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Presentation Outline

� Boolean Algebra

� Boolean Functions and Truth Tables

� DeMorgan's Theorem

� Algebraic manipulation and expression simplification

� Logic gates and logic diagrams

� Minterms and Maxterms

� Sum-Of-Products and Product-Of-Sums
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Boolean Algebra

� Introduced by George Boole in 1854

� Two-valued Boolean algebra is also called switching algebra

� A set of two values: B = {0, 1}

� Three basic operations: AND, OR, and NOT

� The AND operator is denoted by a dot (·)

� � · � or �� is read: � AND �
� The OR operator is denoted by a plus (+)

� � + � is read: � OR �
� The NOT operator is denoted by (') or an overbar (¯).

� �′ or � is the complement of �



Boolean Algebra and Logic Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 4

Postulates of Boolean Algebra

1. Closure: the result of any Boolean operation is in B = {0, 1}

2. Identity element with respect to + is 0: � + 0 = 0 + � = �
Identity element with respect to · is 1: � · 1 = 1 · � = �

3. Commutative with respect to +: � + � = � + �
Commutative with respect to ·: � · �	 = 	� · �

4. · is distributive over +: � · (� + �) = (� · �) + (� · �)
+ is distributive over ·: � + (� · �) = (� + �) · (� + �)

5. For every � in B, there exists �′ in B (called complement of �) 
such that: � + �′ = 1 and � · �′ = 0
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AND, OR, and NOT Operators

� The following tables define � · �, � + �, and �′
� � · � is the AND operator

� � + �	is the OR operator

� �′ is the NOT operator

x y x·y

0 0 0

0 1 0

1 0 0

1 1 1

x y x+y

0 0 0

0 1 1

1 0 1

1 1 1

x x'

0 1

1 0
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Boolean Functions
� Boolean functions are described by expressions that consist of:

� Boolean variables, such as: �, �, etc.

� Boolean constants: 0 and 1

� Boolean operators: AND (·), OR (+), NOT (')

� Parentheses, which can be nested

� Example: 
 = � � + ���
� The dot operator is implicit and need not be written

� Operator precedence: to avoid ambiguity in expressions

� Expressions within parentheses should be evaluated first

� The NOT (') operator should be evaluated second

� The AND (·) operator should be evaluated third

� The OR (+) operator should be evaluated last
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Truth Table
� A truth table can represent a Boolean function

� List all possible combinations of 0's and 1's assigned to variables

� If n variables then 2n rows

� Example: Truth table for 
 = ��� + ���
x  y  z y' xy' x' x'z f = xy'+ x'z

0  0  0 1 0 1 0 0

0  0  1 1 0 1 1 1

0  1  0 0 0 1 0 0

0  1  1 0 0 1 1 1

1  0  0 1 1 0 0 1

1  0 1 1 1 0 0 1

1  1  0 0 0 0 0 0

1  1  1 0 0 0 0 0



Boolean Algebra and Logic Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 8

DeMorgan's Theorem

� (� + �)′	 = 	�′	�′
� (�	�)′	 = 	�′	 + 	�′
x y x' y' x+y (x+y)' x'y' x y (x y)' x'+ y'

0 0 1 1 0 1 1 0 1 1

0 1 1 0 1 0 0 0 1 1

1 0 0 1 1 0 0 0 1 1

1 1 0 0 1 0 0 1 0 0

Can be verified
Using a Truth Table

Identical Identical

� Generalized DeMorgan's Theorem:

� �� + �� +⋯+ �� � = ��� ∙ ��� ∙ 	⋯	∙ 	���
� �� ∙ �� ∙ ⋯ ∙ �� � = ��� + ��� +	⋯+	���
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Complementing Boolean Functions

� What is the complement of 
 = �′��′ + ��′�′ ?
� Use DeMorgan's Theorem:

� Complement each variable and constant

� Interchange AND and OR operators

� So, what is the complement of 
 = ����� + ����� ?

Answer: 
′ = (� + �� + �)(�� + � + �)
� Example 2: Complement � = (�′ + ��)�′ + �
� Answer: �′ = (�(�′ + �′) + �)�′



Boolean Algebra and Logic Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 10

Algebraic Manipulation of Expressions

� The objective is to acquire skills in manipulating Boolean 

expressions, to transform them into simpler form.

� Example 1: prove � + �� = � (absorption theorem)

� Proof: � + �� = � · 1 + �� � · 1 = �
= � · (1 + �) Distributive · over +

= � · 1 = � (1 + �) = 1
� Example 2: prove � + �′� = � + � (simplification theorem)

� Proof: � + �′� = (� + �′)(� + �) Distributive + over ·

= 1 · (� + �) (� + �′) = 1
= � + �
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Consensus Theorem

� Prove that: �� + �′� + ��	 = �� + �′� (consensus theorem)

� Proof: �� + ��� + ��	
= �� + �′� + 1 · �� �� = 1 · ��
= �� + �′� + (� + �′)�� 1 = (� + �′)
= �� + �′� + ��� + �′�� Distributive · over +

= �� + ��� + �′� + �′�� Associative commutative +

= �� · 1 + ��� + �′� · 1 + �′�� �� = �� · 1, 	 ���� = ����
= ��(1 + �) + �′�(1 + �) Distributive · over +

= �� · 1 + �′� · 1 1 + � = 1, 	1 + � = 1
= �� + �′� �� · 1 = ��, 	�′� · 1 = �′�
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Summary of Boolean Algebra

Property Dual Property

Identity � + 0 = � � · 1 = �
Complement � + �′ = 1 � · �′ = 0
Null � + 1 = 1 � · 0 = 0
Idempotence � + � = � � · � = �
Involution (�′)′ = �
Commutative � + �	 = 	� + � �	�	 = 	�	�
Associative (� + �) + �	 = � + (� + �) �	� 	�	 = �	(�	�)
Distributive �	(� + �) 	= �� + �� � + ��	 = (� + �)(� + �)
Absorption � + ��	 = 	� �(� + �) 	= 	�
Simplification � + ���	 = 	� + � �(�′ + �) 	= 	��
De Morgan (� + �)′	 = 	�′	�′ �	� � = �� + �′
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Duality Principle

� The dual of a Boolean expression can be obtained by:

� Interchanging AND (·) and OR (+) operators

� Interchanging 0's and 1's

� Example: the dual of �(� + �′) is � + ��′
� The complement operator does not change

� The properties of Boolean algebra appear in dual pairs

� If a property is proven to be true then its dual is also true

Property Dual Property

Identity � + 0 = � � · 1 = �
Complement � + �′ = 1 � · �′ = 0
Distributive �	(� + �) 	= �� + �� � + ��	 = (� + �)(� + �)
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Expression Simplification

� Using Boolean algebra to simplify expressions

� Expression should contain the smallest number of literals

� A literal is a variable that may or may not be complemented

� Example: simplify �� + �′�� + �′�� + �′��′ + ����
� Solution: �� + �′�� + �′�� + �′��′ + ���� (15 literals)

= �� + ���� + �′�� + �′��′ + �′�� (15 literals)

= �� + ��(��) + �′�(� + �′) + �′�� (13 literals)

= �� + �′� + �′�� (7 literals)

= �� + ��′� + �′� (7 literals)

= �(� + �′�) + �′� (6 literals)

= �(� + �) + �′� (5 literals only)
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Importance of Boolean Algebra

� Our objective is to learn how to design digital circuits

� These circuits use signals with two possible values

� Logic 0 is a low voltage signal (around 0 volts)

� Logic 1 is a high voltage signal (e.g. 5 or 3.3 volts)

� The physical value of a signal is the actual voltage it carries, 

while its logic value is either 0 (low) or 1 (high)  

� Having only two logic values (0 and 1) simplifies the 

implementation of the digital circuit
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Next . . .

� Boolean Algebra

� Boolean Functions and Truth Tables

� DeMorgan's Theorem

� Algebraic manipulation and expression simplification

� Logic gates and logic diagrams

� Minterms and Maxterms

� Sum-Of-Products and Product-Of-Sums
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Logic Gates and Symbols

�
� � · �

AND gate

�
� � + �

OR gate

�′�

NOT gate (inverter)

� In the earliest computers, relays were used as mechanical 
switches controlled by electricity (coils)

� Today, tiny transistors are used as electronic switches that 
implement the logic gates (CMOS technology)

AND: Switches in series
logic 0 is open switch

OR: Switches in parallel
logic 0 is open switch

NOT: Switch is normally
closed when x is 0

� � �

�
�′
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Truth Table and Logic Diagram

� Given the following logic function: 
 = �(�′ + �)
� Draw the corresponding truth table and logic diagram

Truth Table

x y z y'+ z f = x(y'+ z)

0 0 0 1 0

0 0 1 1 0

0 1 0 0 0

0 1 1 1 0

1 0 0 1 1

1 0 1 1 1

1 1 0 0 0

1 1 1 1 1

Truth Table and Logic Diagram
describe the same function 
.
Truth table is unique, but logic
expression and logic diagram
are not. This gives flexibility in
implementing logic functions.

�

�

 = �(�� + �)

�

Logic Diagram
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Combinational Circuit

� A combinational circuit is a block of logic gates having:

� inputs: �1, �2, … , ��
� outputs: 
1, 
2, … , 
�

� Each output is a function of the input variables

� Each output is determined from present combination of inputs

� Combination circuit performs operation specified by logic gates

…… ……

Combinational

Circuit…… ……� inputs � outputs
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Example of a Simple Combinational Circuit

� The above circuit has:

� Three inputs: �, �, and �
� Two outputs: 
 and �

� What are the logic expressions of 
 and � ?

� Answer: 
 = �� + �′
� = �� + ��

�
� 


�
�



Boolean Algebra and Logic Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 21

From Truth Tables to Gate Implementation

� Given the truth table of a Boolean function 
, how do we 

implement the truth table using logic gates?

Truth Table

x y z f

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

What is the logic expression of 
?

What is the gate implementation of 
?

To answer these questions, we need 

to define Minterms and Maxterms
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Minterms and Maxterms

� Minterms are AND terms with every variable present in either 
true or complement form

� Maxterms are OR terms with every variable present in either 
true or complement form

Minterms and Maxterms for 2 variables � and �

� For n variables, there are 2n Minterms and Maxterms

x y index Minterm Maxterm

0 0 0 �0 = �′�′  0 = � + �
0 1 1 �1 = �′�  1 = � + �′
1 0 2 �2 = ��′  2 = �′ + �
1 1 3 �3 = ��  3 = �′ + �′
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Minterms and Maxterms for 3 Variables

Maxterm  " is the complement of Minterm �"
 " = �"′ and  �" =  "′

x y z index Minterm Maxterm

0 0 0 0 �0 = �����′  0 = � + � + �
0 0 1 1 �1 = �����  1 = � + � + �′
0 1 0 2 �2 = �′��′  2 = � + �′ + �
0 1 1 3 �3 = �′��  3 = � + �� + �′
1 0 0 4 �4 = ����′  4 = �′ + � + �
1 0 1 5 �5 = ����  5 = �′ + � + �′
1 1 0 6 �6 = ���′  6 = �′ + �′ + �
1 1 1 7 �7 = ���  7 = �′ + �� + �′
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Purpose of the Index

� Minterms and Maxterms are designated with an index

� The index for the Minterm or Maxterm, expressed as a 

binary number , is used to determine whether the variable 

is shown in the true or complemented form

� For Minterms:

� ‘1’ means the variable is Not Complemented

� ‘0’ means  the variable is Complemented

� For Maxterms:

� ‘0’ means  the variable is Not Complemented

� ‘1’ means the variable is Complemented
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Sum-Of-Minterms (SOM) Canonical Form

Sum of Minterm entries 

that evaluate to ‘1’

Truth Table

x y z f Minterm

0 0 0 0

0 0 1 0

0 1 0 1 �2 = �′��′
0 1 1 1 �3 = �′��
1 0 0 0

1 0 1 1 �5 = ��′�
1 1 0 0

1 1 1 1 �7 = ���

Focus on the ‘1’ entries 


 = �� +�' +�( +�)


 =* 2, 3, 5, 7


 = ����� + ���� + ���� + ���
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Examples of Sum-Of-Minterms

� 
 �, �, �, � = ∑(2, 3, 6, 10, 11)

� 
 �, �, �, � = �� +�' +�, +��- +���

� 
 �, �, �, � = ������� + ������ + �′���′ + ��′��′ + ��′��

� � �, �, �, � = ∑(0, 1, 12, 15)

� � �, �, �, � = �- +�� +��� +��(

� � �, �, �, � = �����′�� + �����′� + ���′�′ + ����
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Product-Of-Maxterms (POM) Canonical Form

Truth Table

x y z f Maxterm

0 0 0 0  0 = � + � + �
0 0 1 0  1 = � + � + �′
0 1 0 1

0 1 1 1

1 0 0 0  4 = �′ + � + �
1 0 1 1

1 1 0 0  6 = �′ + �′ + �
1 1 1 1

Product of Maxterm entries 

that evaluate to ‘0’

Focus on the ‘0’ entries 


 =  - ·  � ·  . ·  ,


 =/ 0, 1, 4, 6


 = (� + � + �)(� + � + ��)(�� + � + �)(�� + �� + �)
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Examples of Product-Of-Maxterms

� 
 �, �, �, � = ∏(1, 3, 11)

� 
(�, �, �, �) =  � ∙  ' ∙  ��

� 
(�, �, �, �) = � + � + � + �� � + � + �� + �� 	(�� + � + �� + ��)

� � �, �, �, � = ∏(0, 5, 13)

� �(�, �, �, �) =  - ∙  ( ∙  �'

� 
(�, �, �, �) = � + � + � + � � + �� + � + �� 	(�� + �′ + � + ��)
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Conversions between Canonical Forms
� The same Boolean function 
 can be expressed in two ways:

� Sum-of-Minterms 
 = �- +�� +�' +�( +�) = ∑(0, 2, 3, 5, 7)
� Product-of-Maxterms 
 =  � ∙  . ∙  , = ∏(1, 4, 6)

x y z f Minterms Maxterms

0 0 0 1 �0 = ���′�′
0 0 1 0  1 = � + � + �′
0 1 0 1 �2 = ����′
0 1 1 1 �3 = ����
1 0 0 0  4 = �′ + � + �
1 0 1 1 �5 = ��′�
1 1 0 0  6 = �′ + �′ + �
1 1 1 1 �7 = ���

To convert from one canonical 

form to another, interchange 

the symbols ∑∑∑∑ and ∏∏∏∏ and list 

those numbers missing from 

the original form.

Truth Table
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Function Complement

Given a Boolean function 


(�, �, �) =* 0, 2, 3, 5, 7 =/(1, 4, 6)

Then, the complement 
′ of function 


′(�, �, �) =/ 0,2, 3, 5, 7 =*(1, 4, 6)	

x y z f f'

0 0 0 1 0

0 0 1 0 1

0 1 0 1 0

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 0 1

1 1 1 1 0

The complement of a function expressed by a 

Sum of Minterms is the Product of Maxterms 

with the same indices. Interchange the symbols 

∑∑∑∑ and ∏∏∏∏, but keep the same list of indices.

Truth Table
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Summary of Minterms and Maxterms

� There are 2n Minterms and Maxterms for Boolean functions with 
n variables, indexed from 0 to 2n – 1

� Minterms correspond to the 1-entries of the function

� Maxterms correspond to the 0-entries of the function

� Any Boolean function can be expressed as a Sum-of-Minterms 
and as a Product-of-Maxterms

� For a Boolean function, given the list of Minterm indices one can 
determine the list of Maxterms indices (and vice versa)

� The complement of a Sum-of-Minterms is a Product-of-Maxterms 
with the same indices (and vice versa)
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Sum-of-Products and Products-of-Sums

� Canonical forms contain a larger number of literals

� Because the Minterms (and Maxterms) must contain, by definition, all 
the variables either complemented or not

� Another way to express Boolean functions is in standard form

� Two standard forms: Sum-of-Products and Product-of -Sums

� Sum of Products (SOP)

� Boolean expression is the ORing (sum) of AND terms (products)

� Examples: 
1 = ��′ + �� 
2 = � + ��′�
� Products of Sums (POS)

� Boolean expression is the ANDing (product) of OR terms (sums)

� Examples: 
3 = (� + �)(�′ + �′) 
4 = �(�′ + �′ + �)
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Two-Level Gate Implementation


1 = ��′ + ��
�
�′ 
1�
�


2 = � + ��′�
�

�′

2�

� 3-input AND gateAND-OR
implementations


3 = (� + �)(�� + ��)
�
� 
3�′
�′


4 = �(�� + �� + �)
�


4�′
�′
� 3-input OR gateOR-AND

implementations
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Two-Level vs. Three-Level Implementation

� ℎ = �� + �� + �� (6 literals) is a sum-of-products

� ℎ may also be written as: ℎ = �� + �(� + �) (5 literals)

� However, ℎ = �� + �(� + �) is a non-standard form

� ℎ = �� + �(� + �) is not a sum-of-products nor a product-of-sums

2-level implementation
ℎ = �� + �� + ��

3-level implementation
ℎ = �� + �(� + �)

�
�

ℎ�
�
�
� 3-input OR gate

�
�

ℎ�
�
�


