
COE 205 
Computer Organization and 

 Assembly Language 
 

Computer Engineering Department 

College of Computer Sciences & Engineering 

King Fahd University of Petroleum & Minerals 

 

 

 

Weekly Lecture and Lab Breakdown 

Proposal for Fall 2006 (Term 061) 
 

 

 

 

 
Proposed By 

Dr. Muhamed F. Mudawar 

Monday, March 13, 2006 

 Page 1 of 7 



Week Lecture Lab 

1 

Introduction to IA-32 architecture 
• Basic computer system organization 
• CPU, memory, and I/O devices 
• Address bus, data bus, and control bus 
• Instruction execution cycle 
• Reading and writing memory 
• IA-32 general-purpose registers and flags 
• Instruction pointer and segment registers 
• Intel processors (from 8086 to Pentium 4) 
• Modes of operation 
Introduction to Assembly Language 
• High-level languages 
• Assembly language 
• Machine language 
• Why learn assembly language 
• Program translation 
• Tools: editor, assembler, linker, debugger 

Assembly language tools 
• Installing MASM 6.15 
• Installing 32-bit windows 

debugger 
• Installing and customizing the 

ConTEXT editor 
• Introductory example: 

displaying a welcome statement 
• Using the ConTEXT editor 
• Assembling, linking, and 

running a program from the 
console 

2 

Syntax of Assembly Language Programs 
• Program template 
• Directives 
• Data segment, code segment, and stack 
• FLAT memory model 
• Instructions, mnemonics, and operands 
• Comments 
• Introductory example 
• Assembling, linking, and running programs 
Data Representation 
• Binary, octal, decimal, and hex numbers 
• Conversion between bases 
• Signed integers and 2’s complement 
• Converting signed decimal to/from binary 
• Storage sizes and ranges 
• Characters and ASCII table 

Introduction to Assembly 
Language Programming 
• FLAT memory model (32-bit) 

program template 
• Writing a 32-bit program that 

does addition and subtraction 
using the FLAT memory model 

• Using the ConTEXT editor to 
assemble and link the 32-bit 
program 

• Using ML and LINK32 
commands 

• Using the MAKE32 batch file to 
assemble and link 32-bit 
programs 

• Using the Windows debugger to 
view the content of registers 

 Page 2 of 7 



3 

Defining Data and Symbolic Constants 
• MASM data types 
• Data definition statement and initializers 
• Defining integer data of various sizes 
• Defining real data of various sizes 
• Little Endian byte ordering 
• DUP operator 
• Defining arrays 
• Defining strings, null-terminated strings 
• Visualizing memory allocation 
• EQU and = directives 
• Associating symbolic constants with integer 

expressions and with arbitrary text 
• Data related operators and directives 
Console Input/Output 
• Using a simple link library for I/O 
• Reading a character from standard input 
• Writing a character to standard output 
• Reading a string from standard input 
• Writing a string to standard output 
• Reading an integer from standard input 
• Writing an integer to standard output 
• Other miscellaneous procedures 

Defining Data, 
Symbolic Constants, and 
Data Related Operators 
• Defining integer data 
• Watching variables using the 

Windows debugger 
• Multiple initializers and the 

DUP operator 
• Watching memory using the 

Windows debugger 
• Data-related operators and 

directives: OFFSET, TYPE, 
LENGTHOF, SIZEOF, PTR, 
ALIGN, and LABEL 

• Symbolic constants and the EQU 
and = directives 

• Viewing symbolic constants in 
the listing (.lst) file 

4 

Basic Instructions and Flags 
• Data transfer: MOV, XCHG, and LEA 
• Zero/Sign extension: MOVZX and MOVSX 
• Register, immediate, and memory operands 
• Binary addition and subtraction 
• Carry and overflow 
• INC, DEC, ADD, SUB, and NEG 
• Flags: ZF, SF, CF, OF, AF, and PF 
• LOOP instruction 
• Writing a loop 
• Application: generating Fibonacci sequence 
• Unconditional JMP instruction 
• IP-Relative displacement 
• CMP instruction 
• Selected conditional jump instructions 

Console Input/Output 
• Using an external library of 

procedures for input and output 
• Writing characters, strings, and 

integers to standard output 
• Reading characters, strings, and 

integers from standard input 
• Writing a block of memory and 

registers to standard output 
• Setting foreground and 

background colors of text and 
locating the cursor 

• Other miscellaneous procedures 

 Page 3 of 7 



5 

Addressing Modes and Arrays 
• Addressing modes 
• Register and immediate operands 
• 32-bit memory addressing modes 
• Direct, register indirect, based, indexed 
• Based-indexed with scale factor 
• Array indexing and traversal 
• Using pointers to traverse arrays 
• Application: copying a string 
• Application: Summing an array of integers 
• Two-dimensional arrays 
• Address computation 
• Application: sum of a column in a 2D array 

Basic Instructions and Flags 
• Data transfer examples using 

MOV, MOVZX, MOVSX, and 
XGHG instructions 

• Addition and subtraction 
examples using INC, DEC, 
ADD, SUB, and NEG examples 

• Using the Windows debugger to 
view the CF, OF, SF, ZF, AF, 
and PF flags 

• LOOP example: generating the 
Fibonacci sequence 

• Using the Windows debugger to 
trace the execution of the LOOP 
instruction 

6 

Conditional Processing 
• CMP instruction and flags 
• Jumps based on specific flag values 
• Setting and clearing specific CPU flags 
• Unsigned versus signed comparisons 
• Jumps based on unsigned comparisons 
• Jumps based on signed comparisons 
• JCXZ and JECXZ instructions 
• LOOPE and LOOPNE instructions 
• Application: smallest value in an array 
• Application: searching an array 
• Application: validating an input string 
• Application: validating a signed integer 
• Translating an IF statement 
• Translating a WHILE loop 
• Indirect jump and jump table 

Addressing Modes and Arrays 
• Example on addressing modes 
• Using the Windows debugger to 

trace memory addressing 
• Copying a string and tracing its 

execution 
• Summing an array of integers 

and tracing its execution 
• Using pointers rather than a 

scaled index to sum an array of 
integers 

• Summing a column in a 2D 
array and tracing its execution 

 Page 4 of 7 



7 

Procedures and the Runtime Stack 
• Runtime stack and its applications 
• PUSH and POP instructions 
• PUSHFD, POPFD, PUSHF, and POPF 
• PUSHAD, POPAD, PUSHA, and POPA 
• Application: reversing a string on the stack 
• Defining a procedure: PROC and ENDP 
• Procedure call and return, return address 
• CALL and RET instructions 
• Nested procedure calls 
• Local labels and global labels 
• Passing arguments in registers 
• Saving and restoring registers 
• USES operator 
• Application: sorting an integer array 

Conditional Processing 
• Demonstrating and tracing the 

execution of the CMP 
instruction and affected flags 

• Using conditional jump 
instructions to find the 
maximum of three integers 

• Translating IF statements, 
WHILE loops, and nested 
control structures 

• Demonstrating linear search of 
an integer array 

• Demonstrating indirect jump, the 
jump table, and the translation of 
a switch statement 

8 

Logical and Bitwise Operations 
• Logical instructions 
• AND, OR, XOR, NOT, and TEST 
• Testing bits in a register 
• Translating Boolean expressions 
• Shift instructions: SHL, SHR, SAL, SAR 
• Rotate instructions: ROL, ROR, RCL, RCR 
• SHLD and SHRD instructions 
• Application: binary multiplication 
• Application: displaying binary bits 
• Application: isolating a bit string 
• Application: string encryption 

Procedures and Runtime Stack 
• Demonstrating and tracing the 

PUSH, POP, PUSHFD, POPFD, 
PUSHAD, POPAD instructions 

• Demonstrating procedure CALL 
and RET instructions 

• Using the Windows debugger to 
trace the return address on the 
stack 

• Demonstrating the saving and 
restoring of registers 

• Writing a procedure to sort an 
array of integers and tracing its 
execution using the Windows 
debugger 

9 

Advanced Arithmetic 
• Integer multiplication: MUL and IMUL 
• Integer division: DIV and IDIV instructions 
• CBW, CWD, and CDQ instructions 
• Divide overflow 
• Application: string to integer conversion 
• Application: integer to string conversion 
• ADC, SBB, STC, and CLC instructions 
• Extended addition and subtraction 

Logical and Bitwise Operations 
• Demonstrating and tracing 

AND, OR, XOR, NOT, and 
TEST instructions 

• Demonstrating and tracing SHL, 
SHR, SAL, SAR, ROL, ROR, 
RCL, RCR, SHLD, and SHRD 
instructions 

• Writing and tracing a procedure 
to do string encryption 

• Writing and tracing a procedure 
to display a 32-bit register in 
hexadecimal 

 Page 5 of 7 



10 

Advanced procedures 
• Stack parameters 
• ESP and EBP registers 
• Accessing parameters on the stack 
• Allocating local variables on the stack 
• Accessing local variables on the stack 
• Stack frames 
• LOCAL directive 
• PROTO directive 
• INVOKE directive 
• Passing parameters by value 
• Passing parameters by reference 
• Memory models and language specifiers 
• Creating multi-module programs 

Advanced Arithmetic 
• Demonstrating and tracing the 

MUL, IMUL, DIV, IDIV, and 
CDQ instructions 

• Demonstrating and tracing the 
ADC, SBB, STC, and CLC 
instructions 

• Writing and tracing a procedure 
to convert and display a 32-bit 
signed integer as a string of 
ASCII characters 

• Writing and tracing a procedure 
to do extended addition on two 
arrays of double word integers 

11 

Interrupts 
• Software interrupts 
• INT instruction 
• Interrupt vector table 
• Interrupt processing 
• Interrupt service routing or handler 
• Hardware interrupts 
• Exceptions 
16-bit MS-DOS Programming 
• 16-bit real-address mode programming 
• MS-DOS memory map 
• MS-DOS function calls with INT 21h 
BIOS-Level Programming 
• Keyboard input with INT 16h 
• Video programming with INT 10h 
• Mouse programming with INT 33h 
Interrupt Handling 
• Writing a custom interrupt handler 

Advanced Procedures 
• Demonstrating the LOCAL, 

PROTO, and INVOKE 
directives 

• Tracing parameters and local 
variables on the stack 

• Demonstrating passing 
parameters by value and by 
reference 

• Writing a multi-module program 

 Page 6 of 7 



12 

String Processing (optional) 
• String Instructions 
• MOVSB, MOVSW, and MOVSD 
• CMPSB, CMPSW, and CMPSD 
• SCASB, SCASW, and SCASD 
• STOSB, STOSW, and STOSD 
• LODSB, LODSW, and LODSD 
• REP, REPZ, and REPNZ prefixes 
• Direction flag 
• CLD and STD instructions 
• Application: copying a string 
• Application: comparing two strings 
• Application: scanning for a matching char 
• Application: trimming a string 
IA-32 Memory Management (optional) 
• Segmentation and segment registers 
• Real mode memory architecture 
• Protected mode memory architecture 
• Logical addresses and linear addresses 
• Global Descriptor Table (GDT) 
• Local Descriptor Table (LDT) 
• Segment descriptor 
• Paging, page directory, and page table 
• Linear to physical address translation 
• Virtual 8086 Mode 

•  

13 •  •  

14 •  •  

15 •  •  

 
 

 Page 7 of 7 


