
Combinational Circuit Design

COE 202

Digital Logic Design

Dr. Muhamed Mudawar

King Fahd University of Petroleum and Minerals

Combinational Circuit Design COE 202 – Digital Logic Design © Muhamed Mudawar – slide 2

Presentation Outline

❖ How to Design a Combinational Circuit

❖ Designing a BCD to Excess-3 Code Converter

❖ Designing a BCD to 7-Segment Decoder

❖ Hierarchical Design

❖ Iterative Design

Combinational Circuit Design COE 202 – Digital Logic Design © Muhamed Mudawar – slide 3

Combinational Circuit

❖ A combinational circuit is a block of logic gates having:

𝑛 inputs: 𝑥1, 𝑥2, … , 𝑥𝑛

𝑚 outputs: 𝑓1, 𝑓2, … , 𝑓𝑚

❖ Each output is a function of the input variables

❖ Each output is determined from present combination of inputs

❖ Combination circuit performs operation specified by logic gates



Combinational

Circuit



𝑛 inputs 𝑚 outputs

Combinational Circuit Design COE 202 – Digital Logic Design © Muhamed Mudawar – slide 4

How to Design a Combinational Circuit

1. Specification

 Specify the inputs, outputs, and what the circuit should do

2. Formulation

 Convert the specification into truth tables or logic expressions for outputs

3. Logic Minimization

 Minimize the output functions using K-map or Boolean algebra

4. Technology Mapping

 Draw a logic diagram using ANDs, ORs, and inverters

 Map the logic diagram into the selected technology

 Considerations: cost, delays, fan-in, fan-out

5. Verification

 Verify the correctness of the design, either manually or using simulation

Combinational Circuit Design COE 202 – Digital Logic Design © Muhamed Mudawar – slide 5

Designing a BCD to Excess-3 Code Converter

1. Specification

 Convert BCD code to Excess-3 code

 Input: BCD code for decimal digits 0 to 9

 Output: Excess-3 code for digits 0 to 9

2. Formulation

 Done easily with a truth table

 BCD input: 𝑎, 𝑏, 𝑐, 𝑑

 Excess-3 output: 𝑤, 𝑥, 𝑦, 𝑧

 Output is don't care for 1010 to 1111

BCD

a b c d

Excess-3

w x y z

0 0 0 0 0 0 1 1

0 0 0 1 0 1 0 0

0 0 1 0 0 1 0 1

0 0 1 1 0 1 1 0

0 1 0 0 0 1 1 1

0 1 0 1 1 0 0 0

0 1 1 0 1 0 0 1

0 1 1 1 1 0 1 0

1 0 0 0 1 0 1 1

1 0 0 1 1 1 0 0

1010 to 1111 X X X X

Combinational Circuit Design COE 202 – Digital Logic Design © Muhamed Mudawar – slide 6

Designing a BCD to Excess-3 Code Converter

3. Logic Minimization using K-maps

00 01 11 10

00

𝑎𝑏

𝑐𝑑
K-map for 𝑤

01

11

10

K-map for 𝑥 K-map for 𝑦 K-map for 𝑧

00 01 11 10 00 01 11 10 00 01 11 10

1

11

11 1 1

XX XX

XX 1

1

1 1 1

XX XX

XX

1

1

XX XX

XX

1

1

XX XX

XX1

1

1

1

Minimal Sum-of-Product expressions:

𝑤 = 𝑎 + 𝑏𝑐 + 𝑏𝑑 , 𝑥 = 𝑏′𝑐 + 𝑏′𝑑 + 𝑏𝑐′𝑑′ , 𝑦 = 𝑐𝑑 + 𝑐′𝑑′ , 𝑧 = 𝑑′

Additional 3-Level Optimizations: extract common term (𝑐 + 𝑑)

𝑤 = 𝑎 + 𝑏(𝑐 + 𝑑) , 𝑥 = 𝑏′ 𝑐 + 𝑑 + 𝑏 𝑐 + 𝑑 ′ , 𝑦 = 𝑐𝑑 + (𝑐 + 𝑑)′

Combinational Circuit Design COE 202 – Digital Logic Design © Muhamed Mudawar – slide 7

Designing a BCD to Excess-3 Code Converter

4. Technology Mapping

Draw a logic diagram using ANDs, ORs, and inverters

Other gates can be used, such as NAND, NOR, and XOR

a

b

c

d

w

x

y

z

Using XOR gates

𝑥 = 𝑏′ 𝑐 + 𝑑 + 𝑏 𝑐 + 𝑑 ′ = 𝑏  𝑐 + 𝑑

𝑦 = 𝑐𝑑 + 𝑐′𝑑′ = 𝑐  𝑑 ′ = 𝑐  𝑑′

a

b

c

d

w

x

y

z

Combinational Circuit Design COE 202 – Digital Logic Design © Muhamed Mudawar – slide 8

Designing a BCD to Excess-3 Code Converter

5. Verification

Can be done manually

Extract output functions from circuit diagram

Find the truth table of the circuit diagram

Match it against the specification truth table

Verification process can be automated

Using a simulator for complex designs

a

b

c

d

w = a + b(c + d)

x = b  (c + d)

y = c  d'

z = d'

BCD
a b c d c+d b(c+d)

Excess-3
w x y z

0 0 0 0 0 0 0 0 1 1

0 0 0 1 1 0 0 1 0 0

0 0 1 0 1 0 0 1 0 1

0 0 1 1 1 0 0 1 1 0

0 1 0 0 0 0 0 1 1 1

0 1 0 1 1 1 1 0 0 0

0 1 1 0 1 1 1 0 0 1

0 1 1 1 1 1 1 0 1 0

1 0 0 0 0 0 1 0 1 1

1 0 0 1 1 0 1 1 0 0

Truth Table of the

Circuit Diagram

Combinational Circuit Design COE 202 – Digital Logic Design © Muhamed Mudawar – slide 9

BCD to 7-Segment Decoder

❖ Seven-Segment Display:

 Made of Seven segments: light-emitting diodes (LED)

 Found in electronic devices: such as clocks, calculators, etc.

❖ BCD to 7-Segment Decoder

 Accepts as input a BCD decimal digit (0 to 9)

 Generates output to the seven LED segments to display the BCD digit

 Each segment can be turned on or off separately

BCD to

7-Segment

Decoder

A

B

C

D

a
b
c
d
e
f
g

Combinational Circuit Design COE 202 – Digital Logic Design © Muhamed Mudawar – slide 10

Designing a BCD to 7-Segment Decoder

1. Specification:

 Input: 4-bit BCD (A, B, C, D)

 Output: 7-bit (a, b, c, d, e, f, g)

 Display should be OFF for

Non-BCD input codes

2. Formulation

 Done with a truth table

 Output is zero for 1010 to 1111

BCD input

A B C D

7-Segment decoder

a b c d e f g

0 0 0 0 1 1 1 1 1 1 0

0 0 0 1 0 1 1 0 0 0 0

0 0 1 0 1 1 0 1 1 0 1

0 0 1 1 1 1 1 1 0 0 1

0 1 0 0 0 1 1 0 0 1 1

0 1 0 1 1 0 1 1 0 1 1

0 1 1 0 1 0 1 1 1 1 1

0 1 1 1 1 1 1 0 0 0 0

1 0 0 0 1 1 1 1 1 1 1

1 0 0 1 1 1 1 1 0 1 1

1010 to 1111 0 0 0 0 0 0 0

Truth Table

Combinational Circuit Design COE 202 – Digital Logic Design © Muhamed Mudawar – slide 11

Designing a BCD to 7-Segment Decoder

3. Logic Minimization Using K-Maps

1

00 01 11 10

00
𝐴𝐵

𝐶𝐷 K-map for 𝑎

01

11

10 11

1 1

1 1

1

00 01 11 10

00
𝐴𝐵

𝐶𝐷 K-map for 𝑏

01

11

10 11

1

11

1 11

00 01 11 10

00
𝐴𝐵

𝐶𝐷 K-map for 𝑐

01

11

10 11

1

1 1

11

11

𝑎 = 𝐴′𝐶 + 𝐴′𝐵𝐷 + 𝐴𝐵′𝐶′ + 𝐵′𝐶′𝐷′

𝑏 = 𝐴′𝐵′ + 𝐵′𝐶′ + 𝐴′𝐶′𝐷′ + 𝐴′𝐶𝐷

𝑐 = 𝐴′𝐵 + 𝐵′𝐶′ + 𝐴′𝐷

Extracting common terms

Let 𝑇1 = 𝐴′𝐵, 𝑇2 = 𝐵′𝐶′, 𝑇3 = 𝐴′𝐷

Optimized Logic Expressions

𝑎 = 𝐴′𝐶 + 𝑇1 𝐷 + 𝑇2 𝐴 + 𝑇2 𝐷
′

𝑏 = 𝐴′𝐵′ + 𝑇2 + 𝐴′𝐶′𝐷′ + 𝑇3𝐶

𝑐 = 𝑇1 + 𝑇2 + 𝑇3

𝑇1, 𝑇2, 𝑇3 are shared gates

Combinational Circuit Design COE 202 – Digital Logic Design © Muhamed Mudawar – slide 12

Designing a BCD to 7-Segment Decoder

3. Logic Minimization Using K-Maps

00 01 11 10

00
𝐴𝐵

𝐶𝐷 K-map for 𝑑

01

11

10 11

1

1

1 1

1

00 01 11 10

00
𝐴𝐵

𝐶𝐷 K-map for 𝑒

01

11

10 1

1

1

1

00 01 11 10

00
𝐴𝐵

𝐶𝐷 K-map for 𝑓

01

11

10 11

1

1 11

00 01 11 10

00
𝐴𝐵

𝐶𝐷 K-map for 𝑔

01

11

10 11

1 1

1 1

1

Optimized Logic Expressions

𝑑 = 𝑇4 + 𝑇5 + 𝑇6 + 𝑇7 + 𝑇8 𝐷

𝑒 = 𝑇5 + 𝑇7

𝑓 = 𝑇4 + 𝑇5 + 𝑇8 + 𝑇9

𝑔 = 𝑇4 + 𝑇6 + 𝑇8 + 𝑇9

Common AND Terms

➔ Shared Gates

𝑇4 = 𝐴𝐵′𝐶′, 𝑇5 = 𝐵′𝐶′𝐷′

𝑇6 = 𝐴′𝐵′𝐶, 𝑇7 = 𝐴′𝐶𝐷′

𝑇8 = 𝐴′𝐵𝐶′, 𝑇9 = 𝐴′𝐵𝐷′

Combinational Circuit Design COE 202 – Digital Logic Design © Muhamed Mudawar – slide 13

Designing a BCD to 7-Segment Decoder

4. Technology Mapping

Many Common AND terms: 𝑇0 thru 𝑇9
𝑇0 = 𝐴′𝐶, 𝑇1 = 𝐴′𝐵, 𝑇2 = 𝐵′𝐶′

𝑇3 = 𝐴′𝐷, 𝑇4 = 𝐴𝐵′𝐶′, 𝑇5 = 𝐵′𝐶′𝐷′

𝑇6 = 𝐴′𝐵′𝐶, 𝑇7 = 𝐴′𝐶𝐷′

𝑇8 = 𝐴′𝐵𝐶′, 𝑇9 = 𝐴′𝐵𝐷′

Optimized Logic Expressions

𝑎 = 𝑇0 + 𝑇1 𝐷 + 𝑇4 + 𝑇5
𝑏 = 𝐴′𝐵′ + 𝑇2 + 𝐴′𝐶′𝐷′ + 𝑇3𝐶

𝑐 = 𝑇1 + 𝑇2 + 𝑇3
𝑑 = 𝑇4 + 𝑇5 + 𝑇6 + 𝑇7 + 𝑇8 𝐷

𝑒 = 𝑇5 + 𝑇7
𝑓 = 𝑇4 + 𝑇5 + 𝑇8 + 𝑇9
𝑔 = 𝑇4 + 𝑇6 + 𝑇8 + 𝑇9

Showing only

Outputs e, f, g

T4

T2

T5

A

B'
C'

D'

T0

T6

T7

B'

A'
C

D'

T8

T1

T9

C'

A'
B

D'

e f g

Combinational Circuit Design COE 202 – Digital Logic Design © Muhamed Mudawar – slide 14

Verification Methods

❖Manual Logic Analysis

 Find the logic expressions and truth table of the final circuit

 Compare the final circuit truth table against the specified truth table

 Compare the circuit output expressions against the specified expressions

 Tedious for large designs + Human Errors

❖ Simulation

 Simulate the final circuit, possibly written in HDL (such as Verilog)

 Write a test bench that automates the verification process

 Generate test cases for ALL possible inputs (exhaustive testing)

 Verify the output correctness for ALL input test cases

 Exhaustive testing can be very time consuming for many inputs

Combinational Circuit Design COE 202 – Digital Logic Design © Muhamed Mudawar – slide 15

Modeling the 7-Segment Decoder

// Module BCD_to_7Segment: Modeled using continuous assignment

module BCD_to_7Segment (input A,B,C,D, output a,b,c,d,e,f,g);

wire T0, T1, T2, T3, T4, T5, T6, T7, T8, T9;

assign T0=~A&C; assign T1=~A&B; assign T2=~B&~C;

assign T3=~A&D; assign T4=T2&A; assign T5=T2&~D;

assign T6=T0&~B; assign T7=T0&~D; assign T8=T1&~C;

assign T9=T1&~D;

assign a = T0 | T1&D | T4 | T5;

assign b = ~A&~B | T2 | ~A&~C&~D | T3&C;

assign c = T1 | T2 | T3;

assign d = T4 | T5 | T6 | T7 | T8&D;

assign e = T5 | T7;

assign f = T4 | T5 | T8 | T9;

assign g = T4 | T6 | T8 | T9;

endmodule

assign statements can

appear in any order

Combinational Circuit Design COE 202 – Digital Logic Design © Muhamed Mudawar – slide 16

Testing the BCD to 7-Segment Decoder

module Test_BCD_to_7Segment; // No need for Ports

reg A, B, C, D; // variable inputs

wire a, b, c, d, e, f, g; // wire outputs

// Instantiate the module to be tested

BCD_to_7Segment BCD_7Seg (A, B, C, D, a, b, c, d, e, f, g);

initial begin // initial block

A=0; B=0; C=0; D=0; // at t=0

#200 $finish; // at t=200 finish simulation

end // end of initial block

always #10 D=~D; // invert D every 10 time units

always #20 C=~C; // invert C every 20 time units

always #40 B=~B; // invert B every 40 time units

always #80 A=~A; // invert A every 80 time units

endmodule

Combinational Circuit Design COE 202 – Digital Logic Design © Muhamed Mudawar – slide 17

The initial and always Blocks

❖ There are two types of procedural blocks in Verilog

1. The initial block

 Executes the enclosed statement(s) once

2. The always block

 Executes the enclosed statement(s) repeatedly until simulation terminates

❖ The body of the initial and always blocks is procedural

 Can enclose one or more procedural statements

 Procedural statements surrounded by begin … end execute sequentially

 #delay is used to delay the execution of the procedural statement

❖ Procedural blocks can appear in any order inside a module

❖Multiple procedural blocks run in parallel inside the simulator

Combinational Circuit Design COE 202 – Digital Logic Design © Muhamed Mudawar – slide 18

Simulator Waveforms

All sixteen input test cases of A, B, C, D are generated between t=0

and t=160ns. Verify that outputs a to g match the truth table.

Combinational Circuit Design COE 202 – Digital Logic Design © Muhamed Mudawar – slide 19

Hierarchical Design

❖Why Hierarchical Design?

To simplify the implementation of a complex circuit

❖What is Hierarchical Design?

Decompose a complex circuit into smaller pieces called blocks

Decompose each block into even smaller blocks

Repeat as necessary until the blocks are small enough

Any block not decomposed is called a primitive block

The hierarchy is a tree of blocks at different levels

❖ The blocks are verified and well-document

❖ They are placed in a library for future use

Combinational Circuit Design COE 202 – Digital Logic Design © Muhamed Mudawar – slide 20

Example of Hierarchical Design

❖ Top Level: 16-input odd function: 16 inputs, one output

 Implemented using Five 4-input odd functions

❖ Second Level: 4-input odd function that uses three XOR gates

16-Input

Odd

Function

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

z

4-Input

Odd

Function

z

x0

x1

x2

x3

4-Input

Odd

Function

z

x0

x1

x2

x3

4-Input

Odd

Function

z

x0

x1

x2

x3

x0

x1

x2

x3

4-Input

Odd

Function

z

x0

x1

x2

x3

4-Input

Odd

Function

z

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

z

x0

x1

x2

x3

z

Hierarchical Design

typically includes

blocks of different

functions and sizes

Combinational Circuit Design COE 202 – Digital Logic Design © Muhamed Mudawar – slide 21

Top-Down versus Bottom-Up Design

❖ A top-down design proceeds from a high-level

specification to a more and more detailed design by

decomposition and successive refinement

❖ A bottom-up design starts with detailed primitive

blocks and combines them into larger and more

complex functional blocks

❖ Design usually proceeds top-down to a known set of

building blocks, ranging from complete processors to

primitive logic gates

Combinational Circuit Design COE 202 – Digital Logic Design © Muhamed Mudawar – slide 22

Hierarchical Design in Verilog
// Module Odd_4: 4-input Odd function uses three xor gates

module Odd_4 (input [0:3] x, output z);

wire [0:1] w;

xor g1(w[0], x[0], x[1]);

xor g2(w[1], x[2], x[3]);

xor g3(z, w[0], w[1]);

endmodule

// Module Odd_16: 16-input Odd function

module Odd_16 (input [0:15] x, output z);

wire [0:3] w;

Odd_4 block0 (x[0:3], w[0]);

Odd_4 block1 (x[4:7], w[1]);

Odd_4 block2 (x[8:11], w[2]);

Odd_4 block3 (x[12:15], w[3]);

Odd_4 block4 (w[0:3], z);

endmodule

Five instances of

the Odd_4 module

Combinational Circuit Design COE 202 – Digital Logic Design © Muhamed Mudawar – slide 23

Bit Vectors in Verilog

❖ A Bit Vector is multi-bit declaration that uses a single name

❖ A Bit Vector is specified as a Range [msb:lsb]

❖msb is most-significant bit and lsb is least-significant bit

❖ Examples:

input [0:15] x; // x is a 16-bit input vector

wire [0:3] w; // Bit 0 is most-significant bit

reg [7:0] a; // Bit 7 is most-significant bit

❖ Bit select: w[1] is bit 1 of vector w

❖ Part select: x[8:11] is a 4-bit select of x with range [8:11]

❖ The part select range must be consistent with vector declaration

Combinational Circuit Design COE 202 – Digital Logic Design © Muhamed Mudawar – slide 24

Testing Hierarchical Design

❖ Exhaustive testing can be very time consuming (or impossible)

 For a 16-bit input, there are 216 = 65,536 test cases (combinations)

 For a 32-bit input, there are 232 = 4,294,967,296 test cases

 For a 64-bit input, there are 264 = 18,446,744,073,709,551,616 test cases!

❖ Testing a hierarchical design requires a different strategy

❖ Test each block in the hierarchy separately

 For smaller blocks, exhaustive testing can be done

 It is easier to detect errors in smaller blocks before testing complete circuit

❖ Test the top-level design by applying selected test inputs

❖Make sure that the test inputs exercise all parts of the circuit

Combinational Circuit Design COE 202 – Digital Logic Design © Muhamed Mudawar – slide 25

Iterative Design

❖ Using identical copies of a smaller circuit to build a large circuit

❖ Example: Building a 4-bit adder using 4 copies of a full-adder

❖ The cell (iterative block) is a full adder

Adds 3 bits: ai, bi, ci, Computes: Sum si and Carry-out ci+1

❖ Carry-out of cell i becomes carry-in to cell (i +1)

c0Full

Adder

a0 b0

s0

c1Full

Adder

a1 b1

s1

c2Full

Adder

a2 b2

s2

c3Full

Adder

a3 b3

s3

c4 ciFull

Adder

ai bi

si

ci+1

Combinational Circuit Design COE 202 – Digital Logic Design © Muhamed Mudawar – slide 26

Full Adder

❖ Full adder adds 3 bits: a, b, and c

❖ Two output bits:

1. Carry bit: cout

2. Sum bit: sum

❖ Sum bit is 1 if the number of 1's in

the input is odd (odd function)

sum = (a  b)  c

❖ Carry bit is 1 if the number of 1's in

the input is 2 or 3

cout = a·b + (a  b)·c

a b c cout sum

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Truth Table

Combinational Circuit Design COE 202 – Digital Logic Design © Muhamed Mudawar – slide 27

Full Adder Module (Gate-Level Description)

module Full_Adder(input a, b, c, output cout, sum);

wire w1, w2, w3;

and (w1, a, b);

xor (w2, a, b);

and (w3, w2, c);

xor (sum, w2, c);

or (cout, w1, w3);

endmodule

a b c

sumcout

w1

w2w3

Full_Adder

Combinational Circuit Design COE 202 – Digital Logic Design © Muhamed Mudawar – slide 28

16-Bit Adder with Array Instantiation

// Input ports: 16-bit a and b, 1-bit cin (carry input)

// Output ports: 16-bit sum, 1-bit cout (carry output)

module Adder_16 (input [15:0] a, b, input cin,

output [15:0] sum, output cout);

wire [16:0] c; // carry bits

assign c[0] = cin; // carry input

assign cout = c[16]; // carry output

// Instantiate an array of 16 Full Adders

// Each instance [i] is connected to bit select [i]

Full_Adder adder [15:0] (a[15:0], b[15:0], c[15:0],

c[16:1], sum[15:0]);

endmodule

Array Instantiation of identical modules by a single statement

Combinational Circuit Design COE 202 – Digital Logic Design © Muhamed Mudawar – slide 29

16-Bit Adder with Continuous Assignment

// Input ports: 16-bit a and b, 1-bit cin (carry input)

// Output ports: 16-bit sum, 1-bit cout (carry output)

module Adder_16b (input [15:0] a, b, input cin,

output [15:0] sum, output cout);

wire [16:0] c; // carry bits

assign c[0] = cin; // carry input

assign cout = c[16]; // carry output

// assignment of 16-bit vectors

assign sum[15:0] = (a[15:0] ^ b[15:0]) ^ c[15:0];

assign c[16:1] = (a[15:0] & b[15:0]) |

(a[15:0] ^ b[15:0]) & c[15:0];

endmodule

Combinational Circuit Design COE 202 – Digital Logic Design © Muhamed Mudawar – slide 30

Testing the 16-bit Adder

❖ Exhaustive testing: 216 × 216 × 2 = 8,589,934,592 test cases

❖ Let us choose only: 3 × 3 × 2 = 18 test cases

❖ Input test cases for a[15:0] = 'h158A, 'h52AF, 'hB903

Chosen randomly with values shown in hexadecimal

'h158A (hexadecimal) = 'b0001_0101_1000_1010 (binary)

Underscores are ignored (used to enhance readability)

❖ Input test cases for b[15:0] = 'h7095, 'h9A4E, 'hC6BD

Also chosen randomly with values shown in hexadecimal

Radix symbol: 'b (binary), 'o (octal), 'd (decimal), 'h (hex)

❖ Input test cases for cin = 0, 1

Combinational Circuit Design COE 202 – Digital Logic Design © Muhamed Mudawar – slide 31

Writing a Test bench for the 16-bit Adder
module Test_Adder_16; // Test bench for Adder_16

reg [15:0] A, B; reg Cin; // Data and Carry inputs
wire [15:0] Sum; wire Cout; // Sum and Carry outputs

Adder_16 Test (A, B, Cin, Sum, Cout); // Instantiate 16-bit adder

initial begin
A='h158A; B='h7095; Cin=0; // Initialize A, B, Cin
#10 Cin=1; // t=10, Change Cin
#10 B='h9A4E; Cin=0; // t=20, Change B and Cin
#10 Cin=1; // t=30, Change Cin
#10 B='hC6BD; Cin=0; // t=40, Change B and Cin
#10 Cin=1; // t=50, Change Cin
#10 A='h52AF; B='h7095; Cin=0; // t=60, Change A, B and Cin
#10 Cin=1; // t=70, Change Cin
#10 B='h9A4E; Cin=0; // t=80, Change B and Cin
. . . // more test cases
#10 $finish; // End simulation

end

endmodule

Combinational Circuit Design COE 202 – Digital Logic Design © Muhamed Mudawar – slide 32

Generating Test Cases in parallel with always
module Test_Adder_16; // Test bench for Adder_16

reg [15:0] A, B; reg Cin; // Data and Carry inputs
wire [15:0] Sum; wire Cout; // Sum and Carry outputs

Adder_16 Test (A, B, Cin, Sum, Cout); // Instantiate 16-bit adder

initial begin
A='h158A; B='h7095; Cin=0; // Initialize A, B, Cin
#200 $finish; // At t=200 end simulation

end

always begin // Change A every 60 ns
#60 A='h52AF; #60 A='hB903; #60 A='h158A;

end

always begin // Change B every 20 ns
#20 B='h9A4E; #20 B='hC6BD; #20 B='h7095;

end

always #10 Cin = ~Cin; // Invert Cin every 10 ns

endmodule

Combinational Circuit Design COE 202 – Digital Logic Design © Muhamed Mudawar – slide 33

Simulator Waveforms

❖ The values of A, B, and Sum are shown in hexadecimal

Can change the radix to binary, octal, and decimal

❖ The values of Sum and Cout can be verified easily

❖ All 18 test cases of A, B, and Cin are generated (t=0 to 180 ns)

