Introduction to Verilog

COE 202
Digital Logic Design

Dr. Muhamed Mudawar

King Fahd University of Petroleum and Minerals

Presentation Outline

*» Hardware Description Language

¢ Logic Simulation versus Synthesis

*+ Verilog Module

*» Gate-Level Description and Gate Delays
“+ Module Instantiation

*» Continuous Assignment

“* Writing a Simple Test Bench

Introduction to Verilog COE 202 - Digital Logic Design © Muhamed Mudawar — slide 2

Hardware Description Language

¢ Describes the hardware of digital systems in a textual form

¢ Describes the hardware structures and behavior

¢ Can represent logic diagrams, expressions, and complex circuits
“* NOT a software programming language

“ Two standard hardware description languages (HDLS)

1. Verilog (will be studied in this course)

2. VHDL (harder to learn than Verilog)

Introduction to Verilog COE 202 - Digital Logic Design © Muhamed Mudawar — slide 3

Verilog = "Verifying Logic"
¢ Invented as a simulation language in 1984 by Phil Moorby
¢ Opened to public in 1990 by Cadence Design Systems
*» Became an IEEE standard in 1995 (Verilog-95)
¢ Revised and upgraded in 2001 (Verilog-2001)

** Revised also in 2005 (Verilog-2005)

“* Verilog allows designers to describe hardware at different levels

< Can describe anything from a single gate to a full computer system

*» Verilog is supported by the majority of electronic design tools

¢ Verilog can be used for logic simulation and synthesis

Introduction to Verilog COE 202 - Digital Logic Design © Muhamed Mudawar — slide 4

Logic Simulation

*» Logic simulator interprets the Verilog (HDL) description
¢ Produces timing diagrams
¢ Predicts how the hardware will behave before it is fabricated

*» Simulation allows the detection of functional errors in a design

< Without having to physically implement the circuit

¢ Errors detected during the simulation can be corrected

< By modifying the appropriate statements in the Verilog description
s Simulating and verifying a design requires a test bench

¢ The test bench is also written in Verilog

Introduction to Verilog COE 202 - Digital Logic Design © Muhamed Mudawar — slide 5

Logic Synthesis

¢ Logic synthesis is similar to translating a program
“* However, the output of logic synthesis is a digital circuit

* A digital circuit modeled in Verilog can be translated into a list
of components and their interconnections, called netlist

“ Synthesis can be used to fabricate an integrated circuit

*» Synthesis can also target a Field Programmable Gate Array
< An FPGA chip can be configured to implement a digital circuit
< The digital circuit can also be modified by reconfiguring the FPGA
¢ Logic simulation and synthesis are automated

< Using special software, called Electronic Design Automation (EDA) tools

Introduction to Verilog COE 202 - Digital Logic Design © Muhamed Mudawar — slide 6

Verilog Module
¢ A digital circuit is described in Verilog as a set of modules
*+ A module is the design entity in Verilog
*» A module is declared using the module keyword
“* A module is terminated using the endmodule keyword
*+ A module has a name and a list of input and output ports
*» A module is described by a group of statements

+» The statements can describe the module structure or behavior

Introduction to Verilog COE 202 - Digital Logic Design © Muhamed Mudawar — slide 7

Example of a Module in Verilog

// Description of a simple circuit
module simple circuit(input A, B, C, output x, y);
wire w;

gl
and gl(w, A, B);) A 1\ W g3
not g2(y, C); _ Order is not BD>— X
3() important g2
Or‘ g X) W) y ;
/ C Dy
endmodule [

The input keyword defines the input ports: A, B, C

The output keyword defines the output ports: x, y

The wire keyword defines an internal connection: w

The structure of simple circuit is defined by three gates: and, not, or

Each gate has an optional name, followed by the gate output then inputs

Introduction to Verilog COE 202 - Digital Logic Design © Muhamed Mudawar — slide 8

Verilog Syntax

“* Keywords: have special meaning in Verilog
Many keywords: module, input, output, wire, and, or, etc.
Keywords cannot be used as identifiers

“» Identifiers: are user-defined names for modules, ports, etc.
Verilog is case-sensitive: A and a are different names

“ Comments: can be specified in two ways (similar to C)
< Single-line comments begin with // and terminate at end of line

< Multi-line comments are enclosed between /* and */
“* White space: space, tab, newline can be used freely in Verilog

< Operators: operate on variables (similarto C: ~ & | ~ + - etc.)

Introduction to Verilog COE 202 - Digital Logic Design © Muhamed Mudawar — slide 9

Basic Gates

¢ Basic gates: and, nand, or, nor, xor, xnor, not, buf

¢ Verilog define these gates as keywords

s Each gate has an optional name

*» Each gate has an output (listed first) and one or more inputs

*» The not and buf gates can have only one input

s Examples:
and gl(x,a,b); // 2-input and gate named gl
or g2(y,a,b,c); // 3-input or gate named g2

nor g3(z,a,b,c,d); // 4-input nor gate named g3
f /I\ (N N J

name output inputs

Introduction to Verilog COE 202 - Digital Logic Design © Muhamed Mudawar — slide 10

Modeling a Half Adder

A half adder adds two bits: a and b Truth Table
Two output bits: a b cout sum
_ (%) % %
1. Carry bit: cout = a - b
01 (% 1
2. Sumbit: sum = a @ b 10 0 1
module Half_Adder(a, b, cout, sum); R 0
input a, b; Verilog-95 ab
output sum, cout; Syntax

and (cout, a, b); Half_Adder !
xor (sum, a, b); '

endmodule
cout sum

Introduction to Verilog COE 202 - Digital Logic Design © Muhamed Mudawar — slide 11

Full Adder

+»* Full adder adds 3 bits: a, b, and ¢ Truth Table

“ Two output bits: cout sum

1. Carry bit: cout 0 0

2. Sum bit; sum

s* Sum bit i1s 1 if the number of 1's In
the input is odd (odd function)

sum= (a®b) ®c

*» Carry bitis 1 if the number of 1's Iin
the input is 2 or 3

R R R =R 0 OO0 OO0 O v
R R &0 O R B O O O

C
(7
1
(7
1
(7
1
(7
1

PR B P ® P ® ®
R ® ® R ® R B

cout=a-b+ (a®b)-c

Introduction to Verilog COE 202 - Digital Logic Design © Muhamed Mudawar — slide 12

Full Adder Module

module Full Adder(input a, b, c, output cout, sum);

wire wl, w2, w3; abc
Full Adder UUU
and (wl, a, b); I R o
Wl e ;
xor (w2, a, b); E ~——

and (w3, w2, c);

xor (sum, w2, C);

or (cout, wl, w3)

endmodule

cout sum

Introduction to Verilog COE 202 - Digital Logic Design © Muhamed Mudawar — slide 13

Gate Delays

“* When simulating Verilog modules, it is sometime necessary to

specify the delay of gates using the # symbol

“* The “timescale directive specifies the time unit and precision

timescale is also used as a simulator option

, Time unit = 1ns =109 sec
“timescale 1ns/100ps
' Precision = 100ps = 0.1ns

module Half Adder(input a, b, output cout, sum);
and #2 (cout, a, b); // gate delay = 2ns
xor #3 (sum, a, b); // gate delay = 3ns

endmodule

Introduction to Verilog COE 202 - Digital Logic Design © Muhamed Mudawar — slide 14

Full Adder Module with Gate Delay

module Full Adder(input a, b, c, output cout, sum);

wire wl, w2, w3; abc
Full Adder UUU
and #2 (wl, a, b); I R "
wl s
xor #3 (w2, a, b); E ~——

and #2 (w3, w2, c);

xor #3 (sum, w2, C);

or #2 (cout, wl, w3)

endmodule

cout sum

Introduction to Verilog COE 202 - Digital Logic Design © Muhamed Mudawar — slide 15

Continuous Assignment

** The assign statement defines continuous assignment
* Syntax: assign name = expression;
*» Assigns expression value to name (output port or wire)
“ Examples:
assign x = a&b | c&~d; // x = ab + cd'
assign y = (al|b) & ~c; // y = (a+b)c'
assign z = ~(a|b]|c); // z = (a+b+c)'
assign sum = (a”b) ~ c; // sum = (a @ b) @ c
< Verilog uses the bit operators: ~ (not), & (and), | (or), ~ (xor)

<+ Operator precedence: (parentheses), ~ , & , | ,

Introduction to Verilog COE 202 - Digital Logic Design © Muhamed Mudawar — slide 16

Continuous Assignment with Delay

Syntax: assign #delay name = expression;
The optional #delay specifies the delay of the assignment
To have a delay similar to the gate implementation

module Full Adder (input a, b, c, output cout, sum);
assign #6 sum = (a”b)”c; // delay = 6
assign #7 cout = a&b | (a”b)&c; // delay = 7
endmodule

The order of the assign statements does not matter
They are sensitive to inputs (a, b, ¢) that appear in the expressions

Any change in value of the input ports (a, b, c¢) will re-evaluate the
outputs sum and cout of the assign statements

Introduction to Verilog COE 202 - Digital Logic Design © Muhamed Mudawar — slide 17

Test Bench

¢ In order to simulate a circuit, it iIs necessary to apply inputs to the

circuit for the simulator to generate an output response
¢ A test bench is written to verify the correctness of a design
¢ A test bench is written as a Verilog module with no ports
¢ It instantiates the module that should be tested
¢ It provides inputs to the module that should be tested

¢ Test benches can be complex and lengthy, depending on the

complexity of the design

Introduction to Verilog COE 202 - Digital Logic Design © Muhamed Mudawar — slide 18

Example of a Simple Test Bench

module Test Full Adder; // No need for Ports

reg a, b, c;
wire sum, cout;

// variable inputs
// wire outputs

// Instantiate the module to be tested

Full Adder FA (a, b,
initial begin
a=0; b=0; c=0;
#20 a=1; b=1;
#20 a=0; b=0; c=1;
#20 a=1; c=0;
#20 $finish;
end
endmodule

Introduction to Verilog

c, cout, sum);
// initial block
// at t=0 time units
// at t=20 time units
// at t=40 time units
// at t=60 time units
// at t=80 finish simulation
// end of initial block

COE 202 - Digital Logic Design © Muhamed Mudawar — slide 19

Difference Between wire and reg

Verilog has two major data types

1. Net data types: are connections between parts of a design

2. Variable data types: can store data values
‘*The wire Is a net data type
<> A wire cannot store a value

<> Its value is determined by its driver, such as a gate, a module
output, or continuous assignment

“*The reg is a variable data type
<> Can store a value from one assignment to the next

<> Used only in procedural blocks, such as the initial block

Introduction to Verilog COE 202 - Digital Logic Design © Muhamed Mudawar — slide 20

The initial Statement

*+ The initial statement is a procedural block of statements

¢ The body of the initial statement surrounded by begin-end is
sequential, like a sequential block in a programming language

¢+ Procedural assignments are used inside the initial block

*+ Procedural assignment statements are executed in sequence
Syntax: #delay variable = expression;

¢ Procedural assignment statements can be delayed

*»+ The optional #delay indicates that the variable (of reg type)
should be updated after the time delay

Introduction to Verilog COE 202 - Digital Logic Design © Muhamed Mudawar — slide 21

Running the Simulator

¥ a 1 | | | | =
\> b] L | |
Q C 0] | |
$oout |St0 | ——— I

b \> sUm 511 EE— |

Now |80 ns | g 10 ns 20 ns 30 ns 40 ns 50 ns 60 ns 70 ns 80

=Irsor 1 |65 ns |55 ns
L DLE | *

Examine the waveforms to verify the correctness of your design
At t = 0 ns, the values of cout and sum are unknown (shown in red)

The cout and sum signals are delayed by 7ns and 6ns, respectively

Introduction to Verilog COE 202 - Digital Logic Design © Muhamed Mudawar — slide 22

Modular Design: 4-bit Adder

* Uses identical copies of a full adder to build a large adder
* Simple to implement: the cell (iterative block) is a full adder
¢ Carry-out of cell i becomes carry-in to cell (i+1)

*» Can be extended to add any number of bits

a; by a, b, a,; b, a, Dby
! ! ! !
Ca | Full | .S | Full | S | Full [(S| Full | S
Adder Adder Adder Adder
J J J J
S3 So Sq So

Introduction to Verilog COE 202 - Digital Logic Design © Muhamed Mudawar — slide 23

4-bit Adder using Module Instantiation

module Adder4 (input a0, al, a2, a3, bo, bl, b2, b3, co,
output s9, sl1, s2, s3, c4
)
wire cl1, c2, c3; // Internal wires for the carries
// Instantiate Four Full Adders: FAO, FAl, FA2, FA3
// The ports are matched by position
Full Adder FAO@ (a0, bo, c@, cl, s0);
Full Adder FAl1 (al, bl, cl1, c2, sl);
Full Adder FA2 (a2, b2, c2, c3, s2);
Full Adder FA3 (a3, b3, c3, c4, s3);
// Can also match the ports by name
// Full Adder FA© (.a(a@), .b(bo), .c(cO), .cout(cl), .sum(sO));
endmodule

Introduction to Verilog COE 202 - Digital Logic Design © Muhamed Mudawar — slide 24

Module Instantiation

¢ Module declarations are like templates

“+ Module instantiation is like creating an object

“* Modules are instantiated inside other modules at different levels
¢ The top-level module does not require instantiation

*+ Module instantiation defines the structure of a digital design

¢ It produces module instances at different levels

¢ The ports of a module instance must match those declared

*» The matching of the ports can be done by name or by position

Introduction to Verilog COE 202 - Digital Logic Design © Muhamed Mudawar — slide 25

Writing a Test Bench for the 4-bit Adder

module Adder4 TestBench; // No Ports
reg ao, al, a2, a3; // variable inputs
reg bo, bl, b2, b3, cin; // variable inputs
wire s0, sl1l, s2, s3, cout; // wire outputs

// Instantiate the module to be tested

Adder4 Add4 (a@,al,a2,a3, bo,bl,b2,b3, cin, s0@,s1,s2,s3, cout);

initial begin // initial block
a0=0;al1=0;a2=0;a3=0; // at t=0
bo=0;b1=0;b2=0;b3=0;cin=0; // at t=0
#100 al=1;a3=1;b2=1;b3=1; // at t=100
#100 ab=1;al1=0;bl=1;b2=0; // at t=200
#100 a2=1;a3=0;cin=1; // at t=300
#100 $finish; // at t=400 finish simulation

end // end of initial block

endmodule

Introduction to Verilog COE 202 - Digital Logic Design

© Muhamed Mudawar — slide 26

