COE 205 Computer Organization & Assembly Language – Fall 2005

Assignment 1 Solution

- Q1. (2 pts) Describe the functionality of the Program Counter (PC), the Instruction Register (IR), the Memory Address Register (MAR), and the Memory Data Register (MDR).
- A1. PC: A register that holds the address of the next instruction to be fetched. IR: Holds the instruction that was fetched.

MAR: Holds the address of the variable to be read or written to memory

MDR: Holds the value of the variable that is read or written to memory

- Q2. (2 pts) List and briefly describe the tools used by the assembly language programmer.
- A2. Editor: for writing and editing assembly language programs.

Assembler: Is a program that translates programs written in assembly language to object files in machine language.

Linker: Is a program that links together object files in machine language with functions defined in libraries. The output of a linker is an executable file that can be loaded into the memory of the computer and can be executed.

Debugger: Is used to monitor the execution of a program, by executing it either step by step, or by using breakpoints. The content of memory and registers can be examined and modified for testing purposes.

- Q3. (1 pt for both parts)
 - a) Define the term bus.
 - b) Why are buses used in computers?
- A3. a) Bus: Is a group of wires used to interconnect the different components of a computer.

b) Buses are used to transfer data between the processor and memory, between the processor and the I/O devices, and between the I/O devices and memory.

Q4. (2 pts) Represent the following numbers in binary, octal, and hexadecimal.

a) 2345.5

b) 149.625

A4. a) $2345.5 = (100100101001.1)_2 = (4451.4)_8 = (929.8)_{16}$

b) $149.625 = (10010101.101)_2 = (225.5)_8 = (95.A)_{16}$

- Q5. (3 pts) Perform the following arithmetic operations using the designated bases and verify your result by converting the numbers and performing the operation in decimal:
 - a) $(10110110)_2 + (10111)_2$
 - b) $(713)_8 + (167)_8$
 - c) $(C0E)_{16} + (13B)_{16}$

A5.	a) Carry	11 11		
		10110110 ₂	=	182
	+	101112	=	23
		11001101 ₂	=	205
	b) Carry	111		
		713 ₈ =	459	
	+	167 ₈ =	119	
		$1102_8 =$	578	
	c) Carry	1		
		C0E ₁₆ =	3086	
	+	13B ₁₆ =	315	
		D49 ₁₆ =	3401	

- Q6. (3 pts) Express the following numbers in sign-magnitude, 1's complement, and 2's complement notations, using 8-bit representation:
 - a) 101
 - b) 45

```
A6. a) -101 = (11100101)_{sign-magnitude} = (10011010)_{1's complement} = (10011011)_{2's complement}
b) -45 = (10101101)_{sign-magnitude} = (11010010)_{1's complement} = (11010011)_{2's complement}
```

- Q7. (3 pts) Perform the following operations twice, once for a sign-magnitude notation and once for 2's complement notation, assuming 4-bit representation of numbers. Indicate in your answer when an overflow occurs:
 - a) 0101 + 1111
 - b) 1011 0111
- A7. In sign-magnitude:

a) 0101+1111 = 0101-0111 = -(0111-0101) because 0111 is larger = -0010 = 1010

b) 1011 - 0111 = -0011 - 0111 = -(0011 + 0111) = -1010 = 0010 (Overflow)

- In 2's complement:
- a) 0101+1111 = 0100 (There is a carry out, BUT NO Overflow)
- b) 1011 0111 = 1011 + 1001 = 0100 (There is a carry out AND Overflow)

Q8. (2 pts) Using 8-bit registers, give the following in both binary and decimal:

a) The maximum unsigned number that can be stored.

b) The smallest negative number and the largest positive number that can be stored using sign-magnitude notation.

c) The smallest negative number and the largest positive number that can be stored using 2's complement notation.

```
A8. a) maximum unsigned = (11111111)_2 = 255
```

b) smallest negative using sign-magnitude = $(11111111)_2 = -127$

largest positive using sign-magnitude = $(01111111)_2 = +127$

c) smallest negative using 2's complement = $(1000000)_2 = -128$

largest positive using 2's complement = $(01111111)_2 = +127$

- Q9. (2 pts) If you type the string "I Love COE 205" on your keyboard, what byte sequence is sent to the computer using ASCII codes, with the 8th bit being an even parity bit?
- A9. I = 49h, Space = 20h, L = 4Ch, o = 6Fh, v = 76h, e = 65h, C = 43h, O = 4Fh, E = 45h, 2 = 32h, 0 = 30h, 5 = 35h

With the 8th bit being an even parity bit the byte sequence becomes:

C9h, A0h, CCh, 6Fh, F6h, 65h, A0h, C3h, CFh, C5h, A0h, B2h, 30h, 35h.