these
benefits:

u The freed memory becomes available to subsequent programs that may
require additional memory space.

u Deinstallation restores the system to a normal state. Thus, sensitive programs
that may be incompatible with TSRs can execute without the presence of
installed routines.

A deinstallation program must first locate the TSR in memory, usually by
requesting an address from the TSR’s multiplex handler. When it has located the
TSR, the deinstallation program should then compare addresses in the vector
table with the addresses of the TSR’s handlers. A mismatch indicates that
another TSR has chained a handler to the interrupt routine. In this case, the
deinstallation program should deny the request to deinstall. If the addresses of

 Chapter 11 Writing Memory-Resident Software 293

Filename: LMAPGC11.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 293 of 21 Printed: 10/02/00 04:22 PM

the TSR’s handlers match those in the vector table, deinstallation can safely
continue.

294 Programmer’s Guide

Filename: LMAPGC11.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 294 of 22 Printed: 10/02/00 04:22 PM

You can deinstall the TSR with these three steps:

 1. Restore to the vector table the original interrupt vectors replaced by the
handler addresses.

 2. Read the segment address stored at offset 2Ch of the resident TSR’s
program segment prefix (PSP). This address points to the TSR’s
“environment block,” a list of environment variables that MS-DOS copies
into memory when it loads a program. Place the block’s address in the ES
register and call MS-DOS Function 49h (Release Memory Block) to return
the block’s memory to the operating system.

 3. Place the resident PSP segment address in ES and again call Function 49h.
This call releases the block of memory occupied by the TSR’s code and
data.

The example program in the next section demonstrates how to locate a resident
TSR through its multiplex handler, and deinstall it from memory.

Example of an Advanced TSR: SNAP
This section presents SNAP, a memory-resident program that demonstrates
most of the techniques discussed in this chapter. SNAP takes a snapshot of the
current screen and copies the text to a specified file. SNAP accommodates
screens with various column and line counts, such as CGA’s 40-column mode
or VGA’s 50-line mode. The program ignores graphics screens.

Once installed, SNAP occupies approximately 7.5K of memory. When it detects
the ALT+LEFT SHIFT+S key combination, SNAP displays a prompt for a file
specification. The user can type a new filename, accept the previous filename
by pressing ENTER, or cancel the request by pressing ESC.

SNAP reads text directly from the video buffer and copies it to the specified file.
The program sets the file pointer to the end of the file so that text is appended
without overwriting previous data. SNAP copies each line only to the last
character, ignoring trailing spaces. The program adds a carriage return–linefeed
sequence (0D0Ah) to the end of each line. This makes the file accessible to any
text editor that can read ASCII files.

To demonstrate how a program accesses resident data through the Multiplex
interrupt, SNAP can reset the display attribute of its prompt box. After installing
SNAP, run the main program with the /C option to change box colors:

SNAP /Cxx

The argument xx specifies the desired attribute as a two-digit hexadecimal
number — for example, 7C for red on white, or 0F for monochrome high

 Chapter 11 Writing Memory-Resident Software 295

Filename: LMAPGC11.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 295 of 23 Printed: 10/02/00 04:22 PM

intensity. For a list of color and monochrome display attributes, refer to the
“Tables” section of the Reference.

SNAP can deinstall itself, provided another TSR has not been loaded after it.
Deinstall SNAP by executing the main program with the /D option:

SNAP /D

If SNAP successfully deinstalls, it displays the following message:

TSR deinstalled

Building SNAP.EXE
SNAP combines four modules: SNAP.ASM, COMMON.ASM,
HANDLERS.ASM, and INSTALL.ASM. Source files are located on one of
your distribution disks. Each module stores temporary code and data in the
segments INSTALLCODE and INSTALLDATA. These segments apply only to
SNAP’s installation phase; MS-DOS recovers the memory they occupy when
the program exits through the terminate-and-stay-resident function. The
following briefly describes each module:

u SNAP.ASM contains the TSR’s main code and data.

u COMMON.ASM contains procedures used by other example programs.

u HANDLERS.ASM contains interrupt handler routines for Interrupts 08, 09,
10h, 13h, 15h, 28h, and 2Fh. It also provides simple error-trapping handlers
for Interrupts 1Bh, 23h, and 24h. Additional routines set up and deinstall the
handlers.

u INSTALL.ASM contains an exit routine that calls the terminate-and-stay-
resident function and a deinstallation routine that removes the program from
memory. The module includes error-checking services and a command-line
parser.

This building-block approach allows you to create other TSRs by replacing
SNAP.ASM and linking with the HANDLERS and INSTALL object modules.
The library of routines accommodates both keyboard-activated and time-
activated TSRs. A time-activated TSR is a program that activates at a
predetermined time of day, similar to the example program ALARM introduced
earlier in this chapter. The header comments for the Install procedure in
HANDLERS.ASM explain how to install a time-activated TSR.

You can write new TSRs in assembly language or any high-level language that
conforms to the Microsoft conventions for ordering segments. Regardless of the
language, the new code must not invoke an MS-DOS function that sets up the
I/O stack (see “Interrupting MS-DOS Functions,” earlier in this chapter). Code

296 Programmer’s Guide

Filename: LMAPGC11.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 296 of 24 Printed: 10/02/00 04:22 PM

in Microsoft C, for example, must not call getche or kbhit, since these
functions in turn call MS-DOS Functions 01 and 0Bh.

Code written in a high-level language must not check for stack overflows.
Compiler-generated stack probes do not recognize the new stack setup when the
TSR executes, and therefore must be disabled. The example program BELL.C,
included on disk with the TSR library routines, demonstrates how to disable
stack checking in Microsoft C using the check_stack pragma.

Outline of SNAP
The following sections outline in detail how SNAP works. Each part of the
outline covers a specific portion of SNAP’s code. Headings refer to earlier
sections of this chapter, providing cross-references to SNAP’s key procedures.
For example, the part of the outline that describes how SNAP searches for its
startup signal refers to the section “Auditing Hardware Events for TSR
Requests,” earlier in this chapter.

Figures 11.2 through 11.4 are flowcharts of the SNAP program. Each chart
illustrates a separate phase of SNAP’s operation, from installation through
memory-residency to deinstallation.

 Chapter 11 Writing Memory-Resident Software 297

Filename: LMAPGC11.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 297 of 25 Printed: 10/02/00 04:22 PM

Figure 11.2 Flowchart for SNAP.EXE: Installation Phase

298 Programmer’s Guide

Filename: LMAPGC11.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 298 of 26 Printed: 10/02/00 04:22 PM

Figure 11.3 Flowchart for SNAP.EXE: Resident Phase

 Chapter 11 Writing Memory-Resident Software 299

Filename: LMAPGC11.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 299 of 27 Printed: 10/02/00 04:22 PM

Figure 11.4 Flowchart for SNAP.EXE: Deinstallation Phase

Refer to the flowcharts as you read the following outline. They will help you
maintain perspective while exploring the details of SNAP’s operation. Text in
the outline cross-references the charts.

Note that information in both the outline and the flowcharts is generic. Except
for references to the SNAP procedure, all descriptions in the outline and the

300 Programmer’s Guide

Filename: LMAPGC11.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 300 of 28 Printed: 10/02/00 04:22 PM

flowcharts apply to any TSR created with the HANDLERS and INSTALL
modules.

Auditing Hardware Events for TSR Requests
To search for its startup signal, SNAP audits the keyboard with an interrupt
handler for either Interrupt 09 (keyboard) or Interrupt 15h (Miscellaneous
System Services). The Install procedure determines which of the two
interrupts to handle based on the following code:

 .IF HotScan == 0 ; If valid scan code given:
 mov ah, HotShift ; AH = hour to activate
 mov al, HotMask ; AL = minute to activate
 call GetTimeToElapse ; Get number of 5-second intervals
 mov CountDown, ax ; to elapse before activation

 .ELSE ; Force use of KeybrdMonitor as
 ; keyboard handler
 cmp Version, 031Eh ; DOS Version 3.3 or higher?
 jb setup ; No? Skip next step

; Test for IBM PS/2 series. If not PS/2, use Keybrd and
; SkipMiscServ as handlers for Interrupts 09 and 15h
; respectively. If PS/2 system, set up KeybrdMonitor as the
; Interrupt 09 handler. Audit keystrokes with MiscServ
; handler, which searches for the hot key by handling calls
; to Interrupt 15h (Miscellaneous System Services). Refer to
; Section 11.2.1 for more information about keyboard handlers.

 mov ax, 0C00h ; Function 0Ch (Get System
 int 15h ; Configuration Parameters)
 sti ; Compaq ROM may leave disabled

 jc setup ; If carry set,
 or ah, ah ; or if AH not 0,
 jnz setup ; services are not supported

; Test bit 4 to see if Intercept is implemented
 test BYTE PTR es:[bx+5], 00010000y
 jz setup

; If so, set up MiscServ as Interrupt 15h handler
 mov ax, OFFSET MiscServ
 mov WORD PTR intMisc.NewHand, ax
 .ENDIF

; Set up KeybrdMonitor as Interrupt 09 handler
 mov ax, OFFSET KeybrdMonitor
 mov WORD PTR intKeybrd.NewHand, ax

The following describes the code’s logic:

 Chapter 11 Writing Memory-Resident Software 301

Filename: LMAPGC11.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 301 of 29 Printed: 10/02/00 04:22 PM

u If the program is running under MS-DOS version 3.3 or higher and if
Interrupt 15h supports Function 4Fh, set up handler MiscServ to search for
the hot key. Handle Interrupt 09 with KeybrdMonitor only to maintain the
keyboard active flag.

u Otherwise, set up a handler for Interrupt 09 to search for the hot key. Handle
calls to Interrupt 15h with the routine SkipMiscServ, which contains this
single instruction:
jmp cs:intMisc.OldHand

The jump immediately passes control to the original Interrupt 15h routine;
thus, SkipMiscServ has no effect. It serves only to simplify coding in
other parts of the program.

At each keystroke, the keyboard interrupt handler (either Keybrd or
MiscServ) calls the procedure CheckHotKey with the scan code of the
current key. CheckHotKey compares the scan code and shift status with the
bytes HotScan and HotShift. If the current key matches, CheckHotKey
returns the carry flag clear to indicate that the user has pressed the hot key.

If the keyboard handler finds the carry flag clear, it sets the flag
TsrRequestFlag and exits. Otherwise, the handler transfers control to the
original interrupt routine to service the interrupt.

The timer handler Clock reads the request flag at every occurrence of the timer
interrupt. Clock takes no action if it finds a zero value in TsrRequestFlag.
Figures 11.1 and 11.3 depict the relationship between the keyboard and timer
handlers.

Monitoring System Status
Because SNAP produces output to both video and disk, it avoids interrupting
either video or disk operations. The program uses interrupt handlers Video and
DiskIO to monitor Interrupts 10h (video) and 13h (disk). SNAP also avoids
interrupting keyboard use. The instructions at the far label KeybrdMonitor
serve as the monitor handler for Interrupt 09 (keyboard).

The three handlers perform similar functions. Each sets an active flag and then
calls the original routine to service the interrupt. When the service routine
returns, the handler clears the active flag to indicate that the device is no longer
in use.

302 Programmer’s Guide

Filename: LMAPGC11.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 302 of 30 Printed: 10/02/00 04:22 PM

The BIOS Interrupt 13h routine clears or sets the carry flag to indicate the
operation’s success or failure. DiskIO therefore preserves the flags register
when returning, as shown here:

DiskIO PROC FAR
 mov cs:intDiskIO.Flag, TRUE ; Set active flag
; Simulate interrupt by pushing flags and far-calling old
; Int 13h routine
 pushf
 call cs:intDiskIO.OldHand
; Clear active flag without disturbing flags register
 mov cs:intDiskIO.Flag, FALSE
 sti ; Enable interrupts
; Simulate IRET without popping flags (since services use
; carry flag)
 ret 2
DiskIO ENDP

The terminating RET 2 instruction discards the original flags from the stack
when the handler returns.

Determining Whether to Invoke the TSR
The procedure CheckRequest determines whether the TSR:

u Has been requested.

u Can safely interrupt the system.

Each time it executes, the timer handler Clock calls CheckRequest to read
the flag TsrRequestFlag. If CheckRequest finds the flag set, it scans other
flags maintained by the TSR’s interrupt handlers and by MS-DOS. These flags
indicate the current system status. As the flowchart in Figure 11.3 shows,
CheckRequest calls CheckDos (described following) to determine the status
of the operating system. CheckRequest then calls CheckHardware to check
hardware status.

CheckHardware queries the interrupt controller to determine if any device is
currently being serviced. It also reads the active flags maintained by the
KeybrdMonitor, Video, and DiskIO handlers. If the controller, keyboard,
video, and disk are all inactive, CheckHardware clears the carry flag and
returns.

CheckRequest indicates system status with the carry flag. If the procedure
returns the carry flag set, the caller exits without invoking the TSR. A clear
carry signals that the caller can safely execute the TSR.

 Chapter 11 Writing Memory-Resident Software 303

Filename: LMAPGC11.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 303 of 31 Printed: 10/02/00 04:22 PM

Determining MS-DOS Activity
As Figure 11.2 shows, the procedure GetDosFlags locates the InDos flag
during SNAP’s installation phase. GetDosFlags calls Function 34h (Get
Address of InDos Flag) and then stores the flag’s address in the far pointer
InDosAddr.

When called from the CheckRequest procedure, CheckDos reads InDos to
determine whether the operating system is active. Note that CheckDos reads
the flag directly from the address in InDosAddr. It does not call Function 34h
to locate the flag, since it has not yet established whether MS-DOS is active.
This follows from the general rule that interrupt handlers must not call any MS-
DOS function.

The next two sections more fully describe the procedure CheckDos.

Interrupting MS-DOS Functions
Figure 11.3 shows that the call to CheckDos can initiate either from Clock
(timer handler) or Idle (Interrupt 28h handler). If CheckDos finds the InDos
flag set, it reacts in different ways, depending on the caller:

u If called from Clock, CheckDos cannot know which MS-DOS function is
active. In this case, it returns the carry flag set, indicating that Clock must
deny the request for the TSR.

u If called from Idle, CheckDos assumes that one of the low-order polling
functions is active. It therefore clears the carry flag to let the caller know the
TSR can safely interrupt the function.

For more information on this topic, see the section “Interrupting MS-DOS
Functions,” earlier in this chapter.

Monitoring the Critical Error Flag
The procedure GetDosFlags (Figure 11.2) determines the address of the
Critical Error flag. The procedure stores the flag’s address in the far pointer
CritErrAddr.

When called from either the Clock or Idle handlers, CheckDos reads the
Critical Error flag. A nonzero value in the flag indicates that the Critical Error
Handler (Interrupt 24h) is processing a critical error and the TSR must not
interrupt. In this case, CheckDos sets the carry flag and returns, causing the
caller to exit without executing the TSR.

Trapping Errors
As Figure 11.3 shows, Clock and Idle invoke the TSR by calling the
procedure Activate. Before calling the main body of the TSR, Activate
sets up the following handlers:

304 Programmer’s Guide

Filename: LMAPGC11.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 304 of 32 Printed: 10/02/00 04:22 PM

Handler Name For Interrupt Receives Control When

CtrlBreak 1Bh (CTRL+BREAK Handler) CTRL+BREAK sequence entered at
keyboard

CtrlC 23h (CTRL+C Handler) MS-DOS detects a CTRL+C sequence
from the keyboard or input stream

CritError 24h (Critical Error Handler) MS-DOS encounters a critical error

These handlers trap keyboard break signals and critical errors that would
otherwise trigger the original handler routines. The CtrlBreak and CtrlC
handlers contain a single IRET instruction, thus rendering a keyboard break
ineffective. The CritError handler contains the following instructions:

CritError PROC FAR
 sti
 sub al, al ; Assume DOS 2.x
 ; Set AL = 0 for ignore error
 .IF cs:major != 2 ; If DOS 3.x, set AL = 3
 mov al, 3 ; DOS call fails
 .ENDIF
 iret
CritError ENDP

The return code in AL stops MS-DOS from taking further action when it
encounters a critical error.

As an added precaution, Activate also calls Function 33h (Get or Set
CTRL+BREAK Flag) to determine the current setting of the checking flag.
Activate stores the setting, then calls Function 33h again to turn off break
checking.

When the TSR’s main procedure finishes its work, it returns to Activate,
which restores the original setting for the checking flag. It also replaces the
original vectors for Interrupts 1Bh, 23h, and 24h.

SNAP’s error-trapping safeguards enable the TSR to retain control in the event
of an error. Pressing CTRL+BREAK or CTRL+C at SNAP’s prompt has no effect. If
the user specifies a nonexistent drive — a critical error — SNAP merely beeps the
speaker and returns normally.

Preserving an Existing Condition
Activate records the stack pointer SS:SP in the doubleword OldStackAddr.
The procedure then resets the pointer to the address of a new stack before
calling the TSR. Switching stacks ensures that SNAP has adequate stack depth
while it executes.

The label NewStack points to the top of the new stack buffer, located in the
code segment of the HANDLERS.ASM module. The equate constant

 Chapter 11 Writing Memory-Resident Software 305

Filename: LMAPGC11.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 305 of 33 Printed: 10/02/00 04:22 PM

STACK_SIZ determines the size of the stack. The include file TSR.INC
contains the declaration for STACK_SIZ.

Activate preserves the values in all registers by pushing them onto the new
stack. It does not push DS, since that register is already preserved in the Clock
or Idle handler.

SNAP does not alter the application’s video configuration other than by moving
the cursor. Figure 11.3 shows that Activate calls the procedure Snap, which
executes Interrupt 10h to determine the current cursor position. Snap stores the
row and column in the word OldPos. The procedure restores the cursor to its
original location before returning to Activate.

Preserving Existing Data
Because SNAP does not call an MS-DOS function that writes to the DTA, it
does not need to preserve the DTA belonging to the interrupted process.
However, the code for switching and restoring the DTA is included within
IFDEF blocks in the procedure Activate. The equate constant DTA_SIZ,
declared in the TSR.INC file, governs the assembly of the blocks as well as the
size of the new DTA.

It is possible for SNAP to overwrite existing extended error information by
committing a file error. The program does not attempt to preserve the original
information by calling Functions 59h and 5Dh. In certain rare instances, this
may confuse the interrupted process after SNAP returns.

Communicating Through the Multiplex Interrupt
The program uses the Multiplex interrupt (Interrupt 2Fh) to

u Verify that SNAP is installed.

u Select a unique multiplex identity number.

u Locate resident data.

For more information about Interrupt 2Fh, see the section “Communicating
through the Multiplex Interrupt,” earlier in this chapter.

SNAP accesses Interrupt 2Fh through the procedure CallMultiplex, as
shown in Figures 11.2 and 11.4. By searching for a prior installation,
CallMultiplex ensures that SNAP is not installed more than once. During
deinstallation, CallMultiplex locates data required to deinstall the resident
TSR.

The procedure Multiplex serves as SNAP’s multiplex handler. When it
recognizes its identity number in AH, Multiplex determines its tasks from the
function number in the AL register. The handler responds to Function 0 by

306 Programmer’s Guide

Filename: LMAPGC11.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 306 of 34 Printed: 10/02/00 04:22 PM

returning AL equalling 0FFh and ES:DI pointing to an identifier string unique to
SNAP.

CallMultiplex searches for the handler by invoking Interrupt 2Fh in a loop,
beginning with a trial identity number of 192 in AH. At the start of each iteration
of the loop, the procedure sets AL to zero to request presence verification from
the multiplex handler. If the handler returns 0FFh in AL, CallMultiplex
compares its copy of SNAP’s identifier string with the text at memory location
ES:DI. A failed match indicates that the multiplex handler servicing the call is
not SNAP’s handler. In this case, CallMultiplex increments AH and cycles
back to the beginning of the loop.

The process repeats until the call to Interrupt 2Fh returns a matching identifier
string at ES:DI, or until AL returns as zero. A matching string verifies that
SNAP is installed, since its multiplex handler has serviced the call. A return
value of zero indicates that SNAP is not installed and that no multiplex handler
claims the trial identity number in AH. In this case, SNAP assigns the number to
its own handler.

Deinstalling a TSR
During deinstallation, CallMultiplex locates SNAP’s multiplex handler as
described previously. The handler Multiplex receives the verification request
and returns in ES the code segment of the resident program.

Deinstall reads the addresses of the following interrupt handlers from the
data structure in the resident code segment:

Handler Name Description

Clock Timer handler

Keybrd Keyboard handler (non-PS/2)

KeybrdMonitor Keyboard monitor handler (PS/2)

Video Video monitor handler

DiskIO Disk monitor handler

SkipMiscServ Miscellaneous Systems Services handler (non-PS/2)

MiscServ Miscellaneous Systems Services handler (PS/2)

Idle MS-DOS Idle handler

Multiplex Multiplex handler

Deinstall calls MS-DOS Function 35h (Get Interrupt Vector) to retrieve the
current vectors for each of the listed interrupts. By comparing each handler
address with the corresponding vector, Deinstall ensures that SNAP can be
safely deinstalled. Failure in any of the comparisons indicates that another TSR
has been installed after SNAP and has set up a handler for the same interrupt. In

 Chapter 11 Writing Memory-Resident Software 307

Filename: LMAPGC11.DOC Project:

Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 307 of 35 Printed: 10/02/00 04:22 PM

this case, Deinstall returns an error code, stopping the program with the
following message:

Can’t deinstall TSR

If all addresses match, Deinstall calls Interrupt 2Fh with SNAP’s identity
number in AH and AL set to 1. The handler Multiplex responds by returning
in ES the address of the resident code’s PSP. Deinstall then calls MS-DOS
Function 25h (Set Interrupt Vector) to restore the vectors for the original service
routines. This is called “unhooking” or “unchaining” the interrupt handlers.

After unhooking all of SNAP’s interrupt handlers, Deinstall returns with AX
pointing to the resident code’s PSP. The procedure FreeTsr then calls MS-
DOS Function 49h (Release Memory) to return SNAP’s memory to the
operating system. The program ends with the message

TSR deinstalled

to indicate a successful deinstallation.

Deinstalling SNAP does not guarantee more available memory space for the
next program. If another TSR loads after SNAP but handles interrupts other
than 08, 09, 10h, 13h, 15h, 28h, or 2Fh, SNAP still deinstalls properly. The
result is a harmless gap of deallocated memory formerly occupied by SNAP.
MS-DOS can use the free memory to store the next program’s environment
block. However, MS-DOS loads the program itself above the still-resident TSR.

