
 1

Filename: LMAPGC01.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 1 of 1 Printed: 10/02/00 04:24 PM

C H A P T E R 1

With the development of the Microsoft Macro Assembler (MASM) version 6.1,
you now have more options available to you for approaching a programming
task. This chapter explains the general concepts of programming in assembly
language, beginning with the environment and a review of the components you
need to work in the assembler environment. Even if you are familiar with
previous versions of MASM, you should examine this chapter for information
on new terms and features.

The first section of this chapter reviews available processors and operating
systems and how they work together. The section also discusses segmented
architecture and how it affects a protected-mode operating environment such as
Windows.

The second section describes some of the language components of MASM that
are common to most programs, such as reserved words, constant expressions,
operators, and registers. The remainder of this book was written with the
assumption that you understand the information presented in this section.

The last section summarizes the assembly process, from assembling a program
through running it. You can affect this process by the way you develop your
code. Finally, this section explores how you can change the assembly process
with the OPTION directive and conditional assembly.

The Processing Environment
The processing environment for MASM 6.1 includes the processor on which
your programs run, the operating system your programs use, and the aspects of
the segmented architecture that influence the choice of programming models.
This section summarizes these elements of the environment and how they affect
your programming choices.

Understanding Global Concepts

2 Programmer’s Guide

Filename: LMAPGC01.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 2 of 2 Printed: 10/02/00 04:24 PM

8086-Based Processors
The 8086 “family” of processors uses segments to control data and code. The
later 8086-based processors have larger instruction sets and more memory
capacity, but they still support the same segmented architecture. Knowing the
differences between the various 8086-based processors can help you select the
appropriate target processor for your programs.

The instruction set of the 8086 processor is upwardly compatible with its
successors. To write code that runs on the widest number of machines, select
the 8086 instruction set. By using the instruction set of a more advanced
processor, you increase the capabilities and efficiency of your program, but you
also reduce the number of systems on which the program can run.

Table 1.1 lists modes, memory, and segment size of processors on which your
application may need to run. Each processor is discussed in more detail
following.

Table 1.1 8086 Family of Processors

Processor

Available
Modes

Addressable
Memory

Segment
Size

8086/8088 Real 1 megabyte 16 bits

80186/80188 Real 1 megabyte 16 bits

80286 Real and Protected 16 megabytes 16 bits

80386 Real and Protected 4 gigabytes 16 or 32 bits

80486 Real and Protected 4 gigabytes 16 or 32 bits

Processor Modes
Real mode allows only one process to run at a time. The mode gets its name
from the fact that addresses in real mode always correspond to real locations in
memory. The MS-DOS operating system runs in real mode.

Windows 3.1 operates only in protected mode, but runs MS-DOS programs in
real mode or in a simulation of real mode called virtual-86 mode. In protected
mode, more than one process can be active at any one time. The operating
system protects memory belonging to one process from access by another
process; hence the name protected mode.

Protected-mode addresses do not correspond directly to physical memory.
Under protected-mode operating systems, the processor allocates and manages
memory dynamically. Additional privileged instructions initialize protected mode
and control multiple processes. For more information, see “Operating Systems,”
following.

 Chapter 1 Understanding Global Concepts 3

Filename: LMAPGC01.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 3 of 3 Printed: 10/02/00 04:24 PM

8086 and 8088
The 8086 is faster than the 8088 because of its 16-bit data bus; the 8088 has
only an 8-bit data bus. The 16-bit data bus allows you to use EVEN and
ALIGN on an 8086 processor to word-align data and thus improve data-
handling efficiency. Memory addresses on the 8086 and 8088 refer to actual
physical addresses.

80186 and 80188
These two processors are identical to the 8086 and 8088 except that new
instructions have been added and several old instructions have been optimized.
These processors run significantly faster than the 8086.

80286
The 80286 processor adds some instructions to control protected mode, and it
runs faster. It also provides protected mode services, allowing the operating
system to run multiple processes at the same time. The 80286 is the minimum
for running Windows 3.1 and 16-bit versions of OS/2 ®.

80386
Unlike its predecessors, the 80386 processor can handle both 16-bit and 32-bit
data. It supports the entire instruction set of the 80286, and adds several new
instructions as well. Software written for the 80286 runs unchanged on the
80386, but is faster because the chip operates at higher speeds.

The 80386 implements many new hardware-level features, including paged
memory, multiple virtual 8086 processes, addressing of up to 4 gigabytes of
memory, and specialized debugging registers. Thirty-two–bit operating systems
such as Windows NT and OS/2 2.0 can run only on an 80386 or higher
processor.

80486
The 80486 processor is an enhanced version of the 80386, with instruction
“pipelining” that executes many instructions two to three times faster. The chip
incorporates both a math coprocessor and an 8K (kilobyte) memory cache. (The
math coprocessor is disabled on a variation of the chip called the 80486SX.)
The 80486 includes new instructions and is fully compatible with 80386
software.

8087, 80287, and 80387
These math coprocessors work concurrently with the 8086 family of processors.
Performing floating-point calculations with math coprocessors is up to 100 times
faster than emulating the calculations with integer instructions. Although there
are technical and performance differences among the three coprocessors, the
main difference to the applications programmer is that the 80287 and 80387 can

4 Programmer’s Guide

Filename: LMAPGC01.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 4 of 4 Printed: 10/02/00 04:24 PM

operate in protected mode. The 80387 also has several new instructions. The
80486 does not use any of these coprocessors; its floating-point processor is
built in and is functionally equivalent to the 80387.

Operating Systems
With MASM, you can create programs that run under MS-DOS, Windows, or
Windows NT — or all three, in some cases. For example, ML.EXE can produce
executable files that run in any of the target environments, regardless of the
programmer’s environment. For information on building programs for different
environments, see “Building and Running Programs” in Help for PWB.

MS-DOS and Windows 3.1 provide different processing modes. MS-DOS runs
in the single-process real mode. Windows 3.1 operates in protected mode,
allowing multiple processes to run simultaneously.

Although Windows requires another operating system for loading and file
services, it provides many functions normally associated with an operating
system. When an application requests an MS-DOS service, Windows often
provides the service without invoking MS-DOS. For consistency, this book
refers to Windows as an operating system.

MS-DOS and Windows (in protected mode) differ primarily in system access
methods, size of addressable memory, and segment selection. Table 1.2
summarizes these differences.

Table 1.2 The MS-DOS and Windows Operating Systems Compared

Operating
System

System
Access

Available
Active
Processes

Addressable
Memory

Contents of
Segment
Register

Word
Length

MS-DOS and
Windows real
mode

Direct to
hardware
and OS call

One 1 megabyte Actual
address

16 bits

Windows
virtual-86 mode

Operating
system call

Multiple 1 megabyte Segment
selectors

16 bits

Windows
protected mode

Operating
system call

Multiple 16 megabytes Segment
selectors

16 bits

Windows NT Operating
system call

Multiple 512
megabytes

Segment
selectors

32 bits

MS-DOS
In real-mode programming, you can access system functions by calling MS-
DOS, calling the basic input/output system (BIOS), or directly addressing
hardware. Access is through MS-DOS Interrupt 21h.

 Chapter 1 Understanding Global Concepts 5

Filename: LMAPGC01.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 5 of 5 Printed: 10/02/00 04:24 PM

Windows
As you can see in Table 1.2, protected mode allows for much larger data
structures than real mode, since addressable memory extends to 16 megabytes.
In protected mode, segment registers contain selector values rather than actual
segment addresses. These selectors cannot be calculated by the program; they
must be obtained by calling the operating system. Programs that attempt to
calculate segment values or to address memory directly do not work in protected
mode.

Protected mode uses privilege levels to maintain system integrity and security.
Programs cannot access data or code that is in a higher privilege level. Some
instructions that directly access ports or affect interrupts (such as CLI, STI, IN,
and OUT) are available at privilege levels normally used only by systems
programmers.

Windows protected mode provides each application with up to 16 megabytes of
“virtual memory,” even on computers that have less physical memory. The term
virtual memory refers to the operating system’s ability to use a swap area on the
hard disk as an extension of real memory. When a Windows application requires
more memory than is available, Windows writes sections of occupied memory
to the swap area, thus freeing those sections for other use. It then provides the
memory to the application that made the memory request. When the owner of
the swapped data regains control, Windows restores the data from disk to
memory, swapping out other memory if required.

Windows NT
Windows NT uses the so-called “flat model” of 80386/486 processors. This
model places the processor’s entire address space within one 32-bit segment.
The section “Defining Basic Attributes with .MODEL” in Chapter 2 explains
how to use the flat model. In flat model, your program can (in theory) access up
to 4 gigabytes of virtual memory. Since code, data, and stack reside in the same
segment, each segment register can hold the same value, which need never
change.

Segmented Architecture
The 8086 family of processors employs a segmented architecture — that is, each
address is represented as a segment and an offset. Segmented addresses affect
many aspects of assembly-language programming, especially addresses and
pointers.

Segmented architecture was originally designed to enable a 16-bit processor to
access an address space larger than 64K. (The section “Segmented Addressing,”
later in this chapter, explains how the processor uses both the segment and
offset to create addresses larger than 64K.) MS-DOS is an example of an
operating system that uses segmented architecture on a 16-bit processor.

6 Programmer’s Guide

Filename: LMAPGC01.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 6 of 6 Printed: 10/02/00 04:24 PM

With the advent of protected-mode processors such as the 80286, segmented
architecture gained a second purpose. Segments can separate different blocks of
code and data to protect them from undesirable interactions. Windows takes
advantage of the protection features of the 16-bit segments on the 80286.

Segmented architecture went through another significant change with the release
of 32-bit processors, starting with the 80386. These processors are compatible
with the older 16-bit processors, but allow flat model 32-bit offset values up to 4
gigabytes. Offset values of this magnitude remove the memory limitations of
segmented architecture. The Windows NT operating system uses 32-bit
addressing.

Segment Protection
Segmented architecture is an important part of the Windows memory-protection
scheme. In a “multitasking” operating system in which numerous programs can
run simultaneously, programs cannot access the code and data of another
process without permission.

In MS-DOS, the data and code segments are usually allocated adjacent to each
other, as shown in Figure 1.1. In Windows, the data and code segments can be
anywhere in memory. The programmer knows nothing about, and has no
control over, their location. The operating system can even move the segments
to a new memory location or to disk while the program is running.

Figure 1.1 Segment Allocation

Segment protection makes software development easier and more reliable in
Windows than in MS-DOS, because Windows immediately detects illegal

 Chapter 1 Understanding Global Concepts 7

Filename: LMAPGC01.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 7 of 7 Printed: 10/02/00 04:24 PM

memory accesses. The operating system intercepts illegal memory accesses,
terminates the program, and displays a message. This makes it easier for you to
track down and fix the bug.

Because it runs in real mode, MS-DOS contains no mechanism for detecting an
improper memory access. A program that overwrites data not belonging to it
may continue to run and even terminate correctly. The error may not surface
until later, when MS-DOS or another program reads the corrupted memory.

Segmented Addressing
Segmented addressing refers to the internal mechanism that combines a segment
value and an offset value to form a complete memory address. The two parts of
an address are represented as

segment:offset

The segment portion always consists of a 16-bit value. The offset portion is a
16-bit value in 16-bit mode or a 32-bit value in 32-bit mode.

In real mode, the segment value is a physical address that has an arithmetic
relationship to the offset value. The segment and offset together create a 20-bit
physical address (explained in the next section). Although 20-bit addresses can
access up to 1 megabyte of memory, the BIOS and operating system on
International Standard Architecture (IBM PC/AT and compatible) computers
use part of this memory, leaving the remainder available for programs.

Segment Arithmetic
Manipulating segment and offset addresses directly in real-mode programming is
called “segment arithmetic.” Programs that perform segment arithmetic are not
portable to protected-mode operating systems, in which addresses do not
correspond to a known segment and offset.

To perform segment arithmetic successfully, it helps to understand how the
processor combines a 16-bit segment and a 16-bit offset to form a 20-bit linear
address. In effect, the segment selects a 64K region of memory, and the offset
selects the byte within that region. Here’s how it works:

 1. The processor shifts the segment address to the left by four binary places,
producing a 20-bit address ending in four zeros. This operation has the effect
of multiplying the segment address by 16.

 2. The processor adds this 20-bit segment address to the 16-bit offset address.
The offset address is not shifted.

 3. The processor uses the resulting 20-bit address, called the “physical
address,” to access an actual location in the 1-megabyte address space.

8 Programmer’s Guide

Filename: LMAPGC01.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 8 of 8 Printed: 10/02/00 04:24 PM

Figure 1.2 illustrates this process.

Figure 1.2 Calculating Physical Addresses

A 20-bit physical address may actually be specified by 4,096 equivalent
segment:offset addresses. For example, the addresses 0000:F800, 0F00:0800,
and 0F80:0000 all refer to the same physical address 0F800.

Language Components of MASM
Programming with MASM requires that you understand the MASM concepts of
reserved words, identifiers, predefined symbols, constants, expressions,
operators, data types, registers, and statements. This section defines important
terms and provides lists that summarize these topics. For detailed information,
see Help or the Reference.

Reserved Words
A reserved word has a special meaning fixed by the language. You can use it
only under certain conditions. Reserved words in MASM include:

u Instructions, which correspond to operations the processor can execute.

u Directives, which give commands to the assembler.

u Attributes, which provide a value for a field, such as segment alignment.

u Operators, which are used in expressions.

 Chapter 1 Understanding Global Concepts 9

Filename: LMAPGC01.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 9 of 9 Printed: 10/02/00 04:24 PM

u Predefined symbols, which return information to your program.

MASM reserved words are not case sensitive except for predefined symbols
(see “Predefined Symbols,” later in this chapter).

The assembler generates an error if you use a reserved word as a variable, code
label, or other identifier within your source code. However, if you need to use a
reserved word for another purpose, the OPTION NOKEYWORD directive can
selectively disable a word’s status as a reserved word.

For example, to remove the STR instruction, the MASK operator, and the
NAME directive from the set of words MASM recognizes as reserved, use this
statement in the code segment of your program before the first reference to
STR, MASK, or NAME:

OPTION NOKEYWORD:<STR MASK NAME>

The section “Using the OPTION Directive,” later in this chapter, discusses the
OPTION directive. Appendix D provides a complete list of MASM reserved
words.

With the /Zm command-line option or OPTION M510 in effect, MASM does
not reserve any operators or instructions that do not apply to the current CPU
mode. For example, you can use the symbol ENTER when assembling under the
default CPU mode but not under .286 mode, since the 80186/486 processors
recognize ENTER as an instruction. The USE32, FLAT, FAR32, and NEAR32
segment types and the 80386/486 register names are not keywords with
processors other than the 80386/486.

Identifiers
An identifier is a name that you invent and attach to a definition. Identifiers can
be symbols representing variables, constants, procedure names, code labels,
segment names, and user-defined data types such as structures, unions, records,
and types defined with TYPEDEF. Identifiers longer than 247 characters
generate an error.

Certain restrictions limit the names you can use for identifiers. Follow these
rules to define a name for an identifier:

u The first character of the identifier can be an alphabetic character (A–Z) or
any of these four characters: @ _ $?

u The other characters in the identifier can be any of the characters listed
above or a decimal digit (0–9).

Avoid starting an identifier with the at sign (@), because MASM 6.1 predefines
some special symbols starting with @ (see “Predefined Symbols,” following).

10 Programmer’s Guide

Filename: LMAPGC01.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 10 of 10 Printed: 10/02/00 04:24 PM

Beginning an identifier with @ may also cause conflicts with future versions of
the Macro Assembler.

The symbol — and thus the identifier — is visible as long as it remains within
scope. (For more information about visibility and scope, see “Sharing Symbols
with Include Files” in Chapter 8.)

Predefined Symbols
The assembler includes a number of predefined symbols (also called predefined
equates). You can use these symbol names at any point in your code to
represent the equate value. For example, the predefined equate @FileName
represents the base name of the current file. If the current source file is
TASK.ASM, the value of @FileName is TASK. The MASM predefined
symbols are listed according to the kinds of information they provide. Case is
important only if the /Cp option is used. (For additional details, see Help on ML
command-line options.)

The predefined symbols for segment information include:

Symbol Description

@code Returns the name of the code segment.

@CodeSize Returns an integer representing the default code distance.

@CurSeg Returns the name of the current segment.

@data Expands to DGROUP.

@DataSize Returns an integer representing the default data distance.

@fardata Returns the name of the segment defined by the .FARDATA directive.

@fardata? Returns the name of the segment defined by the .FARDATA? directive.

@Model Returns the selected memory model.

@stack Expands to DGROUP for near stacks or STACK for far stacks. (See
“Creating a Stack” in Chapter 2.)

@WordSize Provides the size attribute of the current segment.

The predefined symbols for environment information include:

Symbol Description

@Cpu Contains a bit mask specifying the processor mode.

@Environ Returns values of environment variables during assembly.

@Interface Contains information about the language parameters.

@Version Represents the text equivalent of the MASM version number. In MASM 6.1,
this expands to 610.

 Chapter 1 Understanding Global Concepts 11

Filename: LMAPGC01.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 11 of 11 Printed: 10/02/00 04:24 PM

The predefined symbols for date and time information include:

Symbol Description

@Date Supplies the current system date during assembly.

@Time Supplies the current system time during assembly.

The predefined symbols for file information include:

Symbol Description

@FileCur Names the current file (base and suffix).

@FileName Names the base name of the main file being assembled as it appears on the
command line.

@Line Gives the source line number in the current file.

The predefined symbols for macro string manipulation include:

Symbol Description

@CatStr Returns concatenation of two strings.

@InStr Returns the starting position of a string within another string.

@SizeStr Returns the length of a given string.

@SubStr Returns substring from a given string.

Integer Constants and Constant Expressions
An integer constant is a series of one or more numerals followed by an optional
radix specifier. For example, in these statements

 mov ax, 25
 mov bx, 0B3h

the numbers 25 and 0B3h are integer constants. The h appended to 0B3 is a
radix specifier. The specifiers are:

u y for binary (or b if the default radix is not hexadecimal)

u o or q for octal
u t for decimal (or d if the default radix is not hexadecimal)

u h for hexadecimal

Radix specifiers can be either uppercase or lowercase letters; sample code in this
book is in lowercase. If you do not specify a radix, the assembler interprets the
integer according to the current radix. The default radix is decimal, but you can
change the default with the .RADIX directive.

12 Programmer’s Guide

Filename: LMAPGC01.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 12 of 12 Printed: 10/02/00 04:24 PM

Hexadecimal numbers must always start with a decimal digit (0–9). If necessary,
add a leading zero to distinguish between symbols and hexadecimal numbers
that start with a letter. For example, MASM interprets ABCh as an identifier.
The hexadecimal digits A through F can be either uppercase or lowercase letters.
Sample code in this book is in uppercase letters.

Constant expressions contain integer constants and (optionally) operators such
as shift, logical, and arithmetic operators. The assembler evaluates constant
expressions at assembly time. (In addition to constants, expressions can contain
labels, types, registers, and their attributes.) Constant expressions do not change
value during program execution.

Symbolic Integer Constants
You can define symbolic integer constants with either of the data assignment
directives, EQU or the equal sign (=). These directives assign values to symbols
during assembly, not during program execution. Symbolic constants are used to
assign names to constant values. You can use a symbol with an assigned value
in place of an immediate operand. For example, instead of referring in your code
to keyboard scan codes with numbers such as 30 or 48, you can create more
recognizable symbols:

SCAN_A EQU 30
SCAN_B EQU 48

then use the appropriate symbol in your program rather than the number. Using
symbolic constants instead of undescriptive numbers makes your code more
readable and easier to maintain. The assembler does not allocate data storage
when you use either EQU or =. It simply replaces each occurrence of the
symbol with the value of the expression.

The directives EQU and = have slightly different purposes. Integers defined
with the = directive can be redefined with another value in your source code,
but those defined with EQU cannot. Once you’ve defined a symbolic constant
with the EQU directive, attempting to redefine it generates an error. The syntax
is:

symbol EQU expression

The symbol is a unique name of your choice, except for words reserved by
MASM. The expression can be an integer, a constant expression, a one- or two-
character string constant (four-character on the 80386/486), or an expression
that evaluates to an address. Symbolic constants let you change a constant value
used throughout your source code by merely altering expression in the
definition. This removes the potential for error and saves you the inconvenience
of having to find and replace each occurrence of the constant in your program.

 Chapter 1 Understanding Global Concepts 13

Filename: LMAPGC01.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 13 of 13 Printed: 10/02/00 04:24 PM

The following example shows the correct use of EQU to define symbolic
integers.

column EQU 80 ; Constant - 80
row EQU 25 ; Constant - 25
screen EQU column * row ; Constant - 2000
line EQU row ; Constant - 25

 .DATA

 .CODE
 .
 .
 .
 mov cx, column
 mov bx, line

The value of a symbol defined with the = directive can be different at different
places in the source code. However, a constant value is assigned during
assembly for each use, and that value does not change at run time.

The syntax for the = directive is:

symbol = expression

Size of Constants
The default word size for MASM 6.1 expressions is 32 bits. This behavior can
be modified using OPTION EXPR16 or OPTION M510. Both of these options
set the expression word size to 16 bits, but OPTION M510 affects other
assembler behavior as well (see Appendix A).

It is illegal to change the expression word size once it has been set with
OPTION M510, OPTION EXPR16, or OPTION EXPR32. However, you
can repeat the same directive in your source code as often as you wish. You can
place the same directive in every include file, for example.

Operators
Operators are used in expressions. The value of the expression is determined at
assembly time and does not change when the program runs.

Operators should not be confused with processor instructions. The reserved
word ADD is an instruction; the plus sign (+) is an operator. For example,
Amount+2 illustrates a valid use of the plus operator (+). It tells the assembler
to add 2 to the constant value Amount, which might be a value or an address.
Contrast this operation, which occurs at assembly time, with the processor’s
ADD instruction. ADD tells the processor at run time to add two numbers and
store the result.

14 Programmer’s Guide

Filename: LMAPGC01.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 14 of 14 Printed: 10/02/00 04:24 PM

The assembler evaluates expressions that contain more than one operator
according to the following rules:

u Operations in parentheses are performed before adjacent operations.

u Binary operations of highest precedence are performed first.

u Operations of equal precedence are performed from left to right.

u Unary operations of equal precedence are performed right to left.

Table 1.3 lists the order of precedence for all operators. Operators on the same
line have equal precedence.

Table 1.3 Operator Precedence

Precedence Operators

1 (), []

2 LENGTH, SIZE, WIDTH, MASK, LENGTHOF, SIZEOF

3 . (structure-field-name operator)

4 : (segment-override operator), PTR

5 LROFFSET, OFFSET, SEG, THIS, TYPE

6 HIGH, HIGHWORD, LOW, LOWWORD

7 + ,– (unary)

8 *, /, MOD, SHL, SHR

9 +, – (binary)

10 EQ, NE, LT, LE, GT, GE

11 NOT

12 AND

13 OR, XOR

14 OPATTR, SHORT, .TYPE

Data Types
A “data type” describes a set of values. A variable of a given type can have any
of a set of values within the range specified for that type.

The intrinsic types for MASM 6.1 are BYTE, SBYTE, WORD, SWORD,
DWORD, SDWORD, FWORD, QWORD, and TBYTE. These types define
integers and binary coded decimals (BCDs), as discussed in Chapter 6. The
signed data types SBYTE, SWORD, and SDWORD work in conjunction with
directives such as INVOKE (for calling procedures) and .IF (introduced in
Chapter 7). The REAL4, REAL8, and REAL10 directives define floating-point
types. (See Chapter 6.)

 Chapter 1 Understanding Global Concepts 15

Filename: LMAPGC01.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 15 of 15 Printed: 10/02/00 04:24 PM

Versions of MASM prior to 6.0 had separate directives for types and initializers.
For example, BYTE is a type and DB is the corresponding initializer. The
distinction does not apply in MASM 6.1. You can use any type (intrinsic or
user-defined) as an initializer.

MASM does not have specific types for arrays and strings. However, you can
treat a sequence of data units as arrays, and character or byte sequences as
strings. (See “Arrays and Strings” in Chapter 5.)

Types can also have attributes such as langtype and distance (NEAR and
FAR). For information on these attributes, see “Declaring Parameters with the
PROC Directive” in Chapter 7.

You can also define your own types with STRUCT, UNION, and RECORD.
The types have fields that contain string or numeric data, or records that contain
bits. These data types are similar to the user-defined data types in high-level
languages such as C, Pascal, and FORTRAN. (See Chapter 5, “Defining and
Using Complex Data Types.”)

You can define new types, including pointer types, with the TYPEDEF
directive. TYPEDEF assigns a qualifiedtype (explained in the following) to a
typename of your choice. This lets you build new types with descriptive names
of your choosing, making your programs more readable. For example, the
following statement makes the symbol CHAR a synonym for the intrinsic type
BYTE:

CHAR TYPEDEF BYTE

The qualifiedtype is any type or pointer to a type of the form:

[[distance]] PTR [[qualifiedtype]]

where distance is NEAR, FAR, or any distance modifier. (For more
information on distance, see “Declaring Parameters with the PROC Directive”
in Chapter 7.)

The qualifiedtype can also be any type previously defined with TYPEDEF. For
example, if you use TYPEDEF to create an alias for BYTE — say, CHAR as in
the preceding example — you can use CHAR as a qualifiedtype when defining the
pointer type PCHAR, like this:

CHAR TYPEDEF BYTE
PCHAR TYPEDEF PTR CHAR

The typename CHAR in the first line becomes a qualifiedtype in the second line.
Use of the TYPEDEF directive to define pointers is explained in “Accessing
Data with Pointers and Addresses” in Chapter 3.

16 Programmer’s Guide

Filename: LMAPGC01.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 16 of 16 Printed: 10/02/00 04:24 PM

Since distance and qualifiedtype are optional syntax elements, you can use
variables of type PTR or FAR PTR. You can also define procedure prototypes
with qualifiedtype. For more information about procedure prototypes, see
“Declaring Procedure Prototypes” in Chapter 7.

These rules govern the use of qualifiedtype:

u The only component of a qualifiedtype definition that can be forward-
referenced is a structure or union type identifier.

u If you do not specify distance, the assembler assumes a distance that
corresponds to the memory model. The assumed distance is NEAR for tiny,
small, and medium models, and FAR for other models.

u If you do not specify a memory model with .MODEL, the assembler
assumes SMALL model (and therefore NEAR pointers).

You can use a qualifiedtype in seven places:

Use Example

In procedure arguments proc1 PROC pMsg:PTR BYTE

In prototype arguments proc2 PROTO pMsg:FAR PTR WORD

With local variables declared inside
procedures

LOCAL pMsg:PTR

With the LABEL directive TempMsg LABEL PTR WORD

With the EXTERN and EXTERNDEF
directives

EXTERN pMsg:FAR PTR BYTE
EXTERNDEF MyProc:PROTO

With the COMM directive COMM var1:WORD:3

With the TYPEDEF directive PBYTE TYPEDEF PTR BYTE
PFUNC TYPEDEF PROTO MyProc

“Defining Pointer Types with TYPEDEF” in Chapter 3 shows ways to write a
TYPEDEF type for a qualifiedtype. Attributes such as NEAR and FAR can
also apply to a qualifiedtype.

You can determine an accurate definition for TYPEDEF and qualifiedtype from
the BNF grammar definitions given in Appendix B. The BNF grammar defines
each component of the syntax for any directive, showing the recursive
properties of components such as qualifiedtype.

Registers
The 8086 family of processors have the same base set of 16-bit registers. Each
processor can treat certain registers as two separate 8-bit registers. The
80386/486 processors have extended 32-bit registers. To maintain compatibility

 Chapter 1 Understanding Global Concepts 17

Filename: LMAPGC01.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 17 of 17 Printed: 10/02/00 04:24 PM

with their predecessors, 80386/486 processors can access their registers as 16-
bit or, where appropriate, as 8-bit values.

Figure 1.3 shows the registers common to all the 8086-based processors. Each
register has its own special uses and limitations.

Figure 1.3 Registers for 8088 – 80286 Processors

80386/486 Only
The 80386/486 processors use the same 8-bit and 16-bit registers used by the
rest of the 8086 family. All of these registers can be further extended to 32 bits,
except segment registers, which always occupy 16 bits. The extended register
names begin with the letter “E.” For example, the 32-bit extension of AX is
EAX. The 80386/486 processors have two additional segment registers, FS and
GS. Figure 1.4 shows the extended registers of the 80386/486.

18 Programmer’s Guide

Filename: LMAPGC01.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 18 of 18 Printed: 10/02/00 04:24 PM

Figure 1.4 Extended Registers for the 80386/486 Processors

Segment Registers
At run time, all addresses are relative to one of four segment registers: CS, DS,
SS, or ES. (The 80386/486 processors add two more: FS and GS.) These
registers, their segments, and their purposes include:

Register and Segment Purpose

CS (Code Segment) Contains processor instructions and their immediate operands.

DS (Data Segment) Normally contains data allocated by the program.

SS (Stack Segment) Contains the program stack for use by PUSH, POP, CALL,
and RET.

 Chapter 1 Understanding Global Concepts 19

Filename: LMAPGC01.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 19 of 19 Printed: 10/02/00 04:24 PM

Register and Segment Purpose

ES (Extra Segment) References secondary data segment. Used by string
instructions.

FS, GS Provides extra segments on the 80386/486.

General-Purpose Registers
The AX, DX, CX, BX, BP, DI, and SI registers are 16-bit general-purpose
registers, used for temporary data storage. Since the processor accesses registers
more quickly than it accesses memory, you can make your programs run faster
by keeping the most-frequently used data in registers.

The 8086-based processors do not perform memory-to-memory operations. For
example, the processor cannot directly copy a variable from one location in
memory to another. You must first copy from memory to a register, then from
the register to the new memory location. Similarly, to add two variables in
memory, you must first copy one variable to a register, then add the contents of
the register to the other variable in memory.

The processor can access four of the general registers — AX, DX, CX, and BX
— either as two 8-bit registers or as a single 16-bit register. The AH, DH, CH,
and BH registers represent the high-order 8 bits of the corresponding registers.
Similarly, AL, DL, CL, and BL represent the low-order 8 bits of the registers.

The 80386/486 processors can extend all the general registers to 32 bits, though
as Figure 1.4 shows, you cannot treat the upper 16 bits as a separate register as
you can the lower 16 bits. To use EAX as an example, you can directly
reference the low byte as AL, the next lowest byte as AH, and the low word as
AX. To access the high word of EAX, however, you must first shift the upper
16 bits into the lower 16 bits.

Special-Purpose Registers
The 8086 family of processors has two additional registers, SP and IP, whose
values are changed automatically by the processor.

SP (Stack Pointer)
The SP register points to the current location within the stack segment. Pushing
a value onto the stack decreases the value of SP by two; popping from the stack
increases the value of SP by two. Thirty-two–bit operands on 80386/486
processors increase or decrease SP by four instead of two. The CALL and INT
instructions store the return address on the stack and reduce SP accordingly.
Return instructions retrieve the stored address from the stack and reset SP to its
value before the call. SP can also be adjusted with instructions such as ADD.
The program stack is described in detail in Chapter 3.

20 Programmer’s Guide

Filename: LMAPGC01.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 20 of 20 Printed: 10/02/00 04:24 PM

IP (Instruction Pointer)
The IP register always contains the address of the next instruction to be
executed. You cannot directly access or change the instruction pointer.
However, instructions that control program flow (such as calls, jumps, loops,
and interrupts) automatically change the instruction pointer.

Flags Register
The 16 bits in the flags register control the execution of certain instructions and
reflect the current status of the processor. In 80386/486 processors, the flags
register is extended to 32 bits. Some bits are undefined, so there are actually 9
flags for real mode, 11 flags (including a 2-bit flag) for 80286 protected mode,
13 for the 80386, and 14 for the 80486. The extended flags register of the
80386/486 is sometimes called “Eflags.”

Figure 1.5 shows the bits of the 32-bit flags register for the 80386/486. Earlier
8086-family processors use only the lower word. The unmarked bits are
reserved for processor use, and should not be modified.

Figure 1.5 Flags for 8088-80486 Processors

In the following descriptions and throughout this book, “set” means a bit value
of 1, and “cleared” means the bit value is 0. The nine flags common to all 8086-
family processors, starting with the low-order flags, include:

 Chapter 1 Understanding Global Concepts 21

Filename: LMAPGC01.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 21 of 21 Printed: 10/02/00 04:24 PM

Flag Description

Carry Set if an operation generates a carry to or a borrow from a destination
operand.

Parity Set if the low-order bits of the result of an operation contain an even
number of set bits.

Auxiliary Carry Set if an operation generates a carry to or a borrow from the low-order 4
bits of an operand. This flag is used for binary coded decimal (BCD)
arithmetic.

Zero Set if the result of an operation is 0.

Sign Equal to the high-order bit of the result of an operation (0 is positive, 1 is
negative).

Trap If set, the processor generates a single-step interrupt after each
instruction. A debugging program can use this feature to execute a
program one instruction at a time.

Interrupt Enable If set, interrupts are recognized and acted on as they are received. The bit
can be cleared to turn off interrupt processing temporarily.

Direction If set, string operations process down from high addresses to low
addresses. If cleared, string operations process up from low addresses to
high addresses.

Overflow Set if the result of an operation is too large or small to fit in the destination
operand.

Although all flags serve a purpose, most programs require only the carry, zero,
sign, and direction flags.

Statements
Statements are the line-by-line components of source files. Each MASM
statement specifies an instruction or directive for the assembler. Statements have
up to four fields, as shown here:

[[name:]] [[operation]] [[operands]] [[;comment]]

The following list explains each field:

Field Purpose

 name Labels the statement, so that instructions elsewhere in the program can refer to
the statement by name. The name field can label a variable, type, segment, or
code location.

operation Defines the action of the statement. This field contains either an instruction or an
assembler directive.

operands Lists one or more items on which the instruction or directive operates.

comment Provides a comment for the programmer. Comments are for documentation
only; they are ignored by the assembler.

22 Programmer’s Guide

Filename: LMAPGC01.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 22 of 22 Printed: 10/02/00 04:24 PM

The following line contains all four fields:

mainlp: mov ax, 7 ; Load AX with the value 7

Here, mainlp is the label, mov is the operation, and ax and 7 are the operands,
separated by a comma. The comment follows the semicolon.

All fields are optional, although certain directives and instructions require an
entry in the name or operand field. Some instructions and directives place
restrictions on the choice of operands. By default, MASM is not case sensitive.

Each field (except the comment field) must be separated from other fields by
white-space characters (spaces or tabs). MASM also requires code labels to be
followed by a colon, operands to be separated by commas, and comments to be
preceded by a semicolon.

A logical line can contain up to 512 characters and occupy one or more physical
lines. To extend a logical line into two or more physical lines, put the backslash
character (\) as the last non-whitespace character before the comment or end of
the line. You can place a comment after the backslash as shown in this example:

 .IF (x > 0) \ ; X must be positive
 && (ax > x) \ ; Result from function must be > x
 && (cx == 0) ; Check loop counter, too
 mov dx, 20h
 .ENDIF

Multiline comments can also be specified with the COMMENT directive. The
assembler ignores all text and code between the delimiters or on the same line as
the delimiters. This example illustrates the use of COMMENT.

COMMENT ^ The assembler
 ignores this text
^ mov ax, 1 and this code

The Assembly Process
Creating and running an executable file involves four steps:

 1. Assembling the source code into an object file
 2. Linking the object file with other modules or libraries into an executable

program

 3. Loading the program into memory

 4. Running the program

 Chapter 1 Understanding Global Concepts 23

Filename: LMAPGC01.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 23 of 23 Printed: 10/02/00 04:24 PM

Once you have written your assembly-language program, MASM provides
several options for assembling it. The OPTION directive has several different
arguments that let you control the way MASM assembles your programs.

Conditional assembly allows you to create one source file that can generate a
variety of programs, depending on the status of various conditional-assembly
statements.

Generating and Running Executable Programs
This section briefly lists all the actions that take place during each of the
assembly steps. You can change the behavior of some of these actions in
various ways, such as using macros instead of procedures, or using the
OPTION directive or conditional assembly. The other chapters in this book
include specific programming methods; this section simply gives you an
overview.

Assembling
The ML.EXE program does two things to create an executable program. First, it
assembles the source code into an intermediate object file. Second, it calls the
linker, LINK.EXE, which links the object files and libraries into an executable
program.

At assembly time, the assembler:

u Evaluates conditional-assembly directives, assembling if the conditions are
true.

u Expands macros and macro functions.

u Evaluates constant expressions such as MYFLAG AND 80H, substituting the
calculated value for the expression.

u Encodes instructions and nonaddress operands. For example, mov cx, 13
can be encoded at assembly time because the instruction does not access
memory.

u Saves memory offsets as offsets from their segments.

u Places segments and segment attributes in the object file.

u Saves placeholders for offsets and segments (relocatable addresses).

u Outputs a listing if requested.
u Passes messages (such as INCLUDELIB and .DOSSEG) directly to the

linker.

For information about conditional assembly, see “Conditional Directives” in this
chapter; for macros, see Chapter 9. Further details about segments and offsets
are included in Chapters 2 and 3. Assembly listings are explained in Appendix C.

24 Programmer’s Guide

Filename: LMAPGC01.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 24 of 24 Printed: 10/02/00 04:24 PM

Linking
Once your source code is assembled, the resulting object file is passed to the
linker. At this point, the linker may combine several object files into an
executable program. The linker:

u Combines segments according to the instructions in the object files,
rearranging the positions of segments that share the same class or group.

u Fills in placeholders for offsets (relocatable addresses).

u Writes relocations for segments into the header of .EXE files (but not .COM
files).

u Writes the result as an executable program file.

Classes and groups are defined in “Defining Segment Groups” in Chapter 2.
Segments and offsets are explained in Chapter 3, “Using Addresses and
Pointers.”

Loading
After loading the executable file into memory, the operating system:

u Creates the program segment prefix (PSP) header in memory.

u Allocates memory for the program, based on the values in the PSP.

u Loads the program.

u Calculates the correct values for absolute addresses from the relocation table.

u Loads the segment registers SS, CS, DS, and ES with values that point to the
proper areas of memory.

For information about segment registers, the instruction pointer (IP), and the
stack pointer (SP), see “Registers” earlier in this chapter. For more information
on the PSP see Help or an MS-DOS reference.

Running
To run your program, MS-DOS jumps to the program’s first instruction. Some
program operations, such as resolving indirect memory operands, cannot be
handled until the program runs. For a description of indirect references, see
“Indirect Operands” in Chapter 7.

Using the OPTION Directive
The OPTION directive lets you modify global aspects of the assembly process.
With OPTION, you can change command-line options and default arguments.
These changes affect only statements that follow the OPTION keyword.

 Chapter 1 Understanding Global Concepts 25

Filename: LMAPGC01.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 25 of 25 Printed: 10/02/00 04:24 PM

For example, you may have MASM code in which the first character of a
variable, macro, structure, or field name is a dot (.). Since a leading dot causes
MASM 6.1 to generate an error, you can use this statement in your program:

OPTION DOTNAME

This enables the use of the dot for the first character.

Changes made with OPTION override any corresponding command-line option.
For example, suppose you compile a module with this command line (which
enables M510 compatibility):

ML /Zm TEST.ASM

The assembler disables M510 compatibility options for all code following this
statement:

OPTION NOM510

The following lists explain each of the arguments for the OPTION directive.
Where appropriate, an underline identifies the default argument. If you wish to
place more than one OPTION statement on a line, separate them by commas.

Options for M510 compatibility include:

Argument Description

CASEMAP: maptype CASEMAP:NONE (or /Cx) causes internal
symbol recognition to be case sensitive and causes
the case of identifiers in the .OBJ file to be the same
as specified in the EXTERNDEF, PUBLIC, or
COMM statement. The default is
CASEMAP:NOTPUBLIC (or /Cp). It specifies
case insensitivity for internal symbol recognition and
the same behavior as CASEMAP:NONE for case
of identifiers in .OBJ files. CASEMAP:ALL (/Cu)
specifies case insensitivity for identifiers and
converts all identifier names to uppercase.

DOTNAME | NODOTNAME Enables the use of the dot (.) as the leading
character in variable, macro, structure, union, and
member names.

M510 | NOM510 Sets all features to be compatible with MASM
version 5.1, disabling the SCOPED argument and
enabling OLDMACROS, DOTNAME, and,
OLDSTRUCTS. OPTION M510 conditionally
sets other arguments for the OPTION directive.
For more information on using OPTION M510,
see Appendix A.

26 Programmer’s Guide

Filename: LMAPGC01.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 26 of 26 Printed: 10/02/00 04:24 PM

Argument Description

OLDMACROS | NOOLDMACROS Enables the version 5.1 treatment of macros.
MASM 6.1 treats macros differently.

OLDSTRUCTS | NOOLDSTRUCTS Enables compatibility with MASM 5.1 for treatment
of structure members. See Chapter 5 for
information on structures.

SCOPED | NOSCOPED Guarantees that all labels inside procedures are
local to the procedure when SCOPED (the default)
is enabled.

SETIF2: TRUE | FALSE If TRUE, .ERR2 statements and IF2 and
ELSEIF2 conditional blocks are evaluated on
every pass. If FALSE, they are not evaluated. If
SETIF2 is not specified (or implied), .ERR2, IF2,
and ELSEIF2 expressions cause an error. Both the
/Zm command-line argument and OPTION M510
imply SETIF2:TRUE.

Options for procedure use include:

Argument Description

LANGUAGE: langtype Specifies the default language type (C, PASCAL,
FORTRAN, BASIC, SYSCALL, or STDCALL)
to be used with PROC, EXTERN, and PUBLIC.
This use of the OPTION directive overrides the
.MODEL directive but is normally used when
.MODEL is not given.

EPILOGUE: macroname Instructs the assembler to call the macroname to
generate a user-defined epilogue instead of the
standard epilogue code when a RET instruction is
encountered. See Chapter 7.

PROLOGUE: macroname Instructs the assembler to call macroname to
generate a user-defined prologue instead of
generating the standard prologue code. See
Chapter 7.

PROC: visibility Lets you explicitly set the default visibility as
PUBLIC, EXPORT, or PRIVATE.

Other options include:

Argument Description

EXPR16 | EXPR32 Sets the expression word size to 16 or 32 bits. The
default is 32 bits. The M510 argument to the
OPTION directive sets the word size to 16 bits.
Once set with the OPTION directive, the
expression word size cannot be changed.

 Chapter 1 Understanding Global Concepts 27

Filename: LMAPGC01.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 27 of 27 Printed: 10/02/00 04:24 PM

Argument Description

EMULATOR | NOEMULATOR Controls the generation of floating-point
instructions.The NOEMULATOR option
generates the coprocessor instructions directly. The
EMULATOR option generates instructions with
special fixup records for the linker so that the
Microsoft floating-point emulator, supplied with
other Microsoft languages, can be used. It produces
the same result as setting the /Fpi command-line
option. You can set this option only once per
module.

LJMP | NOLJMP Enables automatic conditional-jump lengthening.
For information about conditional-jump lengthening,
see Chapter 7.

NOKEYWORD:<keywordlist> Disables the specified reserved words. For an
example of the syntax for this argument, see
“Reserved Words” in this chapter.

NOSIGNEXTEND Overrides the default sign-extended opcodes for the
AND, OR, and XOR instructions and generates the
larger non-sign-extended forms of these
instructions. Provided for compatibility with NEC
V25 and NEC V35 controllers.

OFFSET: offsettype Determines the result of OFFSET operator fixups.
SEGMENT sets the defaults for fixups to be
segment-relative (compatible with MASM 5.1).
GROUP, the default, generates fixups relative to the
group (if the label is in a group). FLAT causes
fixups to be relative to a flat frame. (The .386 mode
must be enabled to use FLAT.) See Appendix A.

READONLY | NOREADONLY Enables checking for instructions that modify code
segments, thereby guaranteeing that read-only code
segments are not modified. Same as the /p
command-line option of MASM 5.1, except that it
affects only segments with at least one assembly
instruction, not all segments. The argument is useful
for protected mode programs, where code
segments must remain read-only.

SEGMENT: segSize Allows global default segment size to be set. Also
determines the default address size for external
symbols defined outside any segment. The segSize
can be USE16, USE32, or FLAT.

28 Programmer’s Guide

Filename: LMAPGC01.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 28 of 28 Printed: 10/02/00 04:24 PM

Conditional Directives
MASM 6.1 provides conditional-assembly directives and conditional-error
directives. Conditional-assembly directives let you test for a specified condition
and assemble a block of statements if the condition is true. Conditional-error
directives allow you to test for a specified condition and generate an assembly
error if the condition is true.

Both kinds of conditional directives test assembly-time conditions, not run-time
conditions. You can test only expressions that evaluate to constants during
assembly. For a list of the predefined symbols often used in conditional
assembly, see “Predefined Symbols,” earlier in this chapter.

Conditional-Assembly Directives
The IF and ENDIF directives enclose the conditional statements. The optional
ELSEIF and ELSE blocks follow the IF directive. There are many forms of the
IF and ELSE directives. Help provides a complete list.

The following statements show the syntax for the IF directives. The syntax for
other condition-assembly directives follow the same form.

IF expression1
ifstatements
[[ELSEIF expression2
elseifstatements]]
[[ELSE
elsestatements]]
ENDIF

The statements within an IF block can be any valid instructions, including other
conditional blocks, which in turn can contain any number of ELSEIF blocks.
ENDIF ends the block.

MASM assembles the statements following the IF directive only if the
corresponding condition is true. If the condition is not true and the block
contains an ELSEIF directive, the assembler checks to see if the corresponding
condition is true. If so, it assembles the statements following the ELSEIF
directive. If no IF or ELSEIF conditions are satisfied, the assembler processes
only the statements following the ELSE directive.

For example, you may want to assemble a line of code only if your program
defines a particular variable. In this example,

IFDEF buffer
buff BYTE buffer DUP(?)
ENDIF

the assembler allocates buff only if buffer has been previously defined.

 Chapter 1 Understanding Global Concepts 29

Filename: LMAPGC01.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 29 of 29 Printed: 10/02/00 04:24 PM

MASM 6.1 provides the directives IF1, IF2, ELSEIF1, and ELSIF2 to grant
assembly only on pass one or pass two. To use these directives, you must either
enable 5.1 compatibility (with the /Zm command-line switch or OPTION
M510) or set OPTION SETIF2:TRUE, as described in the previous section.

The following list summarizes the conditional-assembly directives:

The Directive Grants Assembly If

IF expression expression is true (nonzero)

IFE expression expression is false (zero)

IFDEF name name has been previously defined

IFNDEF name name has not been previously defined

IFB argument* argument is blank

IFNB argument* argument is not blank

IFIDN[I] arg1, arg2* arg1 equals arg2

IFDIF[I] arg1, arg2* arg1 does not equal arg2

The optional I suffix (IFIDNI and IFDIFI) makes comparisons
insensitive to differences in case.

* Used only in macros.

Conditional-Error Directives
You can use conditional-error directives to debug programs and check for
assembly-time errors. By inserting a conditional-error directive at a key point in
your code, you can test assembly-time conditions at that point. You can also use
conditional-error directives to test for boundary conditions in macros.

Like other severe errors, those generated by conditional-error directives cause
the assembler to return a nonzero exit code. If MASM encounters a severe error
during assembly, it does not generate the object module.

For example, the .ERRNDEF directive produces an error if the program has not
defined a given label. In the following example, .ERRNDEF makes sure a label
called publevel actually exists.

.ERRNDEF publevel
IF publevel LE 2
PUBLIC var1, var2
ELSE
PUBLIC var1, var2, var3
ENDIF

The conditional-error directives use the syntax given in the previous section.
The following list summarizes the conditional-error directives. Note their close
correspondence with the previous list of conditional-assembly directives.

30 Programmer’s Guide

Filename: LMAPGC01.DOC Project:

Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 30 of 30 Printed: 10/02/00 04:24 PM

The Directive Generates an Error

.ERR Unconditionally where it occurs in the source file. Usually placed
within a conditional-assembly block.

.ERRE expression If expression is false (zero).

.ERRNZ expression If expression is true (nonzero).

.ERRDEF name If name has been defined.

.ERRNDEF name If name has not been defined.

.ERRB argument* If argument is blank.

.ERRNB argument* If argument is not blank.

.ERRIDN[I] arg1, arg2* If arg1 equals arg2.

.ERRDIF[I] arg1, arg2* If arg1 does not equal arg2.

The optional I suffix (.ERRIDNI and .ERRDIFI) makes
comparisons insensitive to case.

* Used only in macros

Two special conditional-error directives, .ERR1 and .ERR2, generate an error
only on pass one or pass two. To use these directives, you must either enable
5.1 compatibility (with the /Zm command-line switch or OPTION M510) or set
OPTION SETIF2:TRUE, as described in the previous section.

