
Modular Sequential Circuits

COE 202

Digital Logic Design

Dr. Muhamed Mudawar

King Fahd University of Petroleum and Minerals

Modular Sequential Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 2

Presentation Outline

❖ Registers

❖ Shift Registers and their Applications

❖ Ripple Counters

❖ Synchronous Counters

❖ Memory and ROM

Modular Sequential Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 3

Register

❖ A register is a circuit capable of storing data

❖ An 𝑛-bit register consists of 𝑛 Flip-Flops and stores 𝑛 bits

❖ Common clock: data is loaded in parallel at the same clock edge

❖ Common reset: All Flip-Flops are reset in parallel

𝐷0

𝑅

𝑄0

𝐷0

𝑄0

𝐷1

𝑅

𝑄1

𝐷1

𝑄1

𝐷2

𝑅

𝑄2

𝐷2

𝑄2

𝐷3

𝑅

𝑄3

𝐷3

𝑄3

𝐶𝑙𝑜𝑐𝑘

𝑅𝑒𝑠𝑒𝑡

𝐷3

4-bit

Register

𝑅𝑒𝑠𝑒𝑡

𝐷2

𝐷1
𝐷0

𝑄3

𝑄2

𝑄1

𝑄0

Modular Sequential Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 4

Register Load (or Enable)

❖ Question: How to control the loading of data into a register?

❖ Solution: Introduce a register Load (or Enable) signal

If the register is enabled, load the data into the register

Otherwise, do not change the value of the register

❖ Question: How to implement register Load?

n-bit Register
𝐶𝑙𝑜𝑐𝑘

𝑅𝑒𝑠𝑒𝑡
𝐿𝑜𝑎𝑑 (𝐸𝑛𝑎𝑏𝑙𝑒)

𝑛

𝐼[𝑛 − 1: 0]

𝑛

𝑄[𝑛 − 1: 0]

Modular Sequential Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 5

Register with Parallel Load

❖ Solution: Add a mux at the 𝐷 input of the register

❖ 𝐷𝑖 = 𝐿𝑜𝑎𝑑 ∙ 𝐼𝑖 + 𝐿𝑜𝑎𝑑 ∙ 𝑄𝑖

❖ If 𝐿𝑜𝑎𝑑 is 1 then 𝐷𝑖 = 𝐼𝑖 If 𝐿𝑜𝑎𝑑 is 0 then 𝐷𝑖 = 𝑄𝑖

𝐷0

𝑅

𝑄0

𝑄0

𝐷1

𝑅

𝑄1

𝑄1

𝐷2

𝑅

𝑄2

𝑄2

𝐷3

𝑅

𝑄3

𝑄3

𝐶𝑙𝑜𝑐𝑘

𝑅𝑒𝑠𝑒𝑡

𝐿𝑜𝑎𝑑

𝐼3

01

𝐼2

01

𝐼1

01

𝐼0

01

Modular Sequential Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 6

Shift Registers

❖ A shift register is a cascade of flip flops sharing the same clock

❖ Allows the data to be shifted from each flip-flop to its neighbor

❖ The output of a flip-flop is connected to the input of its neighbor

❖ Shifting can be done in either direction

❖ All bits are shifted simultaneously at the active edge of the clock

𝐷0

𝑅

𝑄0𝐷1

𝑅

𝑄1𝐷2

𝑅

𝑄2𝐷3

𝑅

𝑄3
Serial

Input SI

𝐶𝑙𝑜𝑐𝑘

𝑅𝑒𝑠𝑒𝑡

Serial
Output SO

Right Shift Register

Modular Sequential Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 7

Timing of a Shift Register

Cycle SI Q3 Q2 Q1 Q0 = SO

T0 1 1 0 1 0

T1 0 1 1 0 1

T2 1 0 1 1 0

T3 1 1 0 1 1

T4 0 1 1 0 1

T5 1 0 1 1 0

T6 0 1 0 1 1

𝐷0

𝑅

𝑄0𝐷1

𝑅

𝑄1𝐷2

𝑅

𝑄2𝐷3

𝑅

𝑄3
Serial

Input SI

𝐶𝑙𝑜𝑐𝑘

𝑅𝑒𝑠𝑒𝑡

Serial
Output SO

Modular Sequential Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 8

Shift Register with Parallel Output

❖ The output of a shift register can be serial or parallel

❖ A Serial-In Parallel-Out (SIPO) shift register is shown below

❖ All flip-flop outputs can be read in parallel

𝐷0

𝑅

𝑄0𝐷1

𝑅

𝑄1𝐷2

𝑅

𝑄2𝐷3

𝑅

𝑄3

𝑄3 𝑄2 𝑄1 𝑄0

Serial
Input SI

𝐶𝑙𝑜𝑐𝑘

𝑅𝑒𝑠𝑒𝑡

Parallel Output PO

Modular Sequential Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 9

Bit Serial Adder

❖ Adding two 𝑛-bit numbers 𝐴 and 𝐵 serially over 𝑛 clock cycles

❖ A bit-serial adder can be implemented using

1. A Full Adder

2. A Flip-Flop to store the carry-out

3. A Shift Register to store the 𝑛-bit sum

Serial-In Parallel-Out

𝑛-bit Shift Register
Full

Adder

𝐴
𝑆

Flip

Flop

𝑄

Serial

Inputs 𝐵

𝐶𝑖𝑛 𝐶𝑜𝑢𝑡

𝐷

𝑛

𝑆𝑢𝑚[𝑛 − 1: 0]
𝐶𝑙𝑜𝑐𝑘𝑅𝑒𝑠𝑒𝑡

𝑅𝑒𝑠𝑒𝑡

Serial Addition

Starts at the

Least-significant bit

Modular Sequential Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 10

Sequence Detector with a Shift Register

❖ A sequence detector can be implemented using:

Left Shift Register (SIPO) + AND Gates

❖ Example: Detecting the sequences 1010 and 1100

Bits are shifted left starting at the most-significant bit

𝑅𝑒𝑠𝑒𝑡

Serial
Input SI

𝐶𝑙𝑜𝑐𝑘

𝑄3

𝑅

𝐷3

𝑄3
′

𝑄2

𝑅

𝐷2

𝑄2
′

𝑄1

𝑅

𝐷1

𝑄1
′

𝑄0

𝑅

𝐷0

𝑄0
′

Detect
1010

Detect
1100

1 0 1 0

Modular Sequential Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 11

Parallel-In Serial-Out Shift Register

❖ A Parallel-In Serial-Out (PISO) Shift Register has:

 𝑛 parallel data input lines

 Serial Input

 Serial Output

 Control input s

 Clock input

 Reset input

❖ Two control functions:

 s = 0 ➔ Shift Data

 s = 1 ➔ Parallel Load 𝑛 input bits

Parallel-In Serial-Out
Shift Register

𝑅

𝑛

Clock

Reset

𝒔

Parallel Data Input

Serial Output

Control

Serial In

Modular Sequential Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 12

Parallel In Serial Out Shift Register

❖ Two control functions:

s = 0 ➔ Shift s = 1 ➔ Load data

𝐷0

𝑅

𝑄0
Serial

Output SO
𝐷1

𝑅

𝑄1𝐷2

𝑅

𝑄2𝐷3

𝑅

𝑄3

𝐶𝑙𝑜𝑐𝑘

𝑅𝑒𝑠𝑒𝑡

𝒔

𝐼3 𝐼2

10

𝐼1

10

𝐼0

10

Parallel Data Input

10

Serial
Input SI

Modular Sequential Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 13

Universal Shift Register

❖ A Universal Shift Register has the following specification:

 𝑛 parallel data input and 𝑛 output lines

 Right-shift and Left-shift Serial Inputs

 Two control input lines s

 Clock input

 Reset input

❖ Four control functions:

 s = 00 ➔ No change in value

 s = 01 ➔ Shift Right (Right-Shift Serial Input)

 s = 10 ➔ Shift Left (Left-Shift Serial Input)

 s = 11 ➔ Parallel Load 𝑛 input bits

𝑛

Universal
Shift Register

𝑅

𝑛

Clock

Reset

𝒔
2

Control

Parallel
Data
Input

L-shift
Serial
Input

R-shift
Serial
Input

Parallel Data Output

Modular Sequential Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 14

Universal Shift Register Design

3 2 1 0

𝐷3

𝑄3

𝐼3

𝑄3

3 2 1 0

𝐷2

𝑄2

𝐼2

𝑄2

3 2 1 0

𝐷1

𝑄1

𝐼1

𝑄1

3 2 1 0

𝐷0

𝑄0

𝐼0

𝑄0

𝑅𝑒𝑠𝑒𝑡
𝐶𝑙𝑜𝑐𝑘

𝑅𝑅𝑅𝑅

Parallel Inputs

Parallel Outputs

Right-Shift

Serial Input

Left-Shift

Serial Input

𝒔
2 s = 0 ➔

No change

s = 1 ➔
Shift Right

s = 2 ➔
Shift Left

s = 3 ➔
Parallel Load

Modular Sequential Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 15

Counter

❖ Sequential circuit that goes through a specific sequence of states

❖ Output of the counter is the count value

❖Modulo-N counter: goes through 0, 1, 2, …, (N – 1)

❖Modulo-8 binary counter: goes through 0, 1, 2, …, 7

❖Modulo-10 (BCD) counter: goes through 0, 1, 2, …, 9

❖ Counting can be up or down

❖ Some Applications:

 Timers

 Event Counting

 Frequency Division

Counter
n

𝐶𝑜𝑢𝑛𝑡

𝑐𝑙𝑜𝑐𝑘

𝑟𝑒𝑠𝑒𝑡

Modular Sequential Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 16

Implementing Counters

Two Basic Approaches:

1. Ripple Counters

 The system clock is connected to the clock input of the first flip-flop (LSB)

 Each flip-flop output connects to the clock input of the next flip-flop

 Advantage: simple circuit and low power consumption

 Disadvantage: The counter is not truly synchronous

 No common clock to all flip-flops

 Ripple propagation delay as the clock signal propagates to the MSB

2. Synchronous Counters

 The system clock is connected to the clock input of ALL flip-flops

 Combinational logic is used to implement the desired state sequence

Modular Sequential Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 17

Ripple Counter

𝐶𝑙𝑜𝑐𝑘
𝑅𝑒𝑠𝑒𝑡

𝐷0

𝑅

𝑄0

𝑄0
′

𝑄0

𝐷1

𝑅

𝑄1

𝑄1
′

𝑄1

𝐷2

𝑅

𝑄2

𝑄2
′

𝑄2

𝐷3

𝑅

𝑄3

𝑄3
′

𝑄3
❖ Q0 toggles at the positive edge of every cycle

❖ Q1 toggles when Q0 goes from 1 down to 0

❖ Q2 toggles when Q1 goes from 1 down to 0

❖ Q3 toggles when Q2 goes from 1 down to 0

Q3 Q2 Q1 Q0

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

Counts Up

from 0 to 15

then back to 0

Modular Sequential Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 18

Ripple Counter (cont'd)

Up Count Down Count

𝑄3 𝑄2 𝑄1 𝑄0 𝑄3
′ 𝑄2

′ 𝑄1
′ 𝑄0

′

0 0 0 0 1 1 1 1

0 0 0 1 1 1 1 0

0 0 1 0 1 1 0 1

0 0 1 1 1 1 0 0

0 1 0 0 1 0 1 1

0 1 0 1 1 0 1 0

0 1 1 0 1 0 0 1

0 1 1 1 1 0 0 0

1 0 0 0 0 1 1 1

1 0 0 1 0 1 1 0

1 0 1 0 0 1 0 1

1 0 1 1 0 1 0 0

1 1 0 0 0 0 1 1

1 1 0 1 0 0 1 0

1 1 1 0 0 0 0 1

1 1 1 1 0 0 0 0

𝐶𝑙𝑜𝑐𝑘
𝑅𝑒𝑠𝑒𝑡

𝐷0

𝑅

𝑄0

𝑄0
′

𝑄0

𝐷1

𝑅

𝑄1

𝑄1
′

𝑄1

𝐷2

𝑅

𝑄2

𝑄2
′

𝑄2

𝐷3

𝑅

𝑄3

𝑄3
′

𝑄3𝑄[3: 0] is the

Up Count

𝑄′[3: 0] is the

Down Count

Connect

Q0 to Clk Q1

Q1 to Clk Q2

Q2 to Clk Q3

How to Count

Down?

Modular Sequential Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 19

Timing of a Ripple Counter

❖ Drawback of ripple counter:

Flip-flops are NOT driven by the same clock (Not Synchronous)

Q delay increases as we go from Q0 to Q3

Given  = flip-flop delay ➔ Delay of Q0, Q1, Q2, Q3 = , 2, 3, 4

Clock

Q0

Q1

Q2

Q3

Modular Sequential Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 20

Synchronous Counter

❖ Avoid clock rippling

❖ 𝑛-bit Register with a common clock for all flip-flops

❖ 𝑛-bit Incrementer to generate next state (Up-Counter)

n-bit Register
𝐶𝑙𝑜𝑐𝑘

𝑅𝑒𝑠𝑒𝑡

𝑛

𝑛

𝑄[𝑛 − 1: 0]

n-bit Incrementer (+1)

Modular Sequential Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 21

4-Bit Incrementer

4-Bit Synchronous Counter with Enable

❖ An incrementer is a reduced (contracted) form of an adder

𝐷0

𝑅

𝑄0𝐷1

𝑅

𝑄1𝐷2

𝑅

𝑄2𝐷3

𝑅

𝑄3

𝑄3 𝑄2 𝑄1 𝑄0

𝐶𝑙𝑜𝑐𝑘

𝑅𝑒𝑠𝑒𝑡

4-bit Counter Output

𝐶𝑜𝑢𝑡
𝑐2𝑐3 𝑐1 𝐸𝑁 EN = 0 ➔

No Change

EN = 1 ➔

Increment

How to

Count

Down?

Increment

Q' (Not Q)

Modular Sequential Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 22

Timing of a Synchronous Counter

❖ Advantage of Synchronous counter:

ALL Flip-flops are driven by the same clock

Delay of all outputs is identical ➔ Delay of Q0 = Q1 = Q2 = Q3 = 

Clock

Q0

Q1

Q2

Q3

Modular Sequential Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 23

Frequency Division

❖ A counter can be used as a frequency divider

❖ Counter is driven by a Clock with frequency F

❖ Output Q0 Frequency = F/2, Output Q1 Frequency = F/4

❖ Output Q2 Frequency = F/8, Output Q3 Frequency = F/16

Clock

Q0

Q1

Q2

Q3

Modular Sequential Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 24

BCD Counter

❖ Problem: Convert a 4-bit binary counter into a BCD counter

❖ Solution: When output reaches 9 then reset back to 0

❖ Asynchronous Reset: Count to 10 and reset immediately

4-bit Counter with
Synchronous Reset

4-bit

Counter

𝐸𝑁𝐶𝑜𝑢𝑡 1

𝑐𝑙𝑜𝑐𝑘

𝑄3 𝑄2 𝑄1 𝑄0

𝑅𝑒𝑠𝑒𝑡 (Synchronous)
𝑅𝑒𝑠𝑒𝑡

4-bit Counter with
Asynchronous Reset

4-bit

Counter

𝐸𝑁𝐶𝑜𝑢𝑡 1

𝑐𝑙𝑜𝑐𝑘

𝑄3 𝑄2 𝑄1 𝑄0

𝑅𝑒𝑠𝑒𝑡 (Asynchronous)
𝑅𝑒𝑠𝑒𝑡

Modular Sequential Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 25

Building Larger Synchronous Counters

❖ Smaller counters can be used to build a larger counter

❖ Example: 12-bit counter designed using three 4-bit counters

Counts from 0 to 4095 (212 – 1), then back to 0

❖ The 𝐶𝑜𝑢𝑡 of a 4-bit counter is used to enable the next counter

𝑐𝑙𝑜𝑐𝑘

𝑟𝑒𝑠𝑒𝑡

4-bit

Counter

4

𝑄[3: 0]

𝑅

𝐸𝑁𝐶𝑜𝑢𝑡

4-bit

Counter

4

𝑄[7: 4]

𝑅

𝐸𝑁𝐶𝑜𝑢𝑡
4-bit

Counter

4

𝑄[11: 8]

𝑅

𝐸𝑁𝐶𝑜𝑢𝑡𝐶𝑜𝑢𝑡 𝐸𝑁

Modular Sequential Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 26

Synchronous Counter with Parallel Load

❖ Ability to load an initial binary number into the counter

 Prior to the count operation

❖ Two control inputs:

 Load: Initialize counter with input Data

 EN: enables the counting

𝑐𝑙𝑜𝑐𝑘

4-bit

Counter

4

𝑄[3: 0]

𝐸𝑁𝐶𝑜𝑢𝑡𝐶𝑜𝑢𝑡 𝐸𝑁

4

𝐷𝑎𝑡𝑎[3: 0]𝐿𝑜𝑎𝑑

Very useful in

implementing different

counting sequences

Modular Sequential Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 27

Implementing a Counter with Parallel Load

𝐷 𝑄𝐷 𝑄𝐷 𝑄𝐷 𝑄

𝑄3 𝑄2 𝑄1 𝑄0

𝐶𝑙𝑜𝑐𝑘

4-bit Counter Output

𝐸𝑁

𝐿𝑜𝑎𝑑

10 10 1010

𝐶𝑜𝑢𝑡
𝑐2𝑐3 𝑐1

𝐷3 𝐷2 𝐷1 𝐷0

Load EN Action

0 0 No change

0 1 Increment Count

1 X Load data

Modular Sequential Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 28

3-to-12 Counter

❖ Convert a 4-bit binary counter with load into 3-to-12 counter

❖ Solution: Detect binary count 12 and then load 3

❖ Detect 12: Binary count with Q3 = Q2 = 1

𝑐𝑙𝑜𝑐𝑘

4-bit Counter

𝐸𝑁𝐶𝑜𝑢𝑡𝐶𝑜𝑢𝑡 𝐸𝑁

𝐿𝑜𝑎𝑑

𝐷3 𝐷2 𝐷1 𝐷0

𝑄3 𝑄2 𝑄1 𝑄0

0 0 1 1

𝑃𝑟𝑒𝑠𝑒𝑡

Synchronous

Preset

Load: 0011

Modular Sequential Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 29

9-to-99 Counter

Problem: Use two 4-bit binary counters with parallel load and logic

gates to build a counter that counts from 9 to 99 = 'b01100011

Add a synchronous Preset input to initialize the counter to value 9

𝑐𝑙𝑜𝑐𝑘

4-bit Counter

𝐸𝑁𝐶𝑜𝑢𝑡𝐶𝑜𝑢𝑡

𝐿𝑜𝑎𝑑

𝐷7 𝐷6 𝐷5 𝐷4

𝑄7 𝑄6 𝑄5 𝑄4

4-bit Counter

𝐸𝑁𝐶𝑜𝑢𝑡 𝐸𝑁

𝐿𝑜𝑎𝑑

𝐷3 𝐷2 𝐷1 𝐷0

𝑄3 𝑄2 𝑄1 𝑄0

𝑃𝑟𝑒𝑠𝑒𝑡 0 1 0 0 1

Modular Sequential Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 30

Memory

❖ Large array or storage cells, capable of storing many 0's and 1's

❖ Random Access Memory: bits can be accessed randomly

❖Memory is addressable

Memory address consists of k bits

Can address 2k words in memory

Each word consists of n bits

❖Memory capacity = 2k × n bits

❖ Two control functions: Read and Write

Read: Data_out Memory [Address]

Write: Memory [Address]  Data_in

Memory
Unit

2k × n bits

n

Data_in

n

Data_out

k
Address

Read

Write

Modular Sequential Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 31

RAM, ROM, EEPROM, and Flash

❖ RAM: Random Access Memory

Can be read and written using Read/Write operations

Volatile: data is lost when power is turned off

❖ ROM: Read Only Memory (No Write operation)

Mask programming by the circuit manufacturer (not by the user)

Non-Volatile Memory (NVM): data is permanent

❖ EEPROM: Electrically Erasable Programmable ROM

Can be erased and reprogrammed by the user (special write)

EEPROM Programmer: Device that writes the EEPROM

❖ Flash: Non-Volatile Memory that can be read and written

Modular Sequential Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 32

ROM Memory

❖ Address consists of k bits ➔ 2k memory addresses

❖ At each memory address, there is a word consisting of n bits

❖ The n-bit word appears at the data output of the ROM

❖ ROM does not have data inputs or a write operation

ROM
2k × n bits

Data_out
k

Address
n

❖ ROM memory is useful for implementing Boolean Functions

❖ Also useful for storing permanent data

Modular Sequential Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 33

ROM Internal Structure (32 x 8-bit)

❖ 5-bit Address ➔ 5-to-32 line decoder (Only one line is selected)

❖ Each line = 8 bits ➔ 8-bit Data output

0
1
2
3
.
.
.

28
29
30
31

A4

A3

A2

A1

A0

D7 D6 D5 D4 D3 D2 D1 D0

5
-t

o
-3

2
 d

ec
o

d
er

32-input

OR Gate

Bits are

stored at the

intersection

of horizontal

and vertical

wires

Modular Sequential Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 34

Implementing a Combinational Circuit

❖ Implementing a Combinational Circuit with a ROM is easy

❖ Store the truth table of the circuit by programming the ROM

I4 I3 I2 I1 I0 F7 F6 F5 F4 F3 F2 F1 F0

0 0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 0 1 1 0 0 0 0 1 1 0

0 0 0 1 0 0 1 0 1 1 0 0 1

0 0 0 1 1 1 0 1 1 0 0 1 0

· · · · · ·

1 1 1 1 1 0 0 1 0 0 0 1 0

Truth Table with Five Inputs and Eight output functions

Inputs are used as Address lines to the ROM

Modular Sequential Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 35

Programming a ROM

Every 1 in the truth table ➔ X (CLOSED) connection

Every 0 in the truth table ➔ NO connection

Example: At address 00011 = (decimal 3), the word 10110010 is stored

0
1
2
3
.
.
.

28
29
30
31

A4

A3

A2

A1

A0

D7 D6 D5 D4 D3 D2 D1 D0

5
-t

o
-3

2
 d

ec
o

d
er

x x x x
x x x x

x x x
x x x

x x
x x x x
x x x

x x

x
x

00111000
10000110
01011001
10110010

32-input

OR Gate

01000001
11001100
10110011
00100010

Modular Sequential Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 36

Example: Square Function

❖ Design a square function with a ROM

❖ Input X = 3-bit number, Output Y = X2

❖ Solution: Derive the Truth Table

X2 X1 X0 Square Y5 Y4 Y3 Y2 Y1 Y0

0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 1

0 1 0 4 0 0 0 1 0 0

0 1 1 9 0 0 1 0 0 1

1 0 0 16 0 1 0 0 0 0

1 0 1 25 0 1 1 0 0 1

1 1 0 36 1 0 0 1 0 0

1 1 1 49 1 1 0 0 0 1

Modular Sequential Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 37

ROM Table

❖ Output Y0 is identical to input X0 ➔ No need to store in ROM

❖ Similarly, Output Y1 is always 0➔ No need to store in ROM

❖ ROM table ➔ Only need to store Y5, Y4, Y3, and Y2 in ROM

X2 X1 X0 Y5 Y4 Y3 Y2 Y1 Y0

0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 1

0 1 0 0 0 0 1 0 0

0 1 1 0 0 1 0 0 1

1 0 0 0 1 0 0 0 0

1 0 1 0 1 1 0 0 1

1 1 0 1 0 0 1 0 0

1 1 1 1 1 0 0 0 1

8 × 4

ROM

X2

X1

X0

Y5

Y4

Y3

Y2

Y1

Y0

0

Minimal ROM

Size = 23 × 4 bits

