
 225

Filename: LMAPGC09.DOC Project:

Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 225 of 1 Printed: 10/02/00 04:22 PM

C H A P T E R 9

A “macro” is a symbolic name you give to a series of characters (a text macro)
or to one or more statements (a macro procedure or function). As the assembler
evaluates each line of your program, it scans the source code for names of
previously defined macros. When it finds one, it substitutes the macro text for
the macro name. In this way, you can avoid writing the same code several
places in your program.

This chapter describes the following types of macros:

u Text macros, which expand to text within a source statement.

u Macro procedures, which expand to one or more complete statements and
can optionally take parameters.

u Repeat blocks, which generate a group of statements a specified number of
times or until a specified condition becomes true.

u Macro functions, which look like macro procedures and can be used like text
macros but which also return a value.

u Predefined macro functions and string directives, which perform string
operations.

This chapter explains how to use macros for simple code substitutions and how
to write sophisticated macros with parameter lists and repeat loops. It also
describes how to use these features in conjunction with local symbols, macro
operators, and predefined macro functions.

Using Macros

226 Programmer’s Guide

Filename: LMAPGC09.DOC Project:

Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 226 of 2 Printed: 10/02/00 04:22 PM

Text Macros
You can give a sequence of characters a symbolic name and then use the name
in place of the text later in the source code. The named text is called a text
macro.

The TEXTEQU directive defines a text macro, as these examples show:

name TEXTEQU <text>
name TEXTEQU macroId | textmacro
name TEXTEQU %constExpr

In the previous lines, text is a sequence of characters enclosed in angle brackets,
macroId is a previously defined macro function, textmacro is a previously
defined text macro, and %constExpr is an expression that evaluates to text.

Here are some examples:

msg TEXTEQU <Some text> ; Text assigned to symbol
string TEXTEQU msg ; Text macro assigned to symbol
msg TEXTEQU <Some other text> ; New text assigned to symbol
value TEXTEQU %(3 + num) ; Text representation of resolved
 ; expression assigned to symbol

The first line assigns text to the symbol msg. The second line equates the text of
the msg text macro with a new text macro called string. The third line assigns
new text to msg. Although msg has new text, string retains its original text
value. The fourth line assigns 7 to value if num equals 4. If a text macro
expands to another text macro (or macro function, as discussed on page 248),
the resulting text macro will expand recursively.

Text macros are useful for naming strings of text that do not evaluate to
integers. For example, you might use a text macro to name a floating-point
constant or a bracketed expression. Here are some practical examples:

pi TEXTEQU <3.1416> ; Floating point constant
WPT TEXTEQU <WORD PTR> ; Sequence of key words
arg1 TEXTEQU <[bp+4]> ; Bracketed expression

Macro Procedures
If your program must perform the same task many times, you can avoid
repeatedly typing the same statements each time by writing a macro procedure.
Think of macro procedures (commonly called macros) as text-processing
mechanisms that automatically generate repeated text.

 Chapter 9 Using Macros 227

Filename: LMAPGC09.DOC Project:

Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 227 of 3 Printed: 10/02/00 04:22 PM

This section uses the term “macro procedure” rather than “macro” when
necessary to distinguish between a macro procedure and a macro function.
Macro functions are described in “Returning Values with Macro Functions.”

Conforming to common usage, this chapter occasionally speaks of “calling” a
macro, a term that deserves further scrutiny. It’s natural to think of a program
calling a macro procedure in the same way it calls a normal subroutine
procedure, because they seem to perform identically. However, a macro is
simply a representative for real code. Wherever a macro name appears in your
program, so in reality does all the code the macro represents. A macro does not
cause the processor to vector off to a new location as does a normal procedure.
Thus, the expression “calling a macro” may imply the effect, but does not
accurately describe what actually occurs.

Creating Macro Procedures
You can define a macro procedure without parameters by placing the desired
statements between the MACRO and ENDM directives:

name MACRO
statements
ENDM

For example, suppose you want a program to beep when it encounters certain
errors. You could define a beep macro as follows:

beep MACRO
 mov ah, 2 ;; Select DOS Print Char function
 mov dl, 7 ;; Select ASCII 7 (bell)
 int 21h ;; Call DOS
ENDM

The double semicolons mark the beginning of macro comments. Macro
comments appear in a listing file only at the macro’s initial definition, not at the
point where the macro is referenced and expanded. Listings are usually easier to
read if the comments aren’t repeatedly expanded. However, regular comments
(those with a single semicolon) are listed in macro expansions. See Appendix C
for listing files and examples of how macros are expanded in listings.

Once you define a macro, you can call it anywhere in the program by using the
macro’s name as a statement. The following example calls the beep macro two
times if an error flag has been set.

 .IF error ; If error flag is true
 beep ; execute macro two times
 beep
 .ENDIF

228 Programmer’s Guide

Filename: LMAPGC09.DOC Project:

Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 228 of 4 Printed: 10/02/00 04:22 PM

During assembly, the instructions in the macro replace the macro reference. The
listing file shows:

 .IF error
0017 80 3E 0000 R 00 * cmp error, 000h
001C 74 0C * je @C0001
 beep
001E B4 02 1 mov ah, 2
0020 B2 07 1 mov dl, 7
0022 CD 21 1 int 21h
 beep
0024 B4 02 1 mov ah, 2
0026 B2 07 1 mov dl, 7
0028 CD 21 1 int 21h
 .ENDIF
002A *@C0001:

Contrast this with the results of defining beep as a procedure using the PROC
directive and then calling it with the CALL instruction.

Many such tasks can be handled as either a macro or a procedure. In deciding
which method to use, you must choose between speed and size. For repetitive
tasks, a procedure produces smaller code, because the instructions physically
appear only once in the assembled program. However, each call to the
procedure involves the additional overhead of a CALL and RET instruction.
Macros do not require a change in program flow and so execute faster, but
generate the same code multiple times rather than just once.

Passing Arguments to Macros
By defining parameters for macros, you can define a general task and then
execute variations of it by passing different arguments each time you call the
macro. The complete syntax for a macro procedure includes a parameter list:

name MACRO parameterlist
statements
ENDM

The parameterlist can contain any number of parameters. Use commas to
separate each parameter in the list. You cannot use reserved words as parameter
names unless you disable the keyword with OPTION NOKEYWORD. You
must also set the compatibility mode with OPTION M510 or the /Zm
command-line option.

To pass arguments to a macro, place the arguments after the macro name when
you call the macro:

macroname arglist

 Chapter 9 Using Macros 229

Filename: LMAPGC09.DOC Project:

Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 229 of 5 Printed: 10/02/00 04:22 PM

The assembler treats as one item all text between matching quotation marks in
an arglist.

The beep macro introduced in the previous section used the MS-DOS interrupt
to write only the bell character (ASCII 7). We can rewrite the macro with a
parameter that accepts any character:

writechar MACRO char
 mov ah, 2 ;; Select DOS Print Char function
 mov dl, char ;; Select ASCII char
 int 21h ;; Call DOS
ENDM

Whenever it expands the macro, the assembler replaces each instance of char
with the given argument value. The rewritten macro now writes any character to
the screen, not just ASCII 7:

 writechar 7 ; Causes computer to beep
 writechar ‘A’ ; Writes A to screen

If you pass more arguments than there are parameters, the additional arguments
generate a warning (unless you use the VARARG keyword; see page 242). If
you pass fewer arguments than the macro procedure expects, the assembler
assigns empty strings to the remaining parameters (unless you have specified
default values). This may cause errors. For example, a reference to the
writechar macro with no argument results in the following line:

 mov dl,

The assembler generates an error for the expanded statement but not for the
macro definition or the macro call.

You can make macros more flexible by leaving off arguments or adding
additional arguments. The next section tells some of the ways your macros can
handle missing or extra arguments.

Specifying Required and Default Parameters
Macro parameters can have special attributes to make them more flexible and
improve error handling. You can make parameters required, give them default
values, or vary their number. Variable parameters are used almost exclusively
with the FOR directive, so are covered in “FOR Loops and Variable-Length
Parameters,” later in this chapter.

230 Programmer’s Guide

Filename: LMAPGC09.DOC Project:

Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 230 of 6 Printed: 10/02/00 04:22 PM

The syntax for a required parameter is:

parameter:REQ

For example, you can rewrite the writechar macro to require the char
parameter:

writechar MACRO char:REQ
 mov ah, 2 ;; Select DOS Print Char function
 mov dl, char ;; Select ASCII char
 int 21h ;; Call DOS
ENDM

If the call does not include a matching argument, the assembler reports the error
in the line that contains the macro reference. REQ can thus improve error
reporting.

You can also accommodate missing parameters by specifying a default value,
like this:

parameter:=textvalue

Suppose that you often use writechar to beep by printing ASCII 7. The
following macro definition uses an equal sign to tell the assembler to assume the
parameter char is 7 unless you specify otherwise:

writechar MACRO char:=<7>
 mov ah, 2 ;; Select DOS Print Char function
 mov dl, char ;; Select ASCII char
 int 21h ;; Call DOS
ENDM

If a reference to this macro does not include the argument char, the assembler
fills in the blank with the default value of 7 and the macro beeps when called.

Enclose the default parameter value in angle brackets so the assembler
recognizes the supplied value as a text value. This is explained in detail in “Text
Delimiters and the Literal-Character Operator,” later in this chapter.

Missing arguments can also be handled with the IFB, IFNB, .ERRB, and
.ERRNB directives. They are described in the section “Conditional Directives”
in chapter 1 and in Help. Here is a slightly more complex macro that uses some
of these techniques:

 Chapter 9 Using Macros 231

Filename: LMAPGC09.DOC Project:

Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 231 of 7 Printed: 10/02/00 04:22 PM

Scroll MACRO distance:REQ, attrib:=<7>, tcol, trow, bcol, brow
 IFNB <tcol> ;; Ignore arguments if blank
 mov cl, tcol
 ENDIF
 IFNB <trow>
 mov ch, trow
 ENDIF
 IFNB <bcol>
 mov dl, bcol
 ENDIF
 IFNB <brow>
 mov dh, brow
 ENDIF
 IFDIFI <attrib>, <bh> ;; Don’t move BH onto itself
 mov bh, attrib
 ENDIF
 IF distance LE 0 ;; Negative scrolls up, positive down
 mov ax, 0600h + (-(distance) AND 0FFh)
 ELSE
 mov ax, 0700h + (distance AND 0FFh)
 ENDIF
 int 10h
ENDM

In this macro, the distance parameter is required. The attrib parameter has
a default value of 7 (white on black), but the macro also tests to make sure the
corresponding argument isn’t BH, since it would be inefficient (though legal) to
load a register onto itself. The IFNB directive is used to test for blank
arguments. These are ignored to allow the user to manipulate rows and columns
directly in registers CX and DX at run time.

The following shows two valid ways to call the macro:

 ; Assume DL and CL already loaded
 dec dh ; Decrement top row
 inc ch ; Increment bottom row
 Scroll -3 ; Scroll white on black dynamic
 ; window up three lines
 Scroll 5, 17h, 2, 2, 14, 12 ; Scroll white on blue constant
 ; window down five lines

This macro can generate completely different code, depending on its arguments.
In this sense, it is not comparable to a procedure, which always has the same
code regardless of arguments.

232 Programmer’s Guide

Filename: LMAPGC09.DOC Project:

Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 232 of 8 Printed: 10/02/00 04:22 PM

Defining Local Symbols in Macros
You can make a symbol local to a macro by identifying it at the start of the
macro with the LOCAL directive. Any identifier may be declared local.

You can choose whether you want numeric equates and text macros to be local
or global. If a symbol will be used only inside a particular macro, you can
declare it local so that the name will be available for other declarations outside
the macro.

You must declare as local any labels within a macro, since a label can occur
only once in the source. The LOCAL directive makes a special instance of the
label each time the macro appears. This prevents redefinition of the label when
expanding the macro. It also allows you to reuse the label elsewhere in your
code.

You must declare all local symbols immediately following the MACRO
statement (although blank lines and comments may precede the local symbol).
Separate each symbol with a comma. You can attach comments to the LOCAL
statement and list multiple LOCAL statements in the macro. Here is an example
macro that declares local labels:

power MACRO factor:REQ, exponent:REQ
 LOCAL again, gotzero ;; Local symbols
 sub dx, dx ;; Clear top
 mov ax, 1 ;; Multiply by one on first loop
 mov cx, exponent ;; Load count
 jcxz gotzero ;; Done if zero exponent
 mov bx, factor ;; Load factor
again:
 mul bx ;; Multiply factor times exponent
 loop again ;; Result in AX
gotzero:
ENDM

If the labels again and gotzero were not declared local, the macro would
work the first time it is called, but it would generate redefinition errors on
subsequent calls. MASM implements local labels by generating different names
for them each time the macro is called. You can see this in listing files. The
labels in the power macro might be expanded to ??0000 and ??0001 on the
first call and to ??0002 and ??0003 on the second.

 Chapter 9 Using Macros 233

Filename: LMAPGC09.DOC Project:

Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 233 of 9 Printed: 10/02/00 04:22 PM

You should avoid using anonymous labels in macros (see “Anonymous Labels”
in Chapter 7). Although legal, they can produce unwanted results if you expand
a macro near another anonymous label. For example, consider what happens in
the following:

Update MACRO arg1
@@: .
 .
 .
 loop @B
ENDM
 .
 .
 .
 jcxz @F
 Update ax
@@:

Expanding Update places another anonymous label between the jump and its
target. The line

 jcxz @F

consequently jumps to the start of the loop rather than over the loop — exactly
the opposite of what the programmer intended.

Assembly-Time Variables and Macro Operators
In writing macros, you will often assign and modify values assigned to symbols.
Think of these symbols as assembly-time variables. Like memory variables,
they are symbols that represent values. But since macros are processed at
assembly time, any symbol modified in a macro must be resolved as a constant
by the end of assembly.

The three kinds of assembly-time variables are:

u Macro parameters

u Text macros
u Macro functions

When the assembler expands a macro, it processes the symbols in the order
shown here. MASM first replaces macro parameters with the text of their actual
arguments, then expands text macros.

234 Programmer’s Guide

Filename: LMAPGC09.DOC Project:

Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 234 of 10 Printed: 10/02/00 04:22 PM

Macro parameters are similar to procedure parameters in some ways, but they
also have important differences. In a procedure, a parameter has a type and a
memory location. Its value can be modified within the procedure. In a macro, a
parameter is a placeholder for the argument text. The value can only be assigned
to another symbol or used directly; it cannot be modified. The macro may
interpret the argument text it receives either as a numeric value or as a text
value.

It is important to understand the difference between text values and numeric
values. Numeric values can be processed with arithmetic operators and assigned
to numeric equates. Text values can be processed with macro functions and
assigned to text macros.

Macro operators are often helpful when processing assembly-time variables.
Table 9.1 shows the macro operators that MASM provides.

Table 9.1 MASM Macro Operators

Symbol Name Description

< > Text Delimiters Opens and closes a literal string.

! Literal-Character Operator Treats the next character as a literal character,
even if it would normally have another meaning.

% Expansion Operator Causes the assembler to expand a constant
expression or text macro.

& Substitution Operator Tells the assembler to replace a macro
parameter or text macro name with its
actual value.

The next sections explain these operators in detail.

Text Delimiters and the Literal-Character Operator
The angle brackets (< >) are text delimiters. A text value is usually delimited
when assigning a text macro. You can do this with TEXTEQU, as previously
shown, or with the SUBSTR and CATSTR directives discussed in “String
Directives and Predefined Functions,” later in this chapter.

By delimiting the text of macro arguments, you can pass text that includes
spaces, commas, semicolons, and other special characters. The following
example expands a macro called work in two different ways:

 work <1, 2, 3, 4, 5> ; Passes one argument with 13 chars,
 ; including commas and spaces
 work 1, 2, 3, 4, 5 ; Passes five arguments, each
 ; with 1 character

 Chapter 9 Using Macros 235

Filename: LMAPGC09.DOC Project:

Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 235 of 11 Printed: 10/02/00 04:22 PM

The literal-character operator (!) lets you include angle brackets as part of a
delimited text value, so the assembler does not interpret them as delimiters. The
assembler treats the character following ! literally rather than as a special
character, like this:

errstr TEXTEQU <Expression !> 255> ; errstr = “Expression > 255”

Text delimiters also have a special use with the FOR directive, as explained in
“FOR Loops and Variable-Length Parameters,” later in this chapter.

Expansion Operator
The expansion operator (%) expands text macros or converts constant
expressions into their text representations. It performs these tasks differently in
different contexts, as discussed in the following.

Converting Numeric Expressions to Text
The expansion operator can convert numbers to text. The operator forces
immediate evaluation of a constant expression and replaces it with a text value
consisting of the digits of the result. The digits are generated in the current radix
(default decimal).

This application of the expansion operator is useful when defining a text macro,
as the following lines show. Notice how you can enclose expressions with
parentheses to make them more readable:

a TEXTEQU <3 + 4> ; a = “3 + 4”
b TEXTEQU %3 + 4 ; b = “7”
c TEXTEQU %(3 + 4) ; c = “7”

When assigning text macros, you can use numeric equates in the constant
expressions, but not text macros:

num EQU 4 ; num = 4
numstr TEXTEQU <4> ; numstr = <4>
a TEXTEQU %3 + num ; a = <7>
b TEXTEQU %3 + numstr ; b = <7>

The expansion operator gives you flexibility when passing arguments to macros.
It lets you pass a computed value rather than the literal text of an expression.
The following example illustrates by defining a macro

work MACRO arg
 mov ax, arg * 4
ENDM

236 Programmer’s Guide

Filename: LMAPGC09.DOC Project:

Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 236 of 12 Printed: 10/02/00 04:22 PM

which accepts different arguments:

 work 2 + 3 ; Passes “2 + 3”
 ; Code: mov ax, 2 + (3 * 4)
 work %2 + 3 ; Passes 5
 ; Code: mov ax, 5 * 4
 work 2 + num ; Passes “2 + num”
 work %2 + num ; Passes “6”
 work 2 + numstr ; Passes “2 + numstr”
 work %2 + numstr ; Passes “6”

You must consider operator precedence when using the expansion operator.
Parentheses inside the macro can force evaluation in a desired order:

work MACRO arg
 mov ax, (arg) * 4
ENDM

 work 2 + 3 ; Code: mov ax, (2 + 3) * 4
 work %2 + 3 ; Code: mov ax, (5) * 4

Several other uses for the expansion operator are reviewed in “Returning Values
with Macro Functions,” later in this chapter.

Expansion Operator as First Character on a Line
The expansion operator has a different meaning when used as the first character
on a line. In this case, it instructs the assembler to expand any text macros and
macro functions it finds on the rest of the line.

This feature makes it possible to use text macros with directives such as ECHO,
TITLE, and SUBTITLE, which take an argument consisting of a single text
value. For instance, ECHO displays its argument to the standard output device
during assembly. Such expansion can be useful for debugging macros and
expressions, but the requirement that its argument be a single text value may
have unexpected results. Consider this example:

 ECHO Bytes per element: %(SIZEOF array / LENGTHOF array)

Instead of evaluating the expression, this line echoes it:

Bytes per element: %(SIZEOF array / LENGTHOF array)

However, you can achieve the desired result by assigning the text of the
expression to a text macro and then using the expansion operator at the
beginning of the line to force expansion of the text macro.

 Chapter 9 Using Macros 237

Filename: LMAPGC09.DOC Project:

Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 237 of 13 Printed: 10/02/00 04:22 PM

temp TEXTEQU %(SIZEOF array / LENGTHOF array)
% ECHO Bytes per element: temp

Note that you cannot get the same results simply by putting the % at the
beginning of the first echo line, because % expands only text macros, not
numeric equates or constant expressions.

Here are more examples of the expansion operator at the start of a line:

; Assume memmod, lang, and os specified with /D option
% SUBTITLE Model: memmod Language: lang Operating System: os

; Assume num defined earlier
tnum TEXTEQU %num
% .ERRE num LE 255, <Failed because tnum !> 255>

Substitution Operator
References to a parameter within a macro can sometimes be ambiguous. In such
cases, the assembler may not expand the argument as you intend. The
substitution operator (&) lets you identify unambiguously any parameter within a
macro.

As an example, consider the following macro:

errgen MACRO num, msg
 PUBLIC errnum
 errnum BYTE “Error num: msg”
ENDM

This macro is open to several interpretations:

u Is errnum a distinct word or the word err next to the parameter num?

u Should num and msg within the string be treated literally as part of the string
or as arguments?

In each case, the assembler chooses the most literal interpretation. That is, it
treats errnum as a distinct word, and num and msg as literal parts of the string.

The substitution operator can force different interpretations. If we rewrite the
macro with the & operator, it looks like this:

errgen MACRO num, msg
 PUBLIC err&num
 err&num BYTE “Error &num: &msg”
ENDM

238 Programmer’s Guide

Filename: LMAPGC09.DOC Project:

Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 238 of 14 Printed: 10/02/00 04:22 PM

When called with the following arguments,

errgen 5, <Unreadable disk>

the macro now generates this code:

 PUBLIC err5
err5 BYTE “Error 5: Unreadable disk”

When it encounters the & operator, the assembler interprets subsequent text as a
parameter name until the next & or until the next separator character (such as a
space, tab, or comma). Thus, the assembler correctly parses the expression
err&num because num is delimited by & and a space. The expression could also
be written as err&num&, which again unambiguously identifies num as a
parameter.

The rule also works in reverse. You can delimit a parameter reference with & at
the end rather than at the beginning. For example, if num is 5, the expression
num&12 resolves to “512.”

The assembler processes substitution operators from left to right. This can have
unexpected results when you are pasting together two macro parameters. For
example, if arg1 has the value var and arg2 has the value 3, you could paste
them together with this statement:

&arg1&&arg2& BYTE “Text”

Eliminating extra substitution operators, you might expect the following to be
equivalent:

&arg1&arg2 BYTE “Text”

However, this actually produces the symbol vararg2, because in processing
from left to right, the assembler associates both the first and the second &
symbols with the first parameter. The assembler replaces &arg1& by var,
producing vararg2. The arg2 is never evaluated. The correct abbreviation is:

arg1&&arg2 BYTE “Text”

which produces the desired symbol var3. The symbol arg1&&arg2 is replaced
by var&arg2, which is replaced by var3.

The substitution operator is also necessary if you want to substitute a text macro
inside quotes. For example,

 Chapter 9 Using Macros 239

Filename: LMAPGC09.DOC Project:

Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 239 of 15 Printed: 10/02/00 04:22 PM

arg TEXTEQU <hello>
%echo This is a string “&arg” ; Produces: This is a string “hello”
%echo This is a string “arg” ; Produces: This is a string “arg”

You can also use the substitution operator in lines beginning with the expansion
operator (%) symbol, even outside macros (see page 236). It may be necessary
to use the substitution operator to paste text macro names to adjacent characters
or symbol names, as shown here:

text TEXTEQU <var>
value TEXTEQU %5
% ECHO textvalue is text&&value

This echoes the message

textvalue is var5

Macro substitution always occurs before evaluation of the high-level control
structures. The assembler may therefore mistake a bit-test operator (&) in your
macro for a substitution operator. You can guarantee the assembler correctly
recognizes a bit-test operator by enclosing its operands in parentheses, as shown
here:

test MACRO x
 .IF ax==&x ; &x substituted with parameter value
 mov ax, 10
 .ELSEIF ax&(x) ; & is bitwise AND
 mov ax, 20
 .ENDIF
ENDM

The rules for using the substitution operator have changed significantly since
MASM 5.1, making macro behavior more consistent and flexible. If you have
macros written for MASM 5.1 or earlier, you can specify the old behavior by
using OLDMACROS or M510 with the OPTION directive (see page 24).

Defining Repeat Blocks with Loop Directives
A “repeat block” is an unnamed macro defined with a loop directive. The loop
directive generates the statements inside the repeat block a specified number of
times or until a given condition becomes true.

MASM provides several loop directives, which let you specify the number of
loop iterations in different ways. Some loop directives can also accept arguments
for each iteration. Although the number of iterations is usually specified in the
directive, you can use the EXITM directive to exit the loop early.

240 Programmer’s Guide

Filename: LMAPGC09.DOC Project:

Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 240 of 16 Printed: 10/02/00 04:22 PM

Repeat blocks can be used outside macros, but they frequently appear inside
macro definitions to perform some repeated operation in the macro. Since repeat
blocks are macros themselves, they end with the ENDM directive.

 Chapter 9 Using Macros 241

Filename: LMAPGC09.DOC Project:

Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 241 of 17 Printed: 10/02/00 04:22 PM

This section explains the following four loop directives: REPEAT, WHILE,
FOR, and FORC. In versions of MASM prior to 6.0, REPEAT was called
REPT, FOR was called IRP, and FORC was called IRPC. MASM 6.1
recognizes the old names.

The assembler evaluates repeat blocks on the first pass only. You should
therefore avoid using address spans as loop counters, as in this example:

REPEAT (OFFSET label1 - OFFSET label2) ; Don't do this!

Since the distance between two labels may change on subsequent assembly
passes as the assembler optimizes code, you should not assume that address
spans remain constant between passes.

The REPEAT and WHILE directives should not be confused with the
REPEAT and WHILE directives (see “Loop-Generating Directives” in Chapter
7), which generate loop and jump instructions for run-time program control.

REPEAT Loops
REPEAT is the simplest loop directive. It specifies the number of times to
generate the statements inside the macro. The syntax is:

REPEAT constexpr
statements
ENDM

The constexpr can be a constant or a constant expression, and must contain no
forward references. Since the repeat block expands at assembly time, the
number of iterations must be known then.

Here is an example of a repeat block used to generate data. It initializes an array
containing sequential ASCII values for all uppercase letters.

alpha LABEL BYTE ; Name the data generated
letter = ‘A’ ; Initialize counter
REPEAT 26 ;; Repeat for each letter
 BYTE letter ;; Allocate ASCII code for letter
 letter = letter + 1 ;; Increment counter
ENDM

Note

242 Programmer’s Guide

Filename: LMAPGC09.DOC Project:

Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 242 of 18 Printed: 10/02/00 04:22 PM

Here is another use of REPEAT, this time inside a macro:

beep MACRO iter:=<3>
 mov ah, 2 ;; Character output function
 mov dl, 7 ;; Bell character
 REPEAT iter ;; Repeat number specified by macro
 int 21h ;; Call DOS
 ENDM
ENDM

WHILE Loops
The WHILE directive is similar to REPEAT, but the loop continues as long as a
given condition is true. The syntax is:

WHILE expression
statements
ENDM

The expression must be a value that can be calculated at assembly time.
Normally, the expression uses relational operators, but it can be any expression
that evaluates to zero (false) or nonzero (true). Usually, the condition changes
during the evaluation of the macro so that the loop won’t attempt to generate an
infinite amount of code. However, you can use the EXITM directive to break
out of the loop.

The following repeat block uses the WHILE directive to allocate variables
initialized to calculated values. This is a common technique for generating
lookup tables. (A lookup table is any list of precalculated results, such as a table
of interest payments or trigonometric values or logarithms. Programs optimized
for speed often use lookup tables, since calculating a value often takes more
time than looking it up in a table.)

cubes LABEL BYTE ;; Name the data generated
root = 1 ;; Initialize root
cube = root * root * root ;; Calculate first cube
WHILE cube LE 32767 ;; Repeat until result too large
 WORD cube ;; Allocate cube
 root = root + 1 ;; Calculate next root and cube
 cube = root * root * root
ENDM

 Chapter 9 Using Macros 243

Filename: LMAPGC09.DOC Project:

Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 243 of 19 Printed: 10/02/00 04:22 PM

FOR Loops and Variable-Length Parameters
With the FOR directive you can iterate through a list of arguments, working on
each of them in turn. It has the following syntax:

FOR parameter, <argumentlist>
statements
ENDM

The parameter is a placeholder that represents the name of each argument
inside the FOR block. The argument list must contain comma-separated
arguments and must always be enclosed in angle brackets. Here’s an example of
a FOR block:

series LABEL BYTE
FOR arg, <1,2,3,4,5,6,7,8,9,10>
 BYTE arg DUP (arg)
ENDM

On the first iteration, the arg parameter is replaced with the first argument, the
value 1. On the second iteration, arg is replaced with 2. The result is an array
with the first byte initialized to 1, the next 2 bytes initialized to 2, the next 3
bytes initialized to 3, and so on.

The argument list is given specifically in this example, but in some cases the list
must be generated as a text macro. The value of the text macro must include the
angle brackets.

arglist TEXTEQU <!<3,6,9!>> ; Generate list as text macro
%FOR arg, arglist
 . ; Do something to arg
 .
 .
ENDM

Note the use of the literal character operator (!) to identify angle brackets as
characters, not delimiters. See “Text Delimiters (< >) and the Literal-Character
Operator,” earlier in this chapter.

The FOR directive also provides a convenient way to process macros with a
variable number of arguments. To do this, add VARARG to the last parameter
to indicate that a single named parameter will have the actual value of all
additional arguments. For example, the following macro definition includes the
three possible parameter attributes — required, default, and variable.

work MACRO rarg:REQ, darg:=<5>, varg:VARARG

244 Programmer’s Guide

Filename: LMAPGC09.DOC Project:

Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 244 of 20 Printed: 10/02/00 04:22 PM

The variable argument must always be last. If this macro is called with the
statement

 work 4, , 6, 7, a, b

the first argument is received as the value 4, the second is replaced by the
default value 5, and the last four are received as the single argument <6, 7,
a, b>. This is the same format expected by the FOR directive. The FOR
directive discards leading spaces but recognizes trailing spaces.

The following macro illustrates variable arguments:

show MACRO chr:VARARG
 mov ah, 02h
 FOR arg, <chr>
 mov dl, arg
 int 21h
 ENDM
ENDM

When called with

 show ‘O’, ‘K’, 13, 10

the macro displays each of the specified characters one at a time.

The parameter in a FOR loop can have the required or default attribute. You
can modify the show macro to make blank arguments generate errors:

show MACRO chr:VARARG
 mov ah, 02h
 FOR arg:REQ, <chr>
 mov dl, arg
 int 21h
 ENDM
ENDM

The macro now generates an error if called with

 show ‘O’,, ‘K’, 13, 10

 Chapter 9 Using Macros 245

Filename: LMAPGC09.DOC Project:

Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 245 of 21 Printed: 10/02/00 04:22 PM

Another approach would be to use a default argument:

show MACRO chr:VARARG
 mov ah, 02h
 FOR arg:=<‘ ’>, <chr>
 mov dl, arg
 int 21h
 ENDM
ENDM

Now calling the macro with

 show ‘O’,, ‘K’, 13, 10

inserts the default character, a space, for the blank argument.

FORC Loops
The FORC directive is similar to FOR, but takes a string of text rather than a
list of arguments. The statements are assembled once for each character
(including spaces) in the string, substituting a different character for the
parameter each time through.

The syntax looks like this:

FORC parameter, < text>
statements
ENDM

The text must be enclosed in angle brackets. The following example illustrates
FORC:

FORC arg, <ABCDEFGHIJKLMNOPQRSTUVWXYZ>
 BYTE ‘&arg’ ;; Allocate uppercase letter
 BYTE ‘&arg’ + 20h ;; Allocate lowercase letter
 BYTE ‘&arg’ - 40h ;; Allocate ordinal of letter
ENDM

Notice that the substitution operator must be used inside the quotation marks to
make sure that arg is expanded to a character rather than treated as a literal
string.

With versions of MASM earlier than 6.0, FORC is often used for complex
parsing tasks. A long sentence can be examined character by character. Each
character is then either thrown away or pasted onto a token string, depending on
whether it is a separator character. The new predefined macro functions and
string processing directives discussed in the following section are usually more
efficient for these tasks.

246 Programmer’s Guide

Filename: LMAPGC09.DOC Project:

Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 246 of 22 Printed: 10/02/00 04:22 PM

String Directives and Predefined Functions
The assembler provides four directives for manipulating text:

Directive Description

SUBSTR Assigns part of string to a new symbol.

INSTR Searches for one string within another.

SIZESTR Determines the size of a string.

CATSTR Concatenates one or more strings to a single string.

These directives assign a processed value to a text macro or numeric equate. For
example, the following lines

num = 7
newstr CATSTR <3 + >, %num, < = > , %3 + num ; "3 + 7 = 10"

assign the string "3 + 7 = 10" to newstr. CATSTR and SUBSTR assign
text in the same way as the TEXTEQU directive. SIZESTR and INSTR assign
a number in the same way as the = operator. The four string directives take only
text values as arguments. Use the expansion operator (%) when you need to
make sure that constants and numeric equates expand to text, as shown in the
preceding lines.

Each of the string directives has a corresponding predefined macro function
version: @SubStr, @InStr, @SizeStr, and @CatStr. Macro functions are
similar to the string directives, but you must enclose their arguments in
parentheses. Macro functions return text values and can appear in any context
where text is expected. The following section, “Returning Values with Macro
Functions,” tells how to write your own macro functions. The following
example is equivalent to the previous CATSTR example:

num = 7
newstr TEXTEQU @CatStr(<3 + >, %num, < = > , %3 + num)

Macro functions are often more convenient than their directive counterparts
because you can use a macro function as an argument to a string directive or to
another macro function. Unlike string directives, predefined macro function
names are case sensitive when you use the /Cp command-line option.

Each string directive and predefined function acts on a string, which can be any
textItem. The textItem can be text enclosed in angle brackets (< >), the name of
a text macro, or a constant expression preceded by % (as in %constExpr).
Refer to Appendix B, “BNF Grammar,” for a list of types that textItem can
represent.

 Chapter 9 Using Macros 247

Filename: LMAPGC09.DOC Project:

Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 247 of 23 Printed: 10/02/00 04:22 PM

The following sections summarize the syntax for each of the string directives
and functions. The explanations focus on the directives, but the functions work
the same except where noted.

SUBSTR
name SUBSTR string, start[[, length]]
@SubStr(string, start[[, length]])

The SUBSTR directive assigns a substring from a given string to the symbol
name. The start parameter specifies the position in string, beginning with 1, to
start the substring. The length gives the length of the substring. If you do not
specify length, SUBSTR returns the remainder of the string, including the start
character.

INSTR
name INSTR [[start,]] string, substring
@InStr([[start]], string, substring)

The INSTR directive searches a specified string for an occurrence of substring
and assigns its position number to name. The search is case sensitive. The start
parameter is the position in string to start the search for substring. If you do not
specify start, it is assumed to be position 1, the start of the string. If INSTR
does not find substring, it assigns position 0 to name.

The INSTR directive assigns the position value name as if it were a numeric
equate. In contrast, the @InStr returns the value as a string of digits in the
current radix.

The @InStr function has a slightly different syntax than the INSTR directive.
You can omit the first argument and its associated comma from the directive.
You can leave the first argument blank with the function, but a blank function
argument must still have a comma. For example,

pos INSTR <person>, <son>

is the same as

pos = @InStr(, <person>, <son>)

You can also assign the return value to a text macro, like this:

248 Programmer’s Guide

Filename: LMAPGC09.DOC Project:

Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 248 of 24 Printed: 10/02/00 04:22 PM

strpos TEXTEQU @InStr(, <person>, <son>)

SIZESTR
name SIZESTR string
@SizeStr(string)

The SIZESTR directive assigns the number of characters in string to name. An
empty string returns a length of zero. The SIZESTR directive assigns the size
value to a name as if it were a numeric equate. The @SizeStr function returns
the value as a string of digits in the current radix.

CATSTR
name CATSTR string[, string]...
@CatStr(string[, string]...)

The CATSTR directive concatenates a list of text values into a single text value
and assigns it to name. TEXTEQU is technically a synonym for CATSTR.
TEXTEQU is normally used for single-string assignments, while CATSTR is
used for multistring concatenations.

The following example pushes and pops one set of registers, illustrating several
uses of string directives and functions:

 Chapter 9 Using Macros 249

Filename: LMAPGC09.DOC Project:

Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 249 of 25 Printed: 10/02/00 04:22 PM

; SaveRegs - Macro to generate a push instruction for each
; register in argument list. Saves each register name in the
; regpushed text macro.
regpushed TEXTEQU <> ;; Initialize empty string

SaveRegs MACRO regs:VARARG
 LOCAL reg
 FOR reg, <regs> ;; Push each register
 push reg ;; and add it to the list
 regpushed CATSTR <reg>, <,>, regpushed
 ENDM ;; Strip off last comma
 regpushed CATSTR <!<>, regpushed ;; Mark start of list with <
 regpushed SUBSTR regpushed, 1, @SizeStr(regpushed)
 regpushed CATSTR regpushed, <!>> ;; Mark end with >
ENDM

; RestoreRegs - Macro to generate a pop instruction for registers
; saved by the SaveRegs macro. Restores one group of registers.

RestoreRegs MACRO
 LOCAL reg
 %FOR reg, regpushed ;; Pop each register
 pop reg
 ENDM
ENDM

Notice how the SaveRegs macro saves its result in the regpushed text macro
for later use by the RestoreRegs macro. In this case, a text macro is used as a
global variable. By contrast, the reg text macro is used only in RestoreRegs.
It is declared LOCAL so it won’t take the name reg from the global name
space. The MACROS.INC file provided with MASM 6.1 includes expanded
versions of these same two macros.

Returning Values with Macro Functions
A macro function is a named group of statements that returns a value. When
calling a macro function, you must enclose its argument list in parentheses, even
if the list is empty. The function always returns text.

MASM 6.1 provides several predefined macro functions for common tasks. The
predefined macros include @Environ (see page 10) and the string functions
@SizeStr, @CatStr, @SubStr, and @InStr (discussed in the preceding
section).

You define macro functions in exactly the same way as macro procedures,
except that a macro function always returns a value through the EXITM
directive. Here is an example:

250 Programmer’s Guide

Filename: LMAPGC09.DOC Project:

Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 250 of 26 Printed: 10/02/00 04:22 PM

DEFINED MACRO symbol:REQ
 IFDEF symbol
 EXITM <-1> ;; True
 ELSE
 EXITM <0> ;; False
 ENDIF
ENDM

This macro works like the defined operator in the C language. You can use it to
test the defined state of several different symbols with a single statement, as
shown here:

IF DEFINED(DOS) AND NOT DEFINED(XENIX)
 ;; Do something
ENDIF

Notice that the macro returns integer values as strings of digits, but the IF
statement evaluates numeric values or expressions. There is no conflict because
the assembler sees the value returned by the macro function exactly as if the
user had typed the values directly into the program:

IF -1 AND NOT 0

Returning Values with EXITM
The return value must be text, a text equate name, or the result of another
macro function. A macro function must first convert a numeric value — such as
a constant, a numeric equate, or the result of a numeric expression — before
returning it. The macro function can use angle brackets or the expansion
operator (%) to convert numbers to text. The DEFINED macro, for instance,
could have returned its value as

 EXITM %-1

Here is another example of a macro function that uses the WHILE directive to
calculate factorials:

 Chapter 9 Using Macros 251

Filename: LMAPGC09.DOC Project:

Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 251 of 27 Printed: 10/02/00 04:22 PM

factorial MACRO num:REQ
 LOCAL i, factor
 factor = num
 i = 1
 WHILE factor GT 1
 i = i * factor
 factor = factor - 1
 ENDM
 EXITM %i
ENDM

The integer result of the calculation is changed to a text string with the expansion
operator (%). The factorial macro can define data, as shown here:

var WORD factorial(4)

This statement initializes var with the number 24 (the factorial of 4).

Using Macro Functions with Variable-Length Parameter Lists
You can use the FOR directive to handle macro parameters with the VARARG
attribute. “FOR Loops and Variable-Length Parameters,” page 242, explains
how to do this in simple cases where the variable parameters are handled
sequentially, from first to last. However, you may sometimes need to process
the parameters in reverse order or nonsequentially. Macro functions make these
techniques possible.

For example, the following macro function determines the number of arguments
in a VARARG parameter:

@ArgCount MACRO arglist:VARARG
 LOCAL count
 count = 0
 FOR arg, <arglist>
 count = count + 1 ;; Count the arguments
 ENDM
 EXITM %count
ENDM

252 Programmer’s Guide

Filename: LMAPGC09.DOC Project:

Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 252 of 28 Printed: 10/02/00 04:22 PM

You can use @ArgCount inside a macro that has a VARARG parameter, as
shown here:

work MACRO args:VARARG
% ECHO Number of arguments is: @ArgCount(args)
ENDM

Another useful task might be to select an item from an argument list using an
index to indicate the item. The following macro simplifies this.

@ArgI MACRO index:REQ, arglist:VARARG
 LOCAL count, retstr
 retstr TEXTEQU <> ;; Initialize count
 count = 0 ;; Initialize return string
 FOR arg, <arglist>
 count = count + 1
 IF count EQ index ;; Item is found
 retstr TEXTEQU <arg> ;; Set return string
 EXITM ;; and exit IF
 ENDIF
 ENDM
 EXITM retstr ;; Exit function
ENDM

You can use @ArgI like this:

work MACRO args:VARARG
% ECHO Third argument is: @ArgI(3, args)
ENDM

Finally, you might need to process arguments in reverse order. The following
macro returns a new argument list in reverse order.

@ArgRev MACRO arglist:REQ
 LOCAL txt, arg
 txt TEXTEQU <>
% FOR arg, <arglist>
 txt CATSTR <arg>, <,>, txt ;; Paste each onto list
 ENDM
 ;; Remove terminating comma
 txt SUBSTR txt, 1, @SizeStr(%txt) - 1
 txt CATSTR <!<>, txt, <!>> ;; Add angle brackets
 EXITM txt
ENDM

 Chapter 9 Using Macros 253

Filename: LMAPGC09.DOC Project:

Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 253 of 29 Printed: 10/02/00 04:22 PM

Here is an example showing @ArgRev in use:

work MACRO args:VARARG
% FOR arg, @ArgRev(<args>) ;; Process in reverse order
 ECHO arg
 ENDM
ENDM

These three macro functions appear in the MACROS.INC include file, located
on one of the MASM distribution disks.

Expansion Operator in Macro Functions
This list summarizes the behavior of the expansion operator (%) with macro
functions.

u If a macro function is preceded by a %, it will be expanded. However, if it
expands to a text macro or a macro function call, it will not expand further.

u If you use a macro function call as an argument for another macro function
call, a % is not needed.

u If a macro function is called inside angle brackets and is preceded by %, it
will be expanded.

Advanced Macro Techniques
The concept of replacing macro names with predefined macro text is simple in
theory, but it has many implications and complications. Here is a brief summary
of some advanced techniques you can use in macros.

Defining Macros within Macros
Macros can define other macros, a technique called “nesting macros.” MASM
expands macros as it encounters them, so nested macros are always processed
in nesting order. You cannot reference a nested macro directly in your program,
since the assembler begins expansion from the outer macro. In effect, a nested
macro is local to the macro that defines it. Only the amount of available memory
limits the number of macros a program can nest.

254 Programmer’s Guide

Filename: LMAPGC09.DOC Project:

Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 254 of 30 Printed: 10/02/00 04:22 PM

The following example demonstrates how one macro can define another. The
macro takes as an argument the name of a shift or rotate instruction, then
creates another macro that simplifies the instruction for 8088/86 processors.

shifts MACRO opname ;; Macro generates macros
 opname&s MACRO operand:REQ, rotates:=<1>
 IF rotates LE 2 ;; One at a time is faster
 REPEAT rotate ;; for 2 or less
 opname operand, 1
 ENDM
 ELSE ;; Using CL is faster for
 mov cl, rotates ;; more than 2
 opname operand, cl
 ENDIF
 ENDM
ENDM

Recall that the 8086 processor allows only 1 or CL as an operand for shift and
rotate instructions. Expanding shifts generates a macro for the shift
instruction that uses whichever operand is more efficient. You create the entire
series of macros, one for each shift instruction, like this:

 ; Call macro repeatedly to make new macros
 shifts ror ; Generates rors
 shifts rol ; Generates rols
 shifts shr ; Generates shrs
 shifts shl ; Generates shls
 shifts rcl ; Generates rcls
 shifts rcr ; Generates rcrs
 shifts sal ; Generates sals
 shifts sar ; Generates sars

Then use the new macros as replacements for shift instructions, like this:

 shrs ax, 5
 rols bx, 3

Testing for Argument Type and Environment
Macros can expand conditional blocks of code by testing for argument type with
the OPATTR operator. OPATTR returns a single word constant that indicates
the type and scope of an expression, like this:

OPATTR expression

If expression is not valid or is forward-referenced, OPATTR returns a 0.
Otherwise, the return value incorporates the bit flags shown in the table below.

 Chapter 9 Using Macros 255

Filename: LMAPGC09.DOC Project:

Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 255 of 31 Printed: 10/02/00 04:22 PM

OPATTR serves as an enhanced version of the .TYPE operator, which returns
only the low byte (bits 0 – 7) shown in the table. Bits 11 – 15 of the return value
are undefined.

Bit Set If expression

0 References a code label

1 Is a memory variable or has a relocatable data label

2 Is an immediate value

3 Uses direct memory addressing

4 Is a register value

5 References no undefined symbols and is without error

6 Is relative to SS

7 References an external label

8 – 10 Has the following language type:

u 000 — No language type

u 001 — C

u 010 — SYSCALL

u 011 — STDCALL

u 100 — Pascal

u 101 — FORTRAN

u 110 — Basic

A macro can use OPATTR to determine if an argument is a constant, a register,
or a memory operand. With this information, the macro can conditionally
generate the most efficient code depending on argument type.

For example, given a constant argument, a macro can test it for 0. Depending on
the argument’s value, the code can select the most effective method to load the
value into a register:

 IF CONST
 mov bx, CONST ; If CONST > 0, move into BX
 ELSE
 sub bx, bx ; More efficient if CONST = 0
 ENDIF

256 Programmer’s Guide

Filename: LMAPGC09.DOC Project:

Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 256 of 32 Printed: 10/02/00 04:22 PM

The second method is faster than the first, yet has the same result (with the
byproduct of changing the processor flags).

The following macro illustrates some techniques using OPATTR by loading an
address into a specified offset register:

load MACRO reg:REQ, adr:REQ
 IF (OPATTR (adr)) AND 00010000y ;; Register
 IFDIFI reg, adr ;; Don’t load register
 mov reg, adr ;; onto itself
 ENDIF
 ELSEIF (OPATTR (adr)) AND 00000100y
 mov reg, adr ;; Constant
 ELSEIF (TYPE (adr) EQ BYTE) OR (TYPE (adr) EQ SBYTE)
 mov reg, OFFSET adr ;; Bytes
 ELSEIF (SIZE (TYPE (adr)) EQ 2
 mov reg, adr ;; Near pointer
 ELSEIF (SIZE (TYPE (adr)) EQ 4
 mov reg, WORD PTR adr[0] ;; Far pointer
 mov ds, WORD PTR adr[2]
 ELSE
 .ERR <Illegal argument>
 ENDIF
ENDM

A macro also can generate different code depending on the assembly
environment. The predefined text macro @Cpu returns a flag for processor
type. The following example uses the more efficient constant variation of the
PUSH instruction if the processor is an 80186 or higher.

IF @Cpu AND 00000010y
 pushc MACRO op ;; 80186 or higher
 push op
 ENDM
ELSE
 pushc MACRO op ;; 8088/8086
 mov ax, op
 push ax
 ENDM
ENDIF

Another macro can now use pushc rather than conditionally testing for
processor type itself. Although either case produces the same code, using pushc
assembles faster because the environment is checked only once.

 Chapter 9 Using Macros 257

Filename: LMAPGC09.DOC Project:

Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 257 of 33 Printed: 10/02/00 04:22 PM

You can test the language and operating system using the @Interface text
macro. The memory model can be tested with the @Model, @DataSize, or
@CodeSize text macros.

You can save the contexts inside macros with PUSHCONTEXT and
POPCONTEXT. The options for these keywords are:

Option Description

ASSUMES Saves segment register information

RADIX Saves current default radix

LISTING Saves listing and CREF information

CPU Saves current CPU and processor

ALL All of the above

Using Recursive Macros
Macros can call themselves. In MASM 5.1 and earlier, recursion is an important
technique for handling variable arguments. MASM 6.1 handles variable
arguments much more cleanly with the FOR directive and the VARARG
attribute, as described in “FOR Loops and Variable-Length Parameters,” earlier
in this chapter. However, recursion is still available and may be useful for some
macros.

256 Programmer’s Guide

Filename: LMAPGC09.DOC Project:

Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 256 of 34 Printed: 10/02/00 04:22 PM

