Sequential Circuit Design

COE 202

Digital Logic Design

Dr. Muhamed Mudawar
King Fahd University of Petroleum and Minerals

Presentation Outline

- The Design Procedure
- Moore Sequence Detector
- Mealy Sequence Detector
- Tracing State Diagrams and Verifying Correctness
- Sequential Comparator
- Binary Counter
- Up/Down Counter with Enable

The Design Procedure

Given a Description (or Specification) of the Problem

- 1. Obtain a state diagram for the sequential circuit
- 2. Assign binary codes to the states and fill the state table
- 3. Select the type of Flip-Flops and derive the FF input equations
- 4. Derive the output equations
- 5. Draw the circuit diagram
- 6. Verify the correctness of the final design (verification)

The State Diagram

- ❖ A state is an abstraction of memory
- ❖ A state **remembers** a history of inputs applied to the circuit
- Examples:
 - ♦ State S0 represents the fact that the last input is a 0
 - ♦ State S1 represents the fact that the last input is a 1
 - ♦ State S2 represents the fact that the last two-input sequence is "11"
- Obtaining the state diagram is the most important step
- * Requires experience and good understanding of the problem

Example: Sequence Detector

- ❖ A sequence detector is a sequential circuit
- Detects a specific sequence of bits in the input
- ❖ The input is a serial bit stream:
 - One input bit *x* is fed to the sequence detector each cycle
- ❖ The output is also a bit stream: One output bit z each cycle Indicates whether a given sequence is detected or not

State Diagram for a Sequence Detector

- Example: Design a circuit that detects the input sequence "111"
- ❖ Begin in an initial state: call it S₀
 - **S**₀ indicates that a 1 is NOT detected yet

As long as the input x is 0, remain in the initial state S_0

- ❖ Add a state (call it S₁) that detects the first 1 in the input
- ❖ Add a state (call it S₂) that detects the input sequence "11"
- ❖ Add a state (call it S₃) that detects the input sequence "111"

Complete the State Diagram

Moore Design: Assign Output to States

The output in S_0 , S_1 , and S_2 should be 0

The output in S_3 should be 1

Now complete the state diagram:

Add transitions from S_1 , S_2 , S_3 back to S_0 if the input is 0

Add transition from \mathbf{S}_3 to itself if the input is 1 to detect sequences longer than three 1's

State Assignment

- Each state must be assigned a unique binary code
- ❖ If there are *m* states then
 - The minimum number of state bits: $n = \lceil log_2 m \rceil$
 - [x] is the smallest integer $\geq x$ (ceiling function)
- ❖ In our example, there are four states: S_0 , S_1 , S_2 , and S_3 Therefore, the minimum number of state bits (Flip-Flops) = 2
- \Leftrightarrow State assignment: $S_0 = 00$, $S_1 = 01$, $S_2 = 10$ and $S_3 = 11$
- \clubsuit If *n* bits are used, the number of unused states = $2^n m$
- In our example, there are NO unused states

From State Diagram to State Table

Present	Next	State	Output
State	x = 0	x = 1	Z
S_0	S_0	S_1	0
S_1	S_0	S ₂	0
S_2	S_0	S_3	0
S_3	S ₀	S_3	1

Present	Next	State	Output
State	x = 0	x = 1	Z
0 0	00	01	0
0 1	00	10	0
10	00	11	0
11	00	11	1

Structure of a Moore Sequence Detector

- In our design examples, only D-type Flip-Flops will be used
- They are the simplest to analyze and implement
- Next, we need minimal expressions for
- 1. Next State Logic
- 2. Output Logic

Derive Next State an Output Equations

Present	Next	State	Output
State	x = 0	x = 1	Z
0 0	00	01	0
0 1	00	10	0
10	00	11	0
11	00	11	1

x	<i>D</i>) ₁	
Q_1Q_0 00	0	0	
01	0	1	
11	0	1	
10	0	7	
Q_{z}	x +	Q_0	χ

Two D-type Flips-Flops

Present State = Flip-Flop Outputs Q_1 and Q_0

Next State = Flip-Flop Inputs D_1 and D_0

Next State equations: $D_1 = Q_1 x + Q_0 x$ and $D_0 = Q_1 x + Q'_0 x$

Output equation: $z = Q_1 Q_0$ (from the state diagram)

Draw the Moore Sequence Detector Circuit

$$D_1 = Q_1 x + Q_0 x$$
, $D_0 = Q_1 x + Q'_0 x$

$$z = Q_1 Q_0$$

Mealy Type Sequence Detector

- ❖ Let us redesign a Mealy type "111" sequence detector
- * The initial state S_0 indicates that a 1 is NOT detected yet

 As long as the input x is 0, remain in the initial state S_0 Notice that input / output is written on the arc (Mealy type)
- ❖ Add a state (call it S₁) that detects the first 1 in the input
- ❖ Add a state (call it S₂) that detects the input sequence "11"

Complete the Mealy State Diagram

- ❖ State S₂ is reached after detecting the input sequence "11"
- ❖ At S₂, if the next input is 1 then the output should be 1
 Make a transition from S₂ back to itself labeled 1 / 1
 No need for state S₃, because output is on the arc
- ❖ Now complete the state diagram
 Add transitions from S₁ and S₂ back to S₀ when input is 0

Mealy Machines
typically use
less states than
Moore Machines

State Assignment and State Table

Three States → Minimum number of state bits (Flip-Flops) = 2

Assign: $S_0 = 00$, $S_1 = 01$, and $S_2 = 10$ (State 11 is Unused)

Present	Next	State	Output z		
State	x = 0	x = 1	x = 0	x = 1	
S_0	S_0	S_1	0	0	
S_1	S_0	S ₂	0	0	
S_2	S_0	S_2	0	1	

Present	Next	State	Output z		
State	x = 0	x = 1	x = 0	x = 1	
0 0	0 0	01	0	0	
0 1	00	10	0	0	
10	00	10	0	1	

Derive Next State and Output Equations

							O_1			O_0		2	Z
Present	Next	State	Outp	out z	Q_1Q_0	0	1	$Q_1Q_0^{\chi}$	0	1	$Q_1Q_0^{\chi}$	0	1
State	x = 0	x = 1			00	0	0	00	0	1	00	0	0
00	00	01	0	0	01	0	1	01	0	0	01	0	0
0 1	00	10	0	0	11	X	X	11	X	Х	11	X	X
10	00	10	0	1	10	0	1	10	0	0	10	0	1
11	XX	XX	X	X		26 1			O')′ ~			24
					Q_1	$\lfloor X \dashv$	- $Q_{f 0}$.	$\boldsymbol{\mathcal{X}}$	Q_1 ζ	$y_0' x$		Q_1	$\boldsymbol{\mathcal{X}}$

Present State = Flip-Flop Outputs Q_1 and Q_0 (state 11 is unused)

Next State = Flip-Flop Inputs D_1 and D_0

Flip-Flop Input equations: $D_1 = Q_1 x + Q_0 x$ and $D_0 = Q_1' Q_0' x$

Output equation: $z = Q_1 x$

Draw the Mealy Sequence Detector Circuit

$$D_1 = Q_1 x + Q_0 x$$

$$D_0 = Q_1' \ Q_0' \ x$$

$$z = Q_1 x$$

Mealy versus Moore Sequence Detector

Mealy Sequence Detector

In general, Moore state diagrams have more states than corresponding Mealy.

The drawback of Mealy is that **glitches** can appear in the output if the input is not synchronized with the clock.

Verification

- Sequential circuits should be verified by showing that the circuit produces the original state diagram
- Verification can be done manually, or with the help of a simulation program
- All possible input combinations are applied at each state and the state variables and outputs are observed
- ❖ A reset input is used to reset the circuit to its initial state
- Apply a sequence of inputs to test all the state-input combinations, i.e., all transitions in the state diagram
- Observe the output and the next state that appears after each clock edge in the timing diagram

Input Test Sequence

- Required to verify the correct operation of a sequential circuit
- It should test each state transition of the state diagram
- Test sequences can be produced from the state diagram
- ❖ Consider the Mealy sequence detector, starting at S₀ (reset), we can use an input test sequence to verify all state transitions:

Input test sequence: reset then x = 0, 1, 0, 1, 1, 0, 1, 1, 1, 1

Reset input forces initial state to be S_0

Verifying the Mealy Sequence Detector

Input test sequence: reset then x = 0, 1, 0, 1, 1, 0, 1, 1, 1, 1

Sequential Comparator

Problem Description:

- Design a sequential circuit that compares two numbers A and B
- Two Inputs: A and B

A consists of *n* bits

B consists of *n* bits

Bit streaming starting at bit 0

Compare A_0 with B_0 , A_1 with B_1 , etc. (Bit 0 is least significant bit)

- ❖ A reset signal resets the comparator to its initial state Reset is required before starting a new comparison
- Two outputs: GT (Greater Than) and LT (Less Than)

Designing the State Diagram

- ❖ Reset: start initially in state EQ
 - **EQ** indicates Equality (output is **00**)
 - Stay in **EQ** as long as $A_iB_i = 00$ or 11
- \clubsuit Go to **LT** if $A_i < B_i (A_i B_i = \mathbf{01})$
 - LT indicates Less Than (output is 01)
- **\(\ldot\)** Go to **GT** if $A_i > B_i (A_i B_i = 10)$
 - **GT** is Greater Than (output is 10)
- Complete the state diagram
 - LT \rightarrow GT and GT \rightarrow LT
 - LT \rightarrow LT and GT \rightarrow GT

Moore State Diagram

State Assignment and State Table

Three States → Two Flip-Flops

D-type Flip-Flops will be used

State Assignment: EQ = 00, LT = 01, GT = 10

Output = Present State ($\mathbf{Q_1}$ and $\mathbf{Q_0}$)

Present	Next State (D ₁ D ₀)								
State	AB	AB	AB	A B					
$Q_1 Q_0$	00	01	10	11					
0 0	0 0	0 1	1 0	0 0					
0 1	0 1	0 1	1 0	0 1					
1 0	1 0	0 1	1 0	1 0					
1 1	X X	X X	X X	X X					

Deriving the Next State Equations

Present	Next State (D ₁ D ₀)							
State	A B	AB	AB	AB				
$Q_1 Q_0$	00	01	10	11				
0 0	0 0	0 1	1 0	0 0				
0 1	0 1	0 1	1 0	0 1				
1 0	1 0	0 1	1 0	1 0				
1 1	X X	X X	XX	X X				

State 11 is unused

When present state is 11, don't cares are used to fill the next state.

Output = Present state

$$D_{1} = Q_{1}A + Q_{1}B' + AB'$$

$$D_{1} = Q_{1}(A + B') + AB'$$

$$D_{0} = Q_{0}A' + Q_{0}B + A'B$$

$$D_{0} = Q_{0}(A' + B) + A'B$$

Sequential Comparator Circuit Diagram

$$D_1 = Q_1(A + B') + AB'$$

$$D_0 = Q_0(A'+B) + A'B$$

Designing with Unused States

- ❖ A circuit with n flip-flops has 2ⁿ binary states
- ❖ However, the state diagram may have m states
- \clubsuit Therefore, the number of unused states = $2^n m$
- Unused states do not appear in the state diagram
 - ♦ Sometimes treated as don't cares when simplifying expressions in K-maps
- However, it is possible to enter an unused state!
 - ♦ Caused by outside interference or a circuit malfunction.
- Must specify the output and next state values for unused states
- * A special (invalid) output can be used to indicate an unused state
- ❖ A return to a valid state must be possible without reset
 - ♦ Next state for unused states should be specified (NOT don't cares!)

Design of a Binary Counter

Problem Specification:

❖ Design a circuit that counts up from 0 to 7 then back to 0

$$000 \rightarrow 001 \rightarrow 010 \rightarrow 011 \rightarrow 100 \rightarrow 101 \rightarrow 110 \rightarrow 111 \rightarrow 000$$

When reaching 7, the counter goes back to 0 then goes up again

- There is no input to the circuit
- The counter is incremented each cycle
- The output of the circuit is the present state (count value)
- The circuit should be designed using D-type Flip-Flops

Designing the State Diagram

- Eight states are needed to store the count values 0 to 7
- No input, state transition happens at the edge of each cycle

Three Flip-Flops are required for the eight states

Each state is assigned a unique binary count value

State Table

Only two columns: Present State and Next State

State changes each cycle

Present State Q ₂ Q ₁ Q ₀	Next State D ₂ D ₁ D ₀				
0 0 0	0 0 1				
0 0 1	0 1 0				
0 1 0	0 1 1				
0 1 1	1 0 0				
1 0 0	1 0 1				
1 0 1	1 1 0				
1 1 0	1 1 1				
1 1 1	0 0 0				

Deriving the Next State Equations

Prese Q ₂	nt Q ₁	Nex D ₂	t S [.] D ₁	_	
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	0

$\setminus Q$	L_0	O_2	$\setminus Q$	$_{\circ}$ I	O_1	Q_0		O_0		
Q_2Q_1	ັ 0	_1	Q_2Q_1	ັ 0	1	Q_2Q_1	0	_1		
00	0	0	00	0	1	00	1	0		
01	0	1	01	1	0	01	1	0		
11	1	0	11	1	0	11	1	0		
10	1	1	10	0	1	10	1	0		
$D_2 =$	Q_2Q	1 + ($Q_2 Q_0' +$	$Q_2'Q_2'$	Q_1Q_0					
$D_2 =$	$D_2 = Q_2(Q_1' + Q_0') + Q_2'Q_1Q_0$									
$D_2 =$	$Q_2($	Q_1Q_0	$(1)' + Q_2'$	$(Q_1$	Q_0) :	$=Q_2 \oplus$	$(Q_1$	Q_0		
$D_1 =$	Q_1Q	' ₀ + ($Q_1'Q_0 =$	Q_1	$\oplus Q_0$)				

 $D_0 = Q_0'$

3-Bit Counter Circuit Diagram

Up/Down Counter with Enable

Problem Specification:

- Design a 2-bit Up / Down counter
- ❖ Two inputs: E (Enable) and U (Up)

If E = 0 then counter remains in the same state (regardless of U)

If EU = 11 then count up from 0 to 3, then back to 0

If EU = 10 then count down from 3 down to 0, then back to 3

- The output of the counter is the present state (count value)
- The circuit should be designed using T Flip-Flops
- ❖ A reset signal resets the counter to its initial state

Designing the State Diagram

- Four states are required to store the count 0 to 3
- ❖ Count up if EU = 11
- ❖ Count down if EU = 10
- Disable counter if E = 0
 Transition to same state if
 EU = 00 or 01
- Asynchronous reset to start initially at state S0

State Assignment and State Table

- ❖ Four States → Two State variables (2 Flip-Flops)
- ❖ State Assignment: S0 = 00, S1 = 01, S2 = 10, and S3 = 11

Present		Next	State	
State	ΕU	ΕU	ΕU	ΕU
$Q_1 Q_0$	00	01	10	11
0 0	0 0	0 0	1 1	0 1
0 1	0 1	0 1	0 0	1 0
1 0	1 0	1 0	0 1	1 1
1 1	1 1	1 1	1 0	0 0

Excitation Table for Flip-Flops

Excitation Table:

Lists the required input for next state transition

- ❖ For D Flip-Flop: Input D = Next State Q(t + 1)
- ❖ For T Flip-Flop: Input $T = Q(t) \oplus Q(t+1)$
- Excitation tables are used to find the Flip-Flop input equations

Excitation Tables for the D and T Flip-Flops

Q(t)	Q(t+1)	D
0	0	0
0	1	1
1	0	0
1	1	1

Q(t)	Q(t+1)	T
0	0	0
0	1	1
1	0	1
1	1	0

Deriving the T-Flip-Flop Input Equations

Present	Next State at (t+1)			
State	ΕU	EU	ΕU	ΕU
$Q_1 Q_0$	00	01	10	11
0 0	0 0	0 0	1 1	0 1
0 1	0 1	0 1	0 0	1 0
1 0	1 0	1 0	0 1	1 1
1 1	1 1	1 1	1 0	0 0

Present	Flip-Flop Inputs T ₁ T ₀			
State	ΕU	ΕU	ΕU	ΕU
$Q_1 Q_0$	00	01	10	11
0 0	0 0	0 0	1 1	0 1
0 1	0 0	0 0	0 1	1 1
1 0	0 0	0 0	1 1	0 1
1 1	0 0	0 0	0 1	1 1

$$T_1 = Q_0 E U + Q_0' E U'$$

$$T_1 = E(Q_0 \oplus U)'$$

$$T_0 = E$$

2-bit Up/Down Counter Circuit Diagram

