
 135

Filename: LMAPGC06.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 59 Page: 135 of 1 Printed: 10/02/00 04:23 PM

C H A P T E R 6

MASM requires different techniques for handling floating-point (real) numbers
and binary coded decimal (BCD) numbers than for handling integers. You have
two choices for working with real numbers — a math coprocessor or emulation
routines.

Math coprocessors — the 8087, 80287, and 80387 chips — work with the main
processor to handle real-number calculations. The 80486 processor performs
floating-point operations directly. All information in this chapter pertaining to the
80387 coprocessor applies to the 80486DX processor as well. It does not apply
to the 80486SX, which does not provide an on-chip coprocessor.

This chapter begins with a summary of the directives and formats of floating-
point data that you need to allocate memory storage and initialize variables
before you can work with floating-point numbers.

The chapter then explains how to use a math coprocessor for floating-point
operations. It covers:

u The architecture of the registers.

u The operands for the coprocessor instruction formats.

u The coordination of coprocessor and main processor memory access.

u The basic groups of coprocessor instructions — for loading and storing data,
doing arithmetic calculations, and controlling program flow.

The next main section describes emulation libraries. The emulation routines
provided with all Microsoft high-level languages enable you to use coprocessor
instructions as though your computer had a math coprocessor. However, some
coprocessor instructions are not handled by emulation, as this section explains.

Finally, because math coprocessor and emulation routines can also operate on
BCD numbers, this chapter includes the instruction set for these numbers.

Using Floating-Point and
Binary Coded Decimal Numbers

136 Programmer’s Guide

Filename: LMAPGC06.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 59 Page: 136 of 2 Printed: 10/02/00 04:23 PM

Using Floating-Point Numbers
Before using floating-point data in your program, you need to allocate the
memory storage for the data. You can then initialize variables either as real
numbers in decimal form or as encoded hexadecimals. The assembler stores
allocated data in 10-byte IEEE format. This section covers floating-point
declarations and floating-point data formats.

Declaring Floating-Point Variables and Constants
You can allocate real constants using the REAL4, REAL8, and REAL10
directives. These directives allocate the following floating-point numbers:

Directive Size

REAL4 Short (32-bit) real numbers

REAL8 Long (64-bit) real numbers

REAL10 10-byte (80-bit) real numbers and BCD numbers

Table 6.1 lists the possible ranges for floating-point variables. The number of
significant digits can vary in an arithmetic operation as the least-significant digit
may be lost through rounding errors. This occurs regularly for short and long
real numbers, so you should assume the lesser value of significant digits shown
in Table 6.1. Ten-byte real numbers are much less susceptible to rounding
errors for reasons described in the next section. However, under certain
circumstances, 10-byte real operations can have a precision of only 18 digits.

Table 6.1 Ranges of Floating-Point Variables

Data Type

Bits

Significant
Digits

Approximate Range

Short real 32 6–7 1.18 x 10-38 to 3.40 x 1038

Long real 64 15–16 2.23 x 10-308 to 1.79 x 10308

10-byte real 80 19 3.37 x 10-4932 to 1.18 x 104932

With versions of MASM prior to 6.0, the DD, DQ, and DT directives could
allocate real constants. MASM 6.1 still supports these directives, but the
variables are integers rather than floating-point values. Although this makes no
difference in the assembly code, CodeView displays the values incorrectly.

You can specify floating-point constants either as decimal constants or as
encoded hexadecimal constants. You can express decimal real-number constants
in the form:

[[+ | –]] integer[[fraction]][[E[[+ | –]]exponent]]

 Chapter 6 Using Floating-Point and Binary Coded Decimal Numbers 137

Filename: LMAPGC06.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 59 Page: 137 of 3 Printed: 10/02/00 04:23 PM

For example, the numbers 2.523E1 and -3.6E-2 are written in the correct
decimal format. You can use these numbers as initializers for real-number
variables.

The assembler always evaluates digits of real numbers as base 10. It converts
real-number constants given in decimal format to a binary format. The sign,
exponent, and decimal part of the real number are encoded as bit fields within
the number.

You can also specify the encoded format directly with hexadecimal digits (0–9
plus A–F). The number must begin with a decimal digit (0–9) and end with the
real-number designator (R). It cannot be signed. For example, the hexadecimal
number 3F800000r can serve as an initializer for a doubleword-sized variable.

The maximum range of exponent values and the number of digits required in the
hexadecimal number depend on the directive. The number of digits for encoded
numbers used with REAL4, REAL8, and REAL10 must be 8, 16, and 20
digits, respectively. If the number has a leading zero, the number must be 9, 17,
or 21 digits.

Examples of decimal constant and hexadecimal specifications are shown here:

; Real numbers
short REAL4 25.23 ; IEEE format
double REAL8 2.523E1 ; IEEE format
tenbyte REAL10 2523.0E-2 ; 10-byte real format

; Encoded as hexadecimals
ieeeshort REAL4 3F800000r ; 1.0 as IEEE short
ieeedouble REAL8 3FF0000000000000r ; 1.0 as IEEE long
temporary REAL10 3FFF8000000000000000r ; 1.0 as 10-byte
 ; real

The section “Storing Numbers in Floating-Point Format,” following, explains the
IEEE formats — the way the assembler actually stores the data.

Pascal or C programmers may prefer to create language-specific TYPEDEF
declarations, as illustrated in this example:

138 Programmer’s Guide

Filename: LMAPGC06.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 59 Page: 138 of 4 Printed: 10/02/00 04:23 PM

; C-language specific
float TYPEDEF REAL4
double TYPEDEF REAL8
long_double TYPEDEF REAL10
; Pascal-language specific
SINGLE TYPEDEF REAL4
DOUBLE TYPEDEF REAL8
EXTENDED TYPEDEF REAL10

For applications of TYPEDEF, see “Defining Pointer Types with TYPEDEF,”
page 75.

Storing Numbers in Floating-Point Format
The assembler stores floating-point variables in the IEEE format. MASM 6.1
does not support .MSFLOAT and Microsoft binary format, which are available
in version 5.1 and earlier. Figure 6.1 illustrates the IEEE format for encoding
short (4-byte), long (8-byte), and 10-byte real numbers. Although this figure
places the most significant bit first for illustration, low bytes actually appear first
in memory.

 Chapter 6 Using Floating-Point and Binary Coded Decimal Numbers 139

Filename: LMAPGC06.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 59 Page: 139 of 5 Printed: 10/02/00 04:23 PM

Figure 6.1 Encoding for Real Numbers in IEEE Format

The following list explains how the parts of a real number are stored in the IEEE
format. Each item in the list refers to an item in Figure 6.1.

u Sign bit (0 for positive or 1 for negative) in the upper bit of the first byte.

u Exponent in the next bits in sequence (8 bits for a short real number, 11 bits
for a long real number, and 15 bits for a 10-byte real number).

140 Programmer’s Guide

Filename: LMAPGC06.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 59 Page: 140 of 6 Printed: 10/02/00 04:23 PM

u The integer part of the significand in bit 63 for the 10-byte real format. By
absorbing carry values, this bit allows 10-byte real operations to preserve
precision to 19 digits. The integer part is always 1 in short and long real
numbers; consequently, these formats do not provide a bit for the integer,
since there is no point in storing it.

u Decimal part of the significand in the remaining bits. The length is 23 bits for
short real numbers, 52 bits for long real numbers, and 63 bits for 10-byte real
numbers.

The exponent field represents a multiplier 2n. To accommodate negative
exponents (such as 2-6), the value in the exponent field is biased; that is, the
actual exponent is determined by subtracting the appropriate bias value from the
value in the exponent field. For example, the bias for short real numbers is 127.
If the value in the exponent field is 130, the exponent represents a value of 2130-

127, or 23. The bias for long real numbers is 1,023. The bias for 10-byte real
numbers is 16,383.

Once you have declared floating-point data for your program, you can use
coprocessor or emulator instructions to access the data. The next section
focuses on the coprocessor architecture, instructions, and operands required for
floating-point operations.

Using a Math Coprocessor
When used with real numbers, packed BCD numbers, or long integers,
coprocessors (the 8087, 80287, 80387, and 80486) calculate many times faster
than the 8086-based processors. The coprocessor handles data with its own
registers. The organization of these registers can be one of the four formats for
using operands explained in “Instruction and Operand Formats,” later in this
section.

This section describes how the coprocessor transfers data to and from the
coprocessor, coordinates processor and coprocessor operations, and controls
program flow.

 Chapter 6 Using Floating-Point and Binary Coded Decimal Numbers 141

Filename: LMAPGC06.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 59 Page: 141 of 7 Printed: 10/02/00 04:23 PM

Coprocessor Architecture
The coprocessor accesses memory as the CPU does, but it has its own data and
control registers — eight data registers organized as a stack and seven control
registers similar to the 8086 flag registers. The coprocessor’s instruction set
provides direct access to these registers.

The eight 80-bit data registers of the 8087-based coprocessors are organized as
a stack, although they need not be used as a stack. As data items are pushed
into the top register, previous data items move into higher-numbered registers,
which are lower on the stack. Register 0 is the top of the stack; register 7 is the
bottom. The syntax for specifying registers is:

ST [[(number)]]

The number must be a digit between 0 and 7 or a constant expression that
evaluates to a number from 0 to 7. ST is another way to refer to ST(0).

All coprocessor data is stored in registers in the 10-byte real format. The
registers and the register format are shown in Figure 6.2.

Figure 6.2 Coprocessor Data Registers

Internally, all calculations are done on numbers of the same type. Since 10-byte
real numbers have the greatest precision, lower-precision numbers are
guaranteed not to lose precision as a result of calculations. The instructions that
transfer values between the main memory and the coprocessor automatically
convert numbers to and from the 10-byte real format.

142 Programmer’s Guide

Filename: LMAPGC06.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 59 Page: 142 of 8 Printed: 10/02/00 04:23 PM

Instruction and Operand Formats
Because of the stack organization of registers, you can consider registers either
as elements on a stack or as registers much like 8086-family registers. Table 6.2
lists the four main groups of coprocessor instructions and the general syntax for
each. The names given to the instruction format reflect the way the instruction
uses the coprocessor registers. The instruction operands are placed in the
coprocessor data registers before the instruction executes.

Table 6.2 Coprocessor Operand Formats

Instruction
Format

Syntax

Implied
Operands

Example

Classical stack Finstruction ST, ST(1) fadd

Memory Finstruction memory ST fadd memloc

Register Finstruction ST(num), ST

Finstruction ST, ST(num)

 —

fadd st(5), st
fadd st, st(3)

Register pop FinstructionP ST(num), ST — faddp st(4), st

You can easily recognize coprocessor instructions because, unlike all 8086-
family instruction mnemonics, they start with the letter F. Coprocessor
instructions can never have immediate operands and, with the exception of the
FSTSW instruction, they cannot have processor registers as operands.

Classical-Stack Format
Instructions in the classical-stack format treat the coprocessor registers like items
on a stack — thus its name. Items are pushed onto or popped off the top
elements of the stack. Since only the top item can be accessed on a traditional
stack, there is no need to specify operands. The first (top) register (and the
second, if the instruction needs two operands) is always assumed.

ST (the top of the stack) is the source operand in coprocessor arithmetic
operations. ST(1), the second register, is the destination. The result of the
operation replaces the destination operand, and the source is popped off the
stack. This leaves the result at the top of the stack.

 Chapter 6 Using Floating-Point and Binary Coded Decimal Numbers 143

Filename: LMAPGC06.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 59 Page: 143 of 9 Printed: 10/02/00 04:23 PM

The following example illustrates the classical-stack format; Figure 6.3 shows
the status of the register stack after each instruction.

 fld1 ; Push 1 into first position
 fldpi ; Push pi into first position
 fadd ; Add pi and 1 and pop

Figure 6.3 Status of the Register Stack

Memory Format
Instructions that use the memory format, such as data transfer instructions, also
treat coprocessor registers like items on a stack. However, with this format,
items are pushed from memory onto the top element of the stack, or popped
from the top element to memory. You must specify the memory operand.

Some instructions that use the memory format specify how a memory operand
is to be interpreted — as an integer (I) or as a binary coded decimal (B). The
letter I or B follows the initial F in the syntax. For example, FILD interprets its
operand as an integer and FBLD interprets its operand as a BCD number. If the
instruction name does not include a type letter, the instruction works on real
numbers.

You can also use memory operands in calculation instructions that operate on
two values (see “Using Coprocessor Instructions,” later in this section). The
memory operand is always the source. The stack top (ST) is always the implied
destination.

144 Programmer’s Guide

Filename: LMAPGC06.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 59 Page: 144 of 10 Printed: 10/02/00 04:23 PM

The result of the operation replaces the destination without changing its stack
position, as shown in this example and in Figure 6.4:

 .DATA
m1 REAL4 1.0
m2 REAL4 2.0
 .CODE
 .
 .
 .
 fld m1 ; Push m1 into first position
 fld m2 ; Push m2 into first position
 fadd m1 ; Add m2 to first position
 fstp m1 ; Pop first position into m1
 fst m2 ; Copy first position to m2

Figure 6.4 Status of the Register Stack and Memory Locations

Register Format
Instructions that use the register format treat coprocessor registers as registers
rather than as stack elements. Instructions that use this format require two
register operands; one of them must be the stack top (ST).

In the register format, specify all operands by name. The first operand is the
destination; its value is replaced with the result of the operation. The second
operand is the source; it is not affected by the operation. The stack positions of
the operands do not change.

 Chapter 6 Using Floating-Point and Binary Coded Decimal Numbers 145

Filename: LMAPGC06.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 59 Page: 145 of 11 Printed: 10/02/00 04:23 PM

The only instructions that use the register operand format are the FXCH
instruction and arithmetic instructions for calculations on two values. With the
FXCH instruction, the stack top is implied and need not be specified, as shown
in this example and in Figure 6.5:

 fadd st(1), st ; Add second position to first -
 ; result goes in second position
 fadd st, st(2) ; Add first position to third -
 ; result goes in first position
 fxch st(1) ; Exchange first and second positions

Figure 6.5 Status of the Previously Initialized Register Stack

Register-Pop Format
The register-pop format treats coprocessor registers as a modified stack. The
source register must always be the stack top. Specify the destination with the
register’s name.

Instructions with this format place the result of the operation into the destination
operand, and the top pops off the stack. The register-pop format is used only
for instructions for calculations on two values, as in this example and in Figure
6.6:

 faddp st(2), st ; Add first and third positions and pop -
 ; first position destroyed;
 ; third moves to second and holds result

146 Programmer’s Guide

Filename: LMAPGC06.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 59 Page: 146 of 12 Printed: 10/02/00 04:23 PM

Figure 6.6 Status of the Already Initialized Register Stack

Coordinating Memory Access
The math coprocessor and main processor work simultaneously. However,
since the coprocessor cannot handle device input or output, data originates in the
main processor.

The main processor and the coprocessor have their own registers, which are
separate and inaccessible to each other. They exchange data through memory,
since memory is available to both.

When using the coprocessor, follow these three steps:

 1. Load data from memory to coprocessor registers.

 2. Process the data.

 3. Store the data from coprocessor registers back to memory.

Step 2, processing the data, can occur while the main processor is handling other
tasks. Steps 1 and 3 must be coordinated with the main processor so that the
processor and coprocessor do not try to access the same memory at the same
time; otherwise, problems of coordinating memory access can occur. Since the
processor and coprocessor work independently, they may not finish working on
memory in the order in which you give instructions. The two potential timing
conflicts that can occur are handled in different ways.

One timing conflict results from a coprocessor instruction following a processor
instruction. The processor may have to wait until the coprocessor finishes if the
next processor instruction requires the result of the coprocessor’s calculation.
You do not have to write your code to avoid this conflict, however. The
assembler coordinates this timing automatically for the 8088 and 8086
processors, and the processor coordinates it automatically on the 80186–80486
processors. This is the case shown in the first example that follows.

Another conflict results from a processor instruction that accesses memory
following a coprocessor instruction that accesses the same memory. The
processor can try to load a variable that is still being used by the coprocessor.
You need careful synchronization to control the timing, and this synchronization
is not automatic on the 8087 coprocessor. For code to run correctly on the
8087, you must include WAIT or FWAIT (mnemonics for the same instruction)
to ensure that the coprocessor finishes before the processor begins, as shown in
the second example.

 Chapter 6 Using Floating-Point and Binary Coded Decimal Numbers 147

Filename: LMAPGC06.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 59 Page: 147 of 13 Printed: 10/02/00 04:23 PM

In this situation, the processor does not generate the FWAIT instruction
automatically.

; Processor instruction first - No wait needed
 mov WORD PTR mem32[0], ax ; Load memory
 mov WORD PTR mem32[2], dx
 fild mem32 ; Load to register

; Coprocessor instruction first - Wait needed (for 8087)
 fist mem32 ; Store to memory
 fwait ; Wait until coprocessor
 ; is done
 mov ax, WORD PTR mem32[0] ; Move to register
 mov dx, WORD PTR mem32[2]

When generating code for the 8087 coprocessor, the assembler automatically
inserts a WAIT instruction before the coprocessor instruction. However, if you
use the .286 or .386 directive, the compiler assumes that the coprocessor
instructions are for the 80287 or 80387 and does not insert the WAIT
instruction. If your code does not need to run on an 8086 or 8088 processor,
you can make your programs smaller and more efficient by using the .286 or
.386 directive.

Using Coprocessor Instructions
The 8087 family of coprocessors has separate instructions for each of the
following operations:

u Loading and storing data

u Doing arithmetic calculations

u Controlling program flow

The following sections explain the available instructions and show how to use
them for each of these operations. For general syntax information, see
“Instruction and Operand Formats,” earlier in this section.

Loading and Storing Data
Data-transfer instructions copy data between main memory and the coprocessor
registers or between different coprocessor registers. Two principles govern data
transfers:

u The choice of instruction determines whether a value in memory is
considered an integer, a BCD number, or a real number. The value is always
considered a 10-byte real number once transferred to the coprocessor.

148 Programmer’s Guide

Filename: LMAPGC06.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 59 Page: 148 of 14 Printed: 10/02/00 04:23 PM

u The size of the operand determines the size of a value in memory. Values in
the coprocessor always take up 10 bytes.

You can transfer data to stack registers using load commands. These commands
push data onto the stack from memory or from coprocessor registers. Store
commands remove data. Some store commands pop data off the register stack
into memory or coprocessor registers; others simply copy the data without
changing it on the stack.

If you use constants as operands, you cannot load them directly into
coprocessor registers. You must allocate memory and initialize a variable to a
constant value. That variable can then be loaded by using one of the load
instructions in the following list.

The math coprocessor offers a few special instructions for loading certain
constants. You can load 0, 1, pi, and several common logarithmic values
directly. Using these instructions is faster and often more precise than loading
the values from initialized variables.

All instructions that load constants have the stack top as the implied destination
operand. The constant to be loaded is the implied source operand.

The coprocessor data area, or parts of it, can also be moved to memory and
later loaded back. You may want to do this to save the current state of the
coprocessor before executing a procedure. After the procedure ends, restore the
previous status. Saving coprocessor data is also useful when you want to modify
coprocessor behavior by writing certain data to main memory, operating on the
data with 8086-family instructions, and then loading it back to the coprocessor
data area.

Use the following instructions for transferring numbers to and from
registers:

Instruction(s) Description

FLD, FST, FSTP Loads and stores real numbers

FILD, FIST, FISTP Loads and stores binary integers

FBLD Loads BCD

FBSTP Stores BCD

FXCH Exchanges register values

FLDZ Pushes 0 into ST

FLD1 Pushes 1 into ST

FLDPI Pushes the value of pi into ST

FLDCW mem2byte Loads the control word into the coprocessor

F[[N]]STCW mem2byte Stores the control word in memory

 Chapter 6 Using Floating-Point and Binary Coded Decimal Numbers 149

Filename: LMAPGC06.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 59 Page: 149 of 15 Printed: 10/02/00 04:23 PM

FLDENV mem14byte Loads environment from memory

F[[N]]STENV mem14byte Stores environment in memory

Instruction(s) Description

FRSTOR mem94byte Restores state from memory

F[[N]]SAVE mem94byte Saves state in memory

FLDL2E Pushes the value of log2e into ST

FLDL2T Pushes log210 into ST

FLDLG2 Pushes log102 into ST

FLDLN2 Pushes loge2 into ST

The following example and Figure 6.7 illustrate some of these instructions:

 .DATA
m1 REAL4 1.0
m2 REAL4 2.0
 .CODE
 fld m1 ; Push m1 into first item
 fld st(2) ; Push third item into first
 fst m2 ; Copy first item to m2
 fxch st(2) ; Exchange first and third items
 fstp m1 ; Pop first item into m1

Figure 6.7 Status of the Register Stack: Main Memory and Coprocessor

150 Programmer’s Guide

Filename: LMAPGC06.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 59 Page: 150 of 16 Printed: 10/02/00 04:23 PM

Doing Arithmetic Calculations
Most of the coprocessor instructions for arithmetic operations have several
forms, depending on the operand used. You do not need to specify the operand
type in the

 Chapter 6 Using Floating-Point and Binary Coded Decimal Numbers 151

Filename: LMAPGC06.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 59 Page: 151 of 17 Printed: 10/02/00 04:23 PM

instruction if both operands are stack registers, since register values are always
10-byte real numbers. In most of the arithmetic instructions listed here, the
result replaces the destination register. The instructions include:

Instruction Description

FADD Adds the source and destination

FSUB Subtracts the source from the destination

FSUBR Subtracts the destination from the source

FMUL Multiplies the source and the destination

FDIV Divides the destination by the source

FDIVR Divides the source by the destination

FABS Sets the sign of ST to positive

FCHS Reverses the sign of ST

FRNDINT Rounds ST to an integer

FSQRT Replaces the contents of ST with its square root

FSCALE Multiplies the stack-top value by 2 to the power contained in ST(1)

FPREM Calculates the remainder of ST divided by ST(1)

80387 Only
Instruction Description

FSIN Calculates the sine of the value in ST

FCOS Calculates the cosine of the value in ST

FSINCOS Calculates the sine and cosine of the value in ST

FPREM1 Calculates the partial remainder by performing modulo division on the top
two stack registers

FXTRACT Breaks a number down into its exponent and mantissa and pushes the
mantissa onto the register stack

F2XM1 Calculates 2x–1

FYL2X Calculates Y * log2 X

FYL2XP1 Calculates Y * log2 (X+1)

FPTAN Calculates the tangent of the value in ST

FPATAN Calculates the arctangent of the ratio Y/X

F[[N]]INIT Resets the coprocessor and restores all the default conditions in the control
and status words

F[[N]]CLEX Clears all exception flags and the busy flag of the status word

FINCSTP Adds 1 to the stack pointer in the status word

FDECSTP Subtracts 1 from the stack pointer in the status word

FFREE Marks the specified register as empty

152 Programmer’s Guide

Filename: LMAPGC06.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 59 Page: 152 of 18 Printed: 10/02/00 04:23 PM

The following example illustrates several arithmetic instructions. The code
solves quadratic equations, but does no error checking and fails for some values
because it attempts to find the square root of a negative number. Both Help and
the MATH.ASM sample file show a complete version of this procedure. The
complete form uses the FTST (Test for Zero) instruction to check for a negative
number or 0 before calculating the square root.

 .DATA
a REAL4 3.0
b REAL4 7.0
cc REAL4 2.0
posx REAL4 0.0
negx REAL4 0.0

 .CODE
 .
 .
 .
; Solve quadratic equation - no error checking
; The formula is: -b +/- squareroot(b2 - 4ac) / (2a)
 fld1 ; Get constants 2 and 4
 fadd st,st ; 2 at bottom
 fld st ; Copy it
 fmul a ; = 2a

 fmul st(1),st ; = 4a
 fxch ; Exchange
 fmul cc ; = 4ac

 fld b ; Load b
 fmul st,st ; = b2
 fsubr ; = b2 - 4ac
 ; Negative value here produces error
 fsqrt ; = square root(b2 - 4ac)
 fld b ; Load b
 fchs ; Make it negative
 fxch ; Exchange

 fld st ; Copy square root
 fadd st,st(2) ; Plus version = -b + root(b2 - 4ac)
 fxch ; Exchange
 fsubp st(2),st ; Minus version = -b - root(b2 - 4ac)

 fdiv st,st(2) ; Divide plus version
 fstp posx ; Store it
 fdivr ; Divide minus version
 fstp negx ; Store it

 Chapter 6 Using Floating-Point and Binary Coded Decimal Numbers 153

Filename: LMAPGC06.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 59 Page: 153 of 19 Printed: 10/02/00 04:23 PM

Controlling Program Flow
The math coprocessor has several instructions that set control flags in the status
word. The 8087-family control flags can be used with conditional jumps to
direct program flow in the same way that 8086-family flags are used. Since the
coprocessor does not have jump instructions, you must transfer the status word
to memory so that the flags can be used by 8086-family instructions.

An easy way to use the status word with conditional jumps is to move its upper
byte into the lower byte of the processor flags, as shown in this example:

 fstsw mem16 ; Store status word in memory
 fwait ; Make sure coprocessor is done
 mov ax, mem16 ; Move to AX
 sahf ; Store upper word in flags

The SAHF (Store AH into Flags) instruction in this example transfers AH into
the low bits of the flags register.

You can save several steps by loading the status word directly to AX on the
80287 with the FSTSW and FNSTSW instructions. This is the only case in
which data can be transferred directly between processor and coprocessor
registers, as shown in this example:

 fstsw ax

The coprocessor control flags and their relationship to the status word are
described in “Control Registers,” following.

The 8087-family coprocessors provide several instructions for comparing
operands and testing control flags. All these instructions compare the stack top
(ST) to a source operand, which may either be specified or implied as ST(1).

The compare instructions affect the C3, C2, and C0 control flags, but not the
C1 flag. Table 6.3 shows the flags’ settings for each possible result of a
comparison or test.

Table 6.3 Control-Flag Settings After Comparison or Test

After FCOM After FTEST C3 C2 C0

ST > source ST is positive 0 0 0

ST < source ST is negative 0 0 1

ST = source ST is 0 1 0 0

Not comparable ST is NAN or projective infinity 1 1 1

Variations on the compare instructions allow you to pop the stack once or twice
and to compare integers and zero. For each instruction, the stack top is always

154 Programmer’s Guide

Filename: LMAPGC06.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 59 Page: 154 of 20 Printed: 10/02/00 04:23 PM

the implied destination operand. If you do not give an operand, ST(1) is the
implied source. With some compare instructions, you can specify the source as
a memory or register operand.

All instructions summarized in the following list have implied operands: either
ST as a single-destination operand or ST as the destination and ST(1) as the
source. Each instruction in the list has implied operands. Some instructions have
a wait version and a no-wait version. The no-wait versions have N as the
second letter. The instructions for comparing and testing flags include:

Instruction Description

FCOM Compares the stack top to the source. The
source and destination are unaffected by the comparison.

FTST Compares ST to 0.

FCOMP Compares the stack top to the source and then pops the
stack.

FUCOM, FUCOMP,
FUCOMPP

Compares the source to ST and sets the condition codes of
the status word according to the result (80386/486 only).

F[[N]]STSW mem2byte Stores the status word in memory.

FXAM Sets the value of the control flags based on the type of the
number in ST.

FPREM Finds a correct remainder for large operands. It uses the
C2 flag to indicate whether the remainder returned is partial
(C2 is set) or complete (C2 is clear). If the bit is set, the
operation should be repeated. It also returns the least-
significant three bits of the quotient in C0, C3, and C1.

FNOP Copies the stack top onto itself, thus padding the
executable file and taking up processing time without having
any effect on registers or memory.

FDISI, FNDISI, FENI, FNENI Enables or disables interrupts (8087 only).

FSETPM Sets protected mode. Requires a .286P or .386P directive
(80287, 80387, and 80486 only).

The following example illustrates some of these instructions. Notice how
conditional blocks are used to enhance 80287 code.

 .DATA
down REAL4 10.35 ; Sides of a rectangle
across REAL4 13.07
diamtr REAL4 12.93 ; Diameter of a circle
status WORD ?

 Chapter 6 Using Floating-Point and Binary Coded Decimal Numbers 155

Filename: LMAPGC06.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 59 Page: 155 of 21 Printed: 10/02/00 04:23 PM

P287 EQU (@Cpu AND 00111y)
 .CODE
 .
 .
 .
; Get area of rectangle
 fld across ; Load one side
 fmul down ; Multiply by the other

; Get area of circle: Area = PI * (D/2)2
 fld1 ; Load one and
 fadd st, st ; double it to get constant 2
 fdivr diamtr ; Divide diameter to get radius
 fmul st, st ; Square radius
 fldpi ; Load pi
 fmul ; Multiply it

; Compare area of circle and rectangle
 fcompp ; Compare and throw both away
 IF p287
 fstsw ax ; (For 287+, skip memory)
 ELSE
 fnstsw status ; Load from coprocessor to memory
 mov ax, status ; Transfer memory to register
 ENDIF
 sahf ; Transfer AH to flags register
 jp nocomp ; If parity set, can't compare
 jz same ; If zero set, they're the same
 jc rectangle ; If carry set, rectangle is bigger
 jmp circle ; else circle is bigger

nocomp: ; Error handler
 .
 .
 .
same: ; Both equal
 .
 .
 .
rectangle: ; Rectangle bigger
 .
 .
 .
circle: ; Circle bigger

156 Programmer’s Guide

Filename: LMAPGC06.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 59 Page: 156 of 22 Printed: 10/02/00 04:23 PM

Additional instructions for the 80387/486 are FLDENVD and FLDENVW for
loading the environment; FNSTENVD, FNSTENVW, FSTENVD, and
FSTENVW for storing the environment state; FNSAVED, FNSAVEW,
FSAVED, and FSAVEW for saving the coprocessor state; and FRSTORD and
FRSTORW for restoring the coprocessor state.

The size of the code segment, not the operand size, determines the number of
bytes loaded or stored with these instructions. The instructions ending with W
store the 16-bit form of the control register data, and the instructions ending
with D store the 32-bit form. For example, in 16-bit mode FSAVEW saves the
16-bit control register data. If you need to store the 32-bit form of the control
register data, use FSAVED.

Control Registers
Some of the flags of the seven 16-bit control registers control coprocessor
operations, while others maintain the current status of the coprocessor. In this
sense, they are much like the 8086-family flags registers (see Figure 6.8).

Figure 6.8 Coprocessor Control Registers

The status word register is the only commonly used control register. (The others
are used mostly by systems programmers.) The format of the status word
register is shown in Figure 6.9, which shows how the coprocessor control flags
align with the processor flags. C3 overwrites the zero flag, C2 overwrites the
parity flag, and C0 overwrites the carry flag. C1 overwrites an undefined bit, so
it cannot be used directly with conditional jumps, although you can use the
TEST instruction to

 Chapter 6 Using Floating-Point and Binary Coded Decimal Numbers 157

Filename: LMAPGC06.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 59 Page: 157 of 23 Printed: 10/02/00 04:23 PM

check C1 in memory or in a register. The status word register also overwrites
the sign and auxiliary-carry flags, so you cannot count on their being unchanged
after the operation.

Figure 6.9 Coprocessor and Processor Control Flags

Using An Emulator Library
If you do not have a math coprocessor or an 80486 processor, you can do most
floating-point operations by writing assembly-language procedures and accessing
an emulator from a high-level language. All Microsoft high-level languages come
with emulator libraries for all memory models.

To use emulator functions, first write your assembly-language procedure using
coprocessor instructions. Then assemble the module with the /FPi option and
link it with your high-level – language modules. You can enter options in the
Programmer’s WorkBench (PWB) environment, or you can use the OPTION
EMULATOR in your source code.

In emulation mode, the assembler generates instructions for the linker that the
Microsoft emulator can use. The form of the OPTION directive in the following
example tells the assembler to use emulation mode. This option (introduced in
Chapter 1) can be defined only once in a module.

OPTION EMULATOR

158 Programmer’s Guide

Filename: LMAPGC06.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 59 Page: 158 of 24 Printed: 10/02/00 04:23 PM

You can use emulator functions in a stand-alone assembler program by
assembling with the /Cx command-line option and linking with the appropriate
emulator library. The following fragment outlines a small-model program that
contains floating-point instructions served by an emulator:

 .MODEL small, c
 OPTION EMULATOR
 .
 .
 .
 PUBLIC main
 .CODE
main: ; Program entry point must
 .STARTUP ; have name 'main'
 .
 fadd st, st ; Floating-point instructions
 fldpi ; emulated

Emulator libraries do not allow for all of the coprocessor instructions. The
following floating-point instructions are not emulated:

FBLD
FBSTP
FCOS
FDECSTP
FINCSTP
FINIT

FLDENV
FNOP
FPREM1
FRSTOR
FRSTORW
FRSTORD

FSAVE
FSAVEW
FSAVED
FSETPM
FSIN
FSINCOS

FSTENV
FUCOM
FUCOMP
FUCOMPP
FXTRACT

For information about writing assembly-language procedures for high-level
languages, see Chapter 12, “Mixed-Language Programming.”

Using Binary Coded Decimal Numbers
Binary coded decimal (BCD) numbers allow calculations on large numbers
without rounding errors. This characteristic makes BCD numbers a common
choice for monetary calculations. Although BCDs can represent integers of any
precision, the 8087-based coprocessors accommodate BCD numbers only in the
range ±999,999,999,999,999,999.

This section explains how to define BCD numbers, how to access them with a
math coprocessor or emulator, and how to perform simple BCD calculations on
the main processor.

Defining BCD Constants and Variables
Unpacked BCD numbers are made up of bytes containing a single decimal digit
in the lower 4 bits of each byte. Packed BCD numbers are made up of bytes

 Chapter 6 Using Floating-Point and Binary Coded Decimal Numbers 159

Filename: LMAPGC06.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio

Revision #: 59 Page: 159 of 25 Printed: 10/02/00 04:23 PM

containing two decimal digits: one in the upper 4 bits and one in the lower 4 bits.
The leftmost digit holds the sign (0 for positive, 1 for negative).

Packed BCD numbers are encoded in the 8087 coprocessor’s packed BCD
format. They can be up to 18 digits long, packed two digits per byte. The
assembler zero-pads BCDs initialized with fewer than 18 digits. Digit 20 is the
sign bit, and digit 19 is reserved.

When you define an integer constant with the TBYTE directive and the current
radix is decimal (t), the assembler interprets the number as a packed BCD
number.

The syntax for specifying packed BCDs is the same as for other integers.

pos1 TBYTE 1234567890 ; Encoded as 00000000001234567890h
neg1 TBYTE -1234567890 ; Encoded as 80000000001234567890h

Unpacked BCD numbers are stored one digit to a byte, with the value in the
lower
4 bits. They can be defined using the BYTE directive. For example, an
unpacked BCD number could be defined and initialized as follows:

unpackedr BYTE 1,5,8,2,5,2,9 ; Initialized to 9,252,851
unpackedf BYTE 9,2,5,2,8,5,1 ; Initialized to 9,252,851

As these two lines show, you can arrange digits backward or forward, depending
on how you write the calculation routines that handle the numbers.

BCD Calculations on a Coprocessor
As the previous section explains, BCDs differ from other numbers only in the
way a program stores them in memory. Internally, a math coprocessor does not
distinguish BCD integers from any other type. The coprocessor can load,
calculate, and store packed BCD integers up to 18 digits long.

The coprocessor instruction

 fbld bcd1

pushes the packed BCD number at bcd1 onto the coprocessor stack. When
your code completes calculations on the number, place the result back into
memory in BCD format with the instruction

 fbstp bcd1

which discards the variable from the stack top.

160 Programmer’s Guide

Filename: LMAPGC06.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio

Revision #: 59 Page: 160 of 26 Printed: 10/02/00 04:23 PM

BCD Calculations on the Main Processor
The 8086-family of processors can perform simple arithmetic operations on
BCD integers, but only one digit at a time. The main processor, like the
coprocessor, operates internally on the number’s binary value. It requires
additional code to translate the binary result back into BCD format.

The main processor provides instructions specifically designed to translate to
and from BCD format. These instructions are called “ASCII-adjust” and
“decimal-adjust” instructions. They get their names from Intel mnemonics that
use the term “ASCII” to refer to unpacked BCD numbers and “decimal” to
refer to packed BCD numbers.

Unpacked BCD Numbers
When a calculation using two one-digit values produces a two-digit result, the
instructions AAA, AAS, AAM, and AAD place the first digit in AL and the
second in AH. If the digit in AL needs to carry to or borrow from the digit in
AH, the instructions set the carry and auxiliary carry flags. The four ASCII-
adjust instructions for unpacked BCDs are:

Instruction Description

AAA Adjusts after an addition operation.

AAS Adjusts after a subtraction operation.

AAM Adjusts after a multiplication operation. Always use with MUL, not with
IMUL.

AAD Adjusts before a division operation. Unlike other BCD instructions, AAD
converts a BCD value to a binary value before the operation. After the
operation, use AAM to adjust the quotient. The remainder is lost. If you
need the remainder, save it in another register before adjusting the quotient.
Then move it back to AL and adjust if necessary.

For processor arithmetic on unpacked BCD numbers, you must do the 8-bit
arithmetic calculations on each digit separately, and assign the result to the AL
register. After each operation, use the corresponding BCD instruction to adjust
the result. The ASCII-adjust instructions do not take an operand and always
work on the value in the AL register.

 Chapter 6 Using Floating-Point and Binary Coded Decimal Numbers 161

Filename: LMAPGC06.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio

Revision #: 59 Page: 161 of 27 Printed: 10/02/00 04:23 PM

The following examples show how to use each of these instructions in BCD
addition, subtraction, multiplication, and division.

; To add 9 and 3 as BCDs:
 mov ax, 9 ; Load 9
 mov bx, 3 ; and 3 as unpacked BCDs
 add al, bl ; Add 09h and 03h to get 0Ch
 aaa ; Adjust 0Ch in AL to 02h,
 ; increment AH to 01h, set carry
 ; Result 12 (unpacked BCD in AX)

; To subtract 4 from 13:
 mov ax, 103h ; Load 13
 mov bx, 4 ; and 4 as unpacked BCDs
 sub al, bl ; Subtract 4 from 3 to get FFh (-1)
 aas ; Adjust 0FFh in AL to 9,
 ; decrement AH to 0, set carry
 ; Result 9 (unpacked BCD in AX)

; To multiply 9 times 3:
 mov ax, 903h ; Load 9 and 3 as unpacked BCDs
 mul ah ; Multiply 9 and 3 to get 1Bh
 aam ; Adjust 1Bh in AL
 ; to get 27 (unpacked BCD in AX)

; To divide 25 by 2:
 mov ax, 205h ; Load 25
 mov bl, 2 ; and 2 as unpacked BCDs
 aad ; Adjust 0205h in AX
 ; to get 19h in AX
 div bl ; Divide by 2 to get
 ; quotient 0Ch in AL
 ; remainder 1 in AH
 aam ; Adjust 0Ch in AL
 ; to 12 (unpacked BCD in AX)
 ; (remainder destroyed)

If you process multidigit BCD numbers in loops, each digit is processed and
adjusted in turn.

Packed BCD Numbers
Packed BCD numbers are made up of bytes containing two decimal digits: one
in the upper 4 bits and one in the lower 4 bits. The 8086-family processors
provide instructions for adjusting packed BCD numbers after addition and
subtraction. You must write your own routines to adjust for multiplication and
division.

162 Programmer’s Guide

Filename: LMAPGC06.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio

Revision #: 59 Page: 162 of 28 Printed: 10/02/00 04:23 PM

For processor calculations on packed BCD numbers, you must do the 8-bit
arithmetic calculations on each byte separately, placing the result in the AL
register. After each operation, use the corresponding decimal-adjust instruction
to adjust the result. The decimal-adjust instructions do not take an operand and
always work on the value in the AL register.

The 8086-family processors provide the instructions DAA (Decimal Adjust after
Addition) and DAS (Decimal Adjust after Subtraction) for adjusting packed
BCD numbers after addition and subtraction.

These examples use DAA and DAS to add and subtract BCDs.

;To add 88 and 33:
 mov ax, 8833h ; Load 88 and 33 as packed BCDs
 add al, ah ; Add 88 and 33 to get 0BBh
 daa ; Adjust 0BBh to 121 (packed BCD:)
 ; 1 in carry and 21 in AL

;To subtract 38 from 83:
 mov ax, 3883h ; Load 83 and 38 as packed BCDs
 sub al, ah ; Subtract 38 from 83 to get 04Bh
 das ; Adjust 04Bh to 45 (packed BCD:)
 ; 0 in carry and 45 in AL

Unlike the ASCII-adjust instructions, the decimal-adjust instructions never affect
AH. The assembler sets the auxiliary carry flag if the digit in the lower 4 bits
carries to or borrows from the digit in the upper 4 bits, and it sets the carry flag
if the digit in the upper 4 bits needs to carry to or borrow from another byte.

Multidigit BCD numbers are usually processed in loops. Each byte is processed
and adjusted in turn.

