COE 205

Computer Organization and

Assembly Language

Computer Engineering Department
College of Computer Sciences & Engineering

King Fahd University of Petroleum & Minerals

Weekly Lecture and Lab Breakdown
Proposal for Fall 2006 (Term 061)

Proposed By
Dr. Muhamed F. Mudawar
Monday, March 13, 2006

Page 1 of 7

Week

Lecture

Lab

Introduction to 1A-32 architecture

e Basic computer system organization

e CPU, memory, and I/O devices

e Address bus, data bus, and control bus Assembly language tools

e Instruction execution cycle e Installing MASM 6.15

° Reading and Writing memory (] |nSta”ing 32-bit windows

e |A-32 general-purpose registers and flags debugger

e Instruction pointer and segment registers * Installing and customizing the

1 |e Intel processors (from 8086 to Pentium 4) ConTEXT editor

e Modes of operation * :jr}trc:du.ctory exzilmple: at t
. isplaying a welcome statemen

Intrc_)ductlon to Assembly Language « Using the ConTEXT editor

e High-level languages e Assembling, linking, and

o Assembly language running a program from the

e Machine language console

e Why learn assembly language

e Program translation

e Tools: editor, assembler, linker, debugger

Syntax of Assembly Language Programs Introduction to Assembly

e Program template Language Programming

e Directives e FLAT memory model (32-bit)

e Data segment, code segment, and stack program template

e FLAT memory model e \Writing a 32-bit program that

e Instructions, mnemonics, and operands does addition and subtraction

e Comments using the FLAT memory model

e Introductory example * Using the ConTEXT editor to

2, assemble and link the 32-bit

Assembling, linking, and running programs
Data Representation

Binary, octal, decimal, and hex numbers
Conversion between bases

Signed integers and 2’s complement
Converting signed decimal to/from binary
Storage sizes and ranges

Characters and ASCI|I table

program

e Using ML and LINK32
commands

e Using the MAKE32 batch file to
assemble and link 32-bit
programs

¢ Using the Windows debugger to
view the content of registers

Page 2 of 7

Defining Data and Symbolic Constants

MASM data types

Data definition statement and initializers
Defining integer data of various sizes
Defining real data of various sizes

Little Endian byte ordering

DUP operator

Defining arrays

Defining strings, null-terminated strings
Visualizing memory allocation

EQU and = directives

Associating symbolic constants with integer
expressions and with arbitrary text

Data related operators and directives

Console Input/Output

Using a simple link library for 1/0
Reading a character from standard input
Writing a character to standard output
Reading a string from standard input
Writing a string to standard output
Reading an integer from standard input
Writing an integer to standard output
Other miscellaneous procedures

Defining Data,
Symbolic Constants, and
Data Related Operators

e Defining integer data

e Watching variables using the
Windows debugger

e Multiple initializers and the
DUP operator

e Watching memory using the
Windows debugger

o Data-related operators and
directives: OFFSET, TYPE,
LENGTHOF, SIZEOF, PTR,
ALIGN, and LABEL

e Symbolic constants and the EQU
and = directives

e Viewing symbolic constants in
the listing (.Ist) file

Basic Instructions and Flags

Data transfer: MOV, XCHG, and LEA
Zero/Sign extension: MOVZX and MOVSX
Register, immediate, and memory operands
Binary addition and subtraction

Carry and overflow

INC, DEC, ADD, SUB, and NEG

Flags: ZF, SF, CF, OF, AF, and PF

LOOP instruction

Writing a loop

Application: generating Fibonacci sequence
Unconditional JMP instruction

IP-Relative displacement

CMP instruction

Selected conditional jump instructions

Console Input/Output

e Using an external library of
procedures for input and output

e \Writing characters, strings, and
integers to standard output

e Reading characters, strings, and
integers from standard input

e Writing a block of memory and
registers to standard output

e Setting foreground and
background colors of text and
locating the cursor

e Other miscellaneous procedures

Page 3of 7

Addressing Modes and Arrays

Addressing modes

Register and immediate operands

32-bit memory addressing modes

Direct, register indirect, based, indexed
Based-indexed with scale factor

Array indexing and traversal

Using pointers to traverse arrays
Application: copying a string

Application: Summing an array of integers
Two-dimensional arrays

Address computation

Application: sum of a column in a 2D array

Basic Instructions and Flags

e Data transfer examples using
MOV, MOVZX, MOVSX, and
XGHG instructions

e Addition and subtraction
examples using INC, DEC,
ADD, SUB, and NEG examples

e Using the Windows debugger to
view the CF, OF, SF, ZF, AF,
and PF flags

e LOOP example: generating the
Fibonacci sequence

¢ Using the Windows debugger to
trace the execution of the LOOP
instruction

Conditional Processing

e CMP instruction and flags

Jumps based on specific flag values
Setting and clearing specific CPU flags
Unsigned versus signed comparisons
Jumps based on unsigned comparisons
Jumps based on signed comparisons
JCXZ and JECXZ instructions

LOOPE and LOOPNE instructions
Application: smallest value in an array
Application: searching an array
Application: validating an input string
Application: validating a signed integer
Translating an IF statement
Translating a WHILE loop

Indirect jump and jump table

Addressing Modes and Arrays

e Example on addressing modes

e Using the Windows debugger to
trace memory addressing

e Copying a string and tracing its
execution

e Summing an array of integers
and tracing its execution

e Using pointers rather than a
scaled index to sum an array of
integers

e Summing a columnina 2D
array and tracing its execution

Page 4 of 7

Procedures and the Runtime Stack

Runtime stack and its applications
PUSH and POP instructions

PUSHFD, POPFD, PUSHF, and POPF
PUSHAD, POPAD, PUSHA, and POPA
Application: reversing a string on the stack
Defining a procedure: PROC and ENDP
Procedure call and return, return address
CALL and RET instructions

Nested procedure calls

Local labels and global labels

Passing arguments in registers

Saving and restoring registers

USES operator

Application: sorting an integer array

Conditional Processing

e Demonstrating and tracing the
execution of the CMP
instruction and affected flags

e Using conditional jump
instructions to find the
maximum of three integers

e Translating IF statements,
WHILE loops, and nested
control structures

e Demonstrating linear search of
an integer array

e Demonstrating indirect jump, the
jump table, and the translation of
a switch statement

Logical and Bitwise Operations

Logical instructions

AND, OR, XOR, NOT, and TEST
Testing bits in a register

Translating Boolean expressions

Shift instructions: SHL, SHR, SAL, SAR
Rotate instructions: ROL, ROR, RCL, RCR
SHLD and SHRD instructions
Application: binary multiplication
Application: displaying binary bits
Application: isolating a bit string
Application: string encryption

Procedures and Runtime Stack

e Demonstrating and tracing the
PUSH, POP, PUSHFD, POPFD,
PUSHAD, POPAD instructions

e Demonstrating procedure CALL
and RET instructions

¢ Using the Windows debugger to
trace the return address on the
stack

e Demonstrating the saving and
restoring of registers

e Writing a procedure to sort an
array of integers and tracing its
execution using the Windows
debugger

Advanced Arithmetic

Integer multiplication: MUL and IMUL
Integer division: DIV and IDIV instructions
CBW, CWD, and CDQ instructions

Divide overflow

Application: string to integer conversion
Application: integer to string conversion
ADC, SBB, STC, and CLC instructions

e Extended addition and subtraction

Logical and Bitwise Operations

e Demonstrating and tracing
AND, OR, XOR, NOT, and
TEST instructions

e Demonstrating and tracing SHL,
SHR, SAL, SAR, ROL, ROR,
RCL, RCR, SHLD, and SHRD
instructions

e Writing and tracing a procedure
to do string encryption

e \Writing and tracing a procedure
to display a 32-bit register in
hexadecimal

Page 5of 7

Advanced procedures

Advanced Arithmetic

* Stack parameters e Demonstrating and tracing the
e ESPand EBP registers MUL, IMUL, D1V, IDIV, and
e Accessing parameters on the stack CDQ instructions
¢ Allocating local variables on the stack e Demonstrating and tracing the
e Accessing local variables on the stack ADC, SBB, STC, and CLC

10 |® Stack frames instructions
e LOCAL directive e Writing and tracing a procedure
e PROTO directive to convert and display a 32-bit
e INVOKE directive signed integer as a string of
e Passing parameters by value ASCII characters
e Passing parameters by reference Writing and tracing a procedure
e Memory models and language specifiers to do extended addition on two
e Creating multi-module programs arrays of double word integers
Interrupts
e Software interrupts
e [NT instruction
e Interrupt vector table
* Interrupt processing | Advanced Procedures
¢ Interrupt service routing or handler]
e Hardware interrupts e Demonstrating the LOCAL,
« Exceptions PROTO, and INVOKE

)) directives
11 16-bit MS-DOS Programming e Tracing parameters and local

e 16-bit real-address mode programming
e MS-DOS memory map
e MS-DOS function calls with INT 21h

BI1OS-Level Programming

e Keyboard input with INT 16h
e Video programming with INT 10h
e Mouse programming with INT 33h

Interrupt Handling
e Writing a custom interrupt handler

variables on the stack

e Demonstrating passing
parameters by value and by
reference

e Writing a multi-module program

Page 6 of 7

12

String Processing (optional)

String Instructions

MOVSB, MOVSW, and MOVSD
CMPSB, CMPSW, and CMPSD
SCASB, SCASW, and SCASD
STOSB, STOSW, and STOSD
LODSB, LODSW, and LODSD
REP, REPZ, and REPNZ prefixes
Direction flag

CLD and STD instructions
Application: copying a string
Application: comparing two strings
Application: scanning for a matching char | e
Application: trimming a string

1A-32 Memory Management (optional)

Segmentation and segment registers
Real mode memory architecture
Protected mode memory architecture
Logical addresses and linear addresses
Global Descriptor Table (GDT)

Local Descriptor Table (LDT)
Segment descriptor

Paging, page directory, and page table
Linear to physical address translation
Virtual 8086 Mode

13

14

15

Page 7 of 7

