
Boolean Algebra and

Logic Gates

COE 202

Digital Logic Design

Dr. Muhamed Mudawar

King Fahd University of Petroleum and Minerals

Boolean Algebra and Logic Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 2

Presentation Outline

� Boolean Algebra

� Boolean Functions and Truth Tables

� DeMorgan's Theorem

� Algebraic manipulation and expression simplification

� Logic gates and logic diagrams

� Minterms and Maxterms

� Sum-Of-Products and Product-Of-Sums

Boolean Algebra and Logic Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 3

Boolean Algebra

� Introduced by George Boole in 1854

� Two-valued Boolean algebra is also called switching algebra

� A set of two values: B = {0, 1}

� Three basic operations: AND, OR, and NOT

� The AND operator is denoted by a dot (·)

� � · � or �� is read: � AND �
� The OR operator is denoted by a plus (+)

� � + � is read: � OR �
� The NOT operator is denoted by (') or an overbar (¯).

� �′ or � is the complement of �

Boolean Algebra and Logic Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 4

Postulates of Boolean Algebra

1. Closure: the result of any Boolean operation is in B = {0, 1}

2. Identity element with respect to + is 0: � + 0 = 0 + � = �
Identity element with respect to · is 1: � · 1 = 1 · � = �

3. Commutative with respect to +: � + � = � + �
Commutative with respect to ·: � · �	 = 	� · �

4. · is distributive over +: � · (� + �) = (� · �) + (� · �)
+ is distributive over ·: � + (� · �) = (� + �) · (� + �)

5. For every � in B, there exists �′ in B (called complement of �)
such that: � + �′ = 1 and � · �′ = 0

Boolean Algebra and Logic Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 5

AND, OR, and NOT Operators

� The following tables define � · �, � + �, and �′
� � · � is the AND operator

� � + �	is the OR operator

� �′ is the NOT operator

x y x·y

0 0 0

0 1 0

1 0 0

1 1 1

x y x+y

0 0 0

0 1 1

1 0 1

1 1 1

x x'

0 1

1 0

Boolean Algebra and Logic Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 6

Boolean Functions
� Boolean functions are described by expressions that consist of:

� Boolean variables, such as: �, �, etc.

� Boolean constants: 0 and 1

� Boolean operators: AND (·), OR (+), NOT (')

� Parentheses, which can be nested

� Example:
 = � � + ���
� The dot operator is implicit and need not be written

� Operator precedence: to avoid ambiguity in expressions

� Expressions within parentheses should be evaluated first

� The NOT (') operator should be evaluated second

� The AND (·) operator should be evaluated third

� The OR (+) operator should be evaluated last

Boolean Algebra and Logic Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 7

Truth Table
� A truth table can represent a Boolean function

� List all possible combinations of 0's and 1's assigned to variables

� If n variables then 2n rows

� Example: Truth table for
 = ��� + ���
x y z y' xy' x' x'z f = xy'+ x'z

0 0 0 1 0 1 0 0

0 0 1 1 0 1 1 1

0 1 0 0 0 1 0 0

0 1 1 0 0 1 1 1

1 0 0 1 1 0 0 1

1 0 1 1 1 0 0 1

1 1 0 0 0 0 0 0

1 1 1 0 0 0 0 0

Boolean Algebra and Logic Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 8

DeMorgan's Theorem

� (� + �)′	 = 	�′	�′
� (�	�)′	 = 	�′	 + 	�′
x y x' y' x+y (x+y)' x'y' x y (x y)' x'+ y'

0 0 1 1 0 1 1 0 1 1

0 1 1 0 1 0 0 0 1 1

1 0 0 1 1 0 0 0 1 1

1 1 0 0 1 0 0 1 0 0

Can be verified
Using a Truth Table

Identical Identical

� Generalized DeMorgan's Theorem:

� �� + �� +⋯+ �� � = ��� ∙ ��� ∙ 	⋯	∙ 	���
� �� ∙ �� ∙ ⋯ ∙ �� � = ��� + ��� +	⋯+	���

Boolean Algebra and Logic Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 9

Complementing Boolean Functions

� What is the complement of
 = �′��′ + ��′�′ ?
� Use DeMorgan's Theorem:

� Complement each variable and constant

� Interchange AND and OR operators

� So, what is the complement of
 = ����� + ����� ?

Answer:
′ = (� + �� + �)(�� + � + �)
� Example 2: Complement � = (�′ + ��)�′ + �
� Answer: �′ = (�(�′ + �′) + �)�′

Boolean Algebra and Logic Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 10

Algebraic Manipulation of Expressions

� The objective is to acquire skills in manipulating Boolean

expressions, to transform them into simpler form.

� Example 1: prove � + �� = � (absorption theorem)

� Proof: � + �� = � · 1 + �� � · 1 = �
= � · (1 + �) Distributive · over +

= � · 1 = � (1 + �) = 1
� Example 2: prove � + �′� = � + � (simplification theorem)

� Proof: � + �′� = (� + �′)(� + �) Distributive + over ·

= 1 · (� + �) (� + �′) = 1
= � + �

Boolean Algebra and Logic Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 11

Consensus Theorem

� Prove that: �� + �′� + ��	 = �� + �′� (consensus theorem)

� Proof: �� + ��� + ��	
= �� + �′� + 1 · �� �� = 1 · ��
= �� + �′� + (� + �′)�� 1 = (� + �′)
= �� + �′� + ��� + �′�� Distributive · over +

= �� + ��� + �′� + �′�� Associative commutative +

= �� · 1 + ��� + �′� · 1 + �′�� �� = �� · 1, 	 ���� = ����
= ��(1 + �) + �′�(1 + �) Distributive · over +

= �� · 1 + �′� · 1 1 + � = 1, 	1 + � = 1
= �� + �′� �� · 1 = ��, 	�′� · 1 = �′�

Boolean Algebra and Logic Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 12

Summary of Boolean Algebra

Property Dual Property

Identity � + 0 = � � · 1 = �
Complement � + �′ = 1 � · �′ = 0
Null � + 1 = 1 � · 0 = 0
Idempotence � + � = � � · � = �
Involution (�′)′ = �
Commutative � + �	 = 	� + � �	�	 = 	�	�
Associative (� + �) + �	 = � + (� + �) �	� 	�	 = �	(�	�)
Distributive �	(� + �) 	= �� + �� � + ��	 = (� + �)(� + �)
Absorption � + ��	 = 	� �(� + �) 	= 	�
Simplification � + ���	 = 	� + � �(�′ + �) 	= 	��
De Morgan (� + �)′	 = 	�′	�′ �	� � = �� + �′

Boolean Algebra and Logic Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 13

Duality Principle

� The dual of a Boolean expression can be obtained by:

� Interchanging AND (·) and OR (+) operators

� Interchanging 0's and 1's

� Example: the dual of �(� + �′) is � + ��′
� The complement operator does not change

� The properties of Boolean algebra appear in dual pairs

� If a property is proven to be true then its dual is also true

Property Dual Property

Identity � + 0 = � � · 1 = �
Complement � + �′ = 1 � · �′ = 0
Distributive �	(� + �) 	= �� + �� � + ��	 = (� + �)(� + �)

Boolean Algebra and Logic Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 14

Expression Simplification

� Using Boolean algebra to simplify expressions

� Expression should contain the smallest number of literals

� A literal is a variable that may or may not be complemented

� Example: simplify �� + �′�� + �′�� + �′��′ + ����
� Solution: �� + �′�� + �′�� + �′��′ + ���� (15 literals)

= �� + ���� + �′�� + �′��′ + �′�� (15 literals)

= �� + ��(��) + �′�(� + �′) + �′�� (13 literals)

= �� + �′� + �′�� (7 literals)

= �� + ��′� + �′� (7 literals)

= �(� + �′�) + �′� (6 literals)

= �(� + �) + �′� (5 literals only)

Boolean Algebra and Logic Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 15

Importance of Boolean Algebra

� Our objective is to learn how to design digital circuits

� These circuits use signals with two possible values

� Logic 0 is a low voltage signal (around 0 volts)

� Logic 1 is a high voltage signal (e.g. 5 or 3.3 volts)

� The physical value of a signal is the actual voltage it carries,

while its logic value is either 0 (low) or 1 (high)

� Having only two logic values (0 and 1) simplifies the

implementation of the digital circuit

Boolean Algebra and Logic Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 16

Next . . .

� Boolean Algebra

� Boolean Functions and Truth Tables

� DeMorgan's Theorem

� Algebraic manipulation and expression simplification

� Logic gates and logic diagrams

� Minterms and Maxterms

� Sum-Of-Products and Product-Of-Sums

Boolean Algebra and Logic Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 17

Logic Gates and Symbols

�
� � · �

AND gate

�
� � + �

OR gate

�′�

NOT gate (inverter)

� In the earliest computers, relays were used as mechanical
switches controlled by electricity (coils)

� Today, tiny transistors are used as electronic switches that
implement the logic gates (CMOS technology)

AND: Switches in series
logic 0 is open switch

OR: Switches in parallel
logic 0 is open switch

NOT: Switch is normally
closed when x is 0

� � �

�
�′

Boolean Algebra and Logic Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 18

Truth Table and Logic Diagram

� Given the following logic function:
 = �(�′ + �)
� Draw the corresponding truth table and logic diagram

Truth Table

x y z y'+ z f = x(y'+ z)

0 0 0 1 0

0 0 1 1 0

0 1 0 0 0

0 1 1 1 0

1 0 0 1 1

1 0 1 1 1

1 1 0 0 0

1 1 1 1 1

Truth Table and Logic Diagram
describe the same function
.
Truth table is unique, but logic
expression and logic diagram
are not. This gives flexibility in
implementing logic functions.

�

�

 = �(�� + �)

�

Logic Diagram

Boolean Algebra and Logic Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 19

Combinational Circuit

� A combinational circuit is a block of logic gates having:

� inputs: �1, �2, … , ��
� outputs:
1,
2, … ,
�

� Each output is a function of the input variables

� Each output is determined from present combination of inputs

� Combination circuit performs operation specified by logic gates

…… ……

Combinational

Circuit…… ……� inputs � outputs

Boolean Algebra and Logic Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 20

Example of a Simple Combinational Circuit

� The above circuit has:

� Three inputs: �, �, and �
� Two outputs:
 and �

� What are the logic expressions of
 and � ?

� Answer:
 = �� + �′
� = �� + ��

�
�

�
�

Boolean Algebra and Logic Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 21

From Truth Tables to Gate Implementation

� Given the truth table of a Boolean function
, how do we

implement the truth table using logic gates?

Truth Table

x y z f

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

What is the logic expression of
?

What is the gate implementation of
?

To answer these questions, we need

to define Minterms and Maxterms

Boolean Algebra and Logic Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 22

Minterms and Maxterms

� Minterms are AND terms with every variable present in either
true or complement form

� Maxterms are OR terms with every variable present in either
true or complement form

Minterms and Maxterms for 2 variables � and �

� For n variables, there are 2n Minterms and Maxterms

x y index Minterm Maxterm

0 0 0 �0 = �′�′ 0 = � + �
0 1 1 �1 = �′� 1 = � + �′
1 0 2 �2 = ��′ 2 = �′ + �
1 1 3 �3 = �� 3 = �′ + �′

Boolean Algebra and Logic Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 23

Minterms and Maxterms for 3 Variables

Maxterm " is the complement of Minterm �"
 " = �"′ and �" = "′

x y z index Minterm Maxterm

0 0 0 0 �0 = �����′ 0 = � + � + �
0 0 1 1 �1 = ����� 1 = � + � + �′
0 1 0 2 �2 = �′��′ 2 = � + �′ + �
0 1 1 3 �3 = �′�� 3 = � + �� + �′
1 0 0 4 �4 = ����′ 4 = �′ + � + �
1 0 1 5 �5 = ���� 5 = �′ + � + �′
1 1 0 6 �6 = ���′ 6 = �′ + �′ + �
1 1 1 7 �7 = ��� 7 = �′ + �� + �′

Boolean Algebra and Logic Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 24

Purpose of the Index

� Minterms and Maxterms are designated with an index

� The index for the Minterm or Maxterm, expressed as a

binary number , is used to determine whether the variable

is shown in the true or complemented form

� For Minterms:

� ‘1’ means the variable is Not Complemented

� ‘0’ means the variable is Complemented

� For Maxterms:

� ‘0’ means the variable is Not Complemented

� ‘1’ means the variable is Complemented

Boolean Algebra and Logic Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 25

Sum-Of-Minterms (SOM) Canonical Form

Sum of Minterm entries

that evaluate to ‘1’

Truth Table

x y z f Minterm

0 0 0 0

0 0 1 0

0 1 0 1 �2 = �′��′
0 1 1 1 �3 = �′��
1 0 0 0

1 0 1 1 �5 = ��′�
1 1 0 0

1 1 1 1 �7 = ���

Focus on the ‘1’ entries

 = �� +�' +�(+�)

 =* 2, 3, 5, 7

 = ����� + ���� + ���� + ���

Boolean Algebra and Logic Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 26

Examples of Sum-Of-Minterms

�
 �, �, �, � = ∑(2, 3, 6, 10, 11)

�
 �, �, �, � = �� +�' +�, +��- +���

�
 �, �, �, � = ������� + ������ + �′���′ + ��′��′ + ��′��

� � �, �, �, � = ∑(0, 1, 12, 15)

� � �, �, �, � = �- +�� +��� +��(

� � �, �, �, � = �����′�� + �����′� + ���′�′ + ����

Boolean Algebra and Logic Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 27

Product-Of-Maxterms (POM) Canonical Form

Truth Table

x y z f Maxterm

0 0 0 0 0 = � + � + �
0 0 1 0 1 = � + � + �′
0 1 0 1

0 1 1 1

1 0 0 0 4 = �′ + � + �
1 0 1 1

1 1 0 0 6 = �′ + �′ + �
1 1 1 1

Product of Maxterm entries

that evaluate to ‘0’

Focus on the ‘0’ entries

 = - · � · . · ,

 =/ 0, 1, 4, 6

 = (� + � + �)(� + � + ��)(�� + � + �)(�� + �� + �)

Boolean Algebra and Logic Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 28

Examples of Product-Of-Maxterms

�
 �, �, �, � = ∏(1, 3, 11)

�
(�, �, �, �) = � ∙ ' ∙ ��

�
(�, �, �, �) = � + � + � + �� � + � + �� + �� 	(�� + � + �� + ��)

� � �, �, �, � = ∏(0, 5, 13)

� �(�, �, �, �) = - ∙ (∙ �'

�
(�, �, �, �) = � + � + � + � � + �� + � + �� 	(�� + �′ + � + ��)

Boolean Algebra and Logic Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 29

Conversions between Canonical Forms
� The same Boolean function
 can be expressed in two ways:

� Sum-of-Minterms
 = �- +�� +�' +�(+�) = ∑(0, 2, 3, 5, 7)
� Product-of-Maxterms
 = � ∙ . ∙ , = ∏(1, 4, 6)

x y z f Minterms Maxterms

0 0 0 1 �0 = ���′�′
0 0 1 0 1 = � + � + �′
0 1 0 1 �2 = ����′
0 1 1 1 �3 = ����
1 0 0 0 4 = �′ + � + �
1 0 1 1 �5 = ��′�
1 1 0 0 6 = �′ + �′ + �
1 1 1 1 �7 = ���

To convert from one canonical

form to another, interchange

the symbols ∑∑∑∑ and ∏∏∏∏ and list

those numbers missing from

the original form.

Truth Table

Boolean Algebra and Logic Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 30

Function Complement

Given a Boolean function

(�, �, �) =* 0, 2, 3, 5, 7 =/(1, 4, 6)

Then, the complement
′ of function

′(�, �, �) =/ 0,2, 3, 5, 7 =*(1, 4, 6)	

x y z f f'

0 0 0 1 0

0 0 1 0 1

0 1 0 1 0

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 0 1

1 1 1 1 0

The complement of a function expressed by a

Sum of Minterms is the Product of Maxterms

with the same indices. Interchange the symbols

∑∑∑∑ and ∏∏∏∏, but keep the same list of indices.

Truth Table

Boolean Algebra and Logic Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 31

Summary of Minterms and Maxterms

� There are 2n Minterms and Maxterms for Boolean functions with
n variables, indexed from 0 to 2n – 1

� Minterms correspond to the 1-entries of the function

� Maxterms correspond to the 0-entries of the function

� Any Boolean function can be expressed as a Sum-of-Minterms
and as a Product-of-Maxterms

� For a Boolean function, given the list of Minterm indices one can
determine the list of Maxterms indices (and vice versa)

� The complement of a Sum-of-Minterms is a Product-of-Maxterms
with the same indices (and vice versa)

Boolean Algebra and Logic Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 32

Sum-of-Products and Products-of-Sums

� Canonical forms contain a larger number of literals

� Because the Minterms (and Maxterms) must contain, by definition, all
the variables either complemented or not

� Another way to express Boolean functions is in standard form

� Two standard forms: Sum-of-Products and Product-of -Sums

� Sum of Products (SOP)

� Boolean expression is the ORing (sum) of AND terms (products)

� Examples:
1 = ��′ + ��
2 = � + ��′�
� Products of Sums (POS)

� Boolean expression is the ANDing (product) of OR terms (sums)

� Examples:
3 = (� + �)(�′ + �′)
4 = �(�′ + �′ + �)

Boolean Algebra and Logic Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 33

Two-Level Gate Implementation

1 = ��′ + ��
�
�′
1�
�

2 = � + ��′�
�

�′

2�

� 3-input AND gateAND-OR
implementations

3 = (� + �)(�� + ��)
�
�
3�′
�′

4 = �(�� + �� + �)
�

4�′
�′
� 3-input OR gateOR-AND

implementations

Boolean Algebra and Logic Gates COE 202 – Digital Logic Design © Muhamed Mudawar – slide 34

Two-Level vs. Three-Level Implementation

� ℎ = �� + �� + �� (6 literals) is a sum-of-products

� ℎ may also be written as: ℎ = �� + �(� + �) (5 literals)

� However, ℎ = �� + �(� + �) is a non-standard form

� ℎ = �� + �(� + �) is not a sum-of-products nor a product-of-sums

2-level implementation
ℎ = �� + �� + ��

3-level implementation
ℎ = �� + �(� + �)

�
�

ℎ�
�
�
� 3-input OR gate

�
�

ℎ�
�
�

