
COE 205 Lab Manual Lab 2: Introduction to Assembly Language Programming - page 16

Prepared by Dr. Muhamed Mudawar © KFUPM - Revised: August 2006

Lab 2: Introduction to Assembly Language Programming

Contents
2.1. Intel IA-32 Processor Architecture
2.2. Basic Program Execution Registers
2.3. FLAT Memory Model and Protected-Address Mode
2.4. FLAT Memory Program Template
2.5. Writing a Program using the FLAT Memory Model
2.6. Editing, Assembling, Linking, and Debugging Programs

2.1 Intel IA-32 Processor Architecture
Intel introduced the 8086 processor in 1979. It has a 20-bit address bus and a 16-bit data bus.
The maximum physical memory that this processor can access is 220 bytes or 1MB. This
processor uses segmentation to address memory. The maximum size of a segment is
restricted to 216 bytes or 64 KB, since all registers were 16 bits at that time.

With the advent of 32-bit processors, starting with the 80386 in 1985, and continuing up with
the latest Pentium family of processors, Intel has introduced a 32-bit architecture known as
IA-32. This family of processors allows the use of 32-bit addresses that can address up to 4
Gigabytes of memory. These 32-bit processors remove the limitations of the earlier 16-bit
8086 processor.

2.2 Basic Program Execution Registers
There are eight 32-bit general-purpose registers (EAX, EBX, ECX, EDX, ESI, EDI, EBP,
ESP), a 32-bit register that holds the processor flags (EFLAGS), and a 32-bit instruction
pointer (EIP). These registers are shown below.

The general-purpose registers are primarily used for arithmetic and data movement. Each
register can be addressed as either a single 32-bit value or a 16-bit value. Some 16-bit
registers (AX, BX, CX, and DX) can be also addressed as two separate 8-bit values. For
example, AX can be addressed as AH and AL, as shown below.

EAX

EBX

ECX

EDX

ESI

EDI

EBP

ESP

EIPEFLAGS

COE 205 Lab Manual Lab 2: Introduction to Assembly Language Programming - page 17

Prepared by Dr. Muhamed Mudawar © KFUPM - Revised: August 2006

Some general-purpose registers have specialized uses. EAX is called the extended
accumulator and is used by multiplication and division instructions. ECX is the extended
counter register and is used as a loop counter. ESP is the extended stack pointer and is used
to point to the top of the stack. EBP is the extended base pointer and is used to access
function parameters and local variables on the stack. ESI is called the extended source index
and EDI is called the extended destination index. They are used by string instructions. We
will learn more about these instructions later during the semester.

The EIP register is called the extended instruction pointer and contains the address of the
next instruction to be executed. EFLAGS is the extended flags register that consists of
individual bits that either control the operation of the CPU or reflect the outcome of some
CPU operations. We will learn more about these flags later.

2.3 FLAT Memory Model and Protected-Address Mode
The FLAT memory model is used in 32-bit operating systems (like Windows XP) running on
a 32-bit processor. Each program addresses up to 4GB of memory. All code and data go into
a single 32-bit (4-GigaByte) address space. Linear 32-bit addresses are used in each program
to access the program instructions and data in memory.

32-bit address

32-bit address

32-bit address

Unused

STACK

DATA

CODE EIP

ESI

EDI

EBP

ESP Flat address

space of a

program

(up to 4 GB)

AX

EAX AH AL ESI SI

EDI DI

EBP BP

ESP SP

EIP IP

EFLAGS FLAGS

BX

EBX BH BL

CX

ECX CH CL

DX

EDX DH DL

16-bit (8086)

32-bit (IA-32) Registers
8-bit high 8-bit low

32-bit (IA-32) Registers

COE 205 Lab Manual Lab 2: Introduction to Assembly Language Programming - page 18

Prepared by Dr. Muhamed Mudawar © KFUPM - Revised: August 2006

Rather than using real memory addresses, a program uses virtual addresses. These virtual
addresses are mapped onto real (physical) addresses by the operating system through a
scheme called paging. The processor translates virtual addresses into real addresses as the
program is running. With virtual memory, the processor runs in protected mode. This
means that each program can access only the memory that was assigned to it by the operating
system and cannot access the memory of other programs.

2.4 FLAT Memory Model Program Template
Writing an assembly language program is a complicated task, particularly for a beginner. We
will simplify this task by hiding those details that are irrelevant. We will use the following
template for writing FLAT memory programs. This template consists of three types of
statements: executable instructions, assembler directives, and macros. Executable instructions
generate machine code for the processor to execute at runtime. Assembler directives provide
information to the assembler while translating the program. Macros are shorthand for a
sequence of instructions, directives, or even other macros. We will learn more about
instructions, directives, and macros throughout the semester.

TITLE FLAT Memory Program Template (template.asm)

; Program Description:
; Author:
; Date Created:
; Last Modified:

.686
.MODEL FLAT, STDCALL
.STACK

INCLUDE Irvine32.inc

; (insert symbol definitions here)

.DATA

; (insert variables here)

.CODE
main PROC

; (insert executable instructions here)

 exit ; exit to operating system
main ENDP

; (insert additional procedures here)

END main

The first line of an assembly language program is the TITLE line. This line is optional. It
contains a brief heading of the program and the disk file name. The next few lines are line
comments. They begin with a semicolon (;) and terminate with the end of the line. They are
ignored and not processed by the assembler. However, they are used to document a program
and are of prime importance to the assembly language programmer, because assembly
language code is not easy to read or understand. Insert comments at the beginning of a
program to describe the program, its author, the date when it was first written and the date
when it was last modified. You need also comments to document your data and your code.

COE 205 Lab Manual Lab 2: Introduction to Assembly Language Programming - page 19

Prepared by Dr. Muhamed Mudawar © KFUPM - Revised: August 2006

The .MODEL is a directive that specifies the memory configuration for the assembly
language program. For our purposes, the FLAT memory model will be used. The .686 is a
processor directive used before the .MODEL FLAT directive to provide access to the 32-bit
instructions and registers available in the Pentium Processor. The STDCALL directive tells
the assembler to use standard conventions for names and procedure calls.

The .STACK is a directive that tells the assembler to define a stack for the program. The size
of the stack can be optionally specified by this directive. The stack is required for procedure
calls. We will learn more about the stack and procedures later during the semester.

The .DATA is a directive that defines an area in memory for the program data. The program's
variables should be defined under this directive. The assembler will allocate storage for these
variables and initialize their locations in memory.

The .CODE is a directive defines the code section of a program. The code is a sequence of
assembly language instructions. These instructions are translated by the assembler into
machine code and placed in the code area in memory.

The INCLUDE directive causes the assembler to include code from another file. We will
include Irvine32.inc that specifies basic input and output procedures provided by the book
author Kip Irvine, and that can be used to simplify programming. These procedures are
defined in the Irvine32.lib library that we will link to the programs that we will write.

Under the code segment, we can define any number of procedures. As a convention, we will
define the first procedure to be the main procedure. This procedure is defined using the
PROC and ENDP directives:

main PROC
 . . .
main ENDP

The exit at the end of the main procedure is used to terminate the execution of the program
and exit to the operating system. Note that exit is a macro. It is defined in Irvine32.inc and
provides a simple way to terminate a program.

The END is a directive that marks the last line of the program. It also identifies the name
(main) of the program’s startup procedure, where program execution begins.

2.5 Writing a Program using the FLAT Memory Model
The following program adds and subtracts integers. You may open it using any text editor.
TITLE Add and Subtract (addsub.asm)
; This program adds and subtracts integers

.686
.MODEL flat, stdcall
.STACK

INCLUDE Irvine32.inc

.code
main PROC
 mov eax, 60000h ; EAX = 60000h
 add eax, 80000h ; EAX = EAX + 80000h
 sub eax, 20000h ; EAX = EAX - 20000h
 exit
main ENDP
END main

COE 205 Lab Manual Lab 2: Introduction to Assembly Language Programming - page 20

Prepared by Dr. Muhamed Mudawar © KFUPM - Revised: August 2006

2.5.1 Lab Work: Guessing the Value of the EAX Register
The constant values 60000h, 80000h, and 20000h are in hexadecimal. Guess and write the
values of the EAX register in the above program after the add and sub (subtract) instructions:

2.5.2 Instructions
The above program uses 3 instructions. The mov instruction is used for moving data. The
add instruction is used for adding two value, and the sub instruction is used for subtraction.

An instruction is a statement executed by the processor at runtime after the program has been
loaded into memory and started. An instruction contains four basic parts:

A label is an identifier that acts as a place marker for an instruction. It must end with a colon
(:) character. The assembler assigns an address to each instruction. A label placed just before
an instruction implies the instruction address. Labels are often used as targets of jump
instructions.

An instruction mnemonic is a short word that identifies the operation carried out by the
instruction when it is executed at runtime. Instruction mnemonics have useful names, such as
mov, add, sub, jmp (jumping to a target instruction), and call (calling a procedure).

An instruction can have between zero and three operands, each of which can be a register,
memory operand, constant expression, or an I/O port. In the above program (addsub.asm),
the mov, add, and sub instructions used two operands. The first operand specified the
destination, which was the eax register. The second operand was a constant integer value.

An instruction can be terminated with an optional comment. The comment starts with a
semicolon (;) and terminates with the end of line. A comment at the end of an instruction can
be used as a short description and clarification for the use of that instruction.

2.6 Editing, Assembling, Linking, and Debugging Programs
The process of editing, assembling, linking, and debugging programs is shown below. You
will learn a lot about this cycle during this semester. The editor is used to write new programs
and to make changes to existing ones.

Once a program is written, it can be assembled and linked using the ML.exe program.
Alternatively, it can be assembled only using the ML.exe program and linked using the
LINK32.exe program. The assembler translates the source assembly (.asm) file into an
equivalent object (.obj) file in machine language. As an option, the assembler can also
produce a listing (.lst) file. This file shows the work of the assembler and contains the
assembly source code, offset addresses, translated machine code, and a symbol table.
The linker combines one or more object (.obj) files produced by the assembler with one or
more link library (.lib) files to produce the executable program (.exe) file. In addition, the
linker can produce an optional (.map) file. A map file contains information about the
program being linked. It contains a list of segment groups in the program, a list of public
symbols, and the address of the program's entry point.

Label:
(optional)

Instruction
Mnemonic

Operand(s) ; Comment

Value of EAX in hexadecimal after add =

Value of EAX in hexadecimal after sub =

COE 205 Lab Manual Lab 2: Introduction to Assembly Language Programming - page 21

Prepared by Dr. Muhamed Mudawar © KFUPM - Revised: August 2006

Once the executable program is generated, it can be executed and/or debugged. A debugger
allows you to trace the execution of a program and examine and/or modify the content of
registers and memory. With a debugger, you will be able to discover your errors in the
program. Once these errors are discovered, you will make the necessary changes in the source
assembly program. You will go back to the editor to make these changes, assemble, link, and
debug the program again. This cycle repeats until the program starts functioning properly,
and correct results are produced.

2.6.1 Lab Work: Using ML, LINK32, and MAKE32 Commands
We will use the Command Prompt to assemble and link a 32-bit program. Type the following
commands after changing the directory to one containing the addsub.asm program. Make
sure the environment variables are set properly (as explained in Lab 1).

Edit

Assemble

Link

Run

prog.asm

prog.obj prog.lst

prog.exe prog.map

library.lib

Debug

COE 205 Lab Manual Lab 2: Introduction to Assembly Language Programming - page 22

Prepared by Dr. Muhamed Mudawar © KFUPM - Revised: August 2006

ml –c –Zi –Fl –coff addsub.asm
link32 addsub.obj kernel32.lib /subsystem:console /debug /map

The ml command assembles addsub.asm. The –c option is used to assemble only without
linking. This will generate addsub.obj object file. The –Zi option will add debugging
information and the –Fl option will generate the listing file addsub.lst. You may examine the
addsub.lst file to understand how the assembler has translated the source assembly language
file into an object file. The –coff option tells the assembler to generate a COFF object file
(Common Object File Format) used for 32-bit programs.

The link32 command is a 32-bit linker used to link addsub.obj file to the kernel32.lib library.
This generates addsub.exe, a 32-bit executable file. The /subsystem:console option specifies
the console as being the subsystem. The /debug option tells the linker to generate debugging
information in the executable file, and the /map options generates a .map file.

To save typing, we can write a batch file to assemble and link a 32-bit program. This batch
file is already written for you and exits under the MASM installation directory and is called
make32.bat. Type make32 addsub to assemble and link the addsub.asm program.

2.6.2 Lab Work: Using the Windows Debugger
At the Command Prompt, type: windbg –QY –G addsub.exe to run the Windows Debugger.
Make sure that the installation directory for windbg.exe, which is typically C:\Program
Files\Debugging Tools for Windows\, exists in the path variable.

COE 205 Lab Manual Lab 2: Introduction to Assembly Language Programming - page 23

Prepared by Dr. Muhamed Mudawar © KFUPM - Revised: August 2006

Open the source file addsub.asm from the File menu if it is not already opened. Watch the
registers by selecting Registers in the View menu or by pressing Alt+4. You can make the
Registers window floating or you can dock it as shown above.

You can customize the order of registers. Click on the Customize… button and type eax at
the beginning to show the eax register on top of the list. You can customize the rest as shown.

Place the cursor at the beginning of the main procedure and press F7 to start the execution of
the main procedure as shown above. Press F10 to step through the execution of the main
procedure. Observe the changes to the EAX register after executing each instruction. Make
the necessary corrections to the values of EAX that you have guessed in Section 2.5.1.

2.6.3 Lab Work: Understanding Program Termination
The exit at the end of the main procedure is a macro. It is expanded into a system call to the
ExitProcess MS-Windows function that terminates the program. This function is defined in
the kernel32 library. To have a better understanding of program termination, remove the exit
at the end of the main procedure and replace it with the following two instructions:

exit ⇒ push 0
 call ExitProcess

The push 0 pushes the number 0 on the stack and the call instruction is used to call the
function ExitProcess. You can also replace exit with INVOKE ExitProcess, 0. The
assembler will translate into: push 0 and call ExitProcess as shown above.

There is no need to include the Irvine32.inc file, since the exit macro is no longer used.
However, there is a need to declare that ExitProcess is an external function defined outside
the addsub.asm program. We use the PROTO directive for this purpose. Therefore, remove
the INCLUDE directive and replace it with the PROTO directive as shown below:

INCLUDE Irvine32.inc ⇒ ExitProcess PROTO, ExitCode:DWORD

The PROTO directive declares functions used by a program and defined outside the program
file. This directive also specifies the parameters and types of a given function.

Now that you have made these changes, assemble and link the program using the ML and
LINK32 programs as explained in Section 2.6.1. Notice that addsub.obj is linked to the
kernel32.lib because the ExitProcess function is defined in the kernel32 library. Open the
debugger and trace the execution of the program.

COE 205 Lab Manual Lab 2: Introduction to Assembly Language Programming - page 24

Prepared by Dr. Muhamed Mudawar © KFUPM - Revised: August 2006

Review Questions
1. Name all eight 32-bit general-purpose registers.

2. Name all eight 16-bit general-purpose registers.

3. Name all eight 8-bit general-purpose registers.

4. What special purpose does the EAX register serve?

5. What is the purpose of the EIP register?

6. What is the purpose of the ESP register?

7. In the FLAT memory model, how many bits are used to hold a memory address?

8. What is the meaning of the INCLUDE directive?

9. What does the .CODE directive identify?

10. Which directive begins a procedure and which directive ends it?

11. What is the purpose of the END directive?

12. What does the PROTO directive do?

13. What types of files are produced by the assembler?

14. What types of files are produced by the linker?

Programming Exercises
1. Using the addsub program as a reference, write a program that moves four integers into

the EAX, EBX, ECX, and EDX registers and then accumulates their sum into the EAX
register. Trace the execution of the program and view the registers using the windows
debugger.

2. Rewrite the above program using the 16-bit registers: AX, BX, CX, and DX.

