
Binary Arithmetic

COE 202

Digital Logic Design

Dr. Muhamed Mudawar

King Fahd University of Petroleum and Minerals

Binary Arithmetic COE 202 – Digital Logic Design © Muhamed Mudawar – slide 2

Presentation Outline

� Binary Addition

� Binary Subtraction

� Binary Multiplication

� Hexadecimal Addition and Subtraction

� BCD Addition

� Signed Numbers and Complement Notation

� Carry and Overflow

Binary Arithmetic COE 202 – Digital Logic Design © Muhamed Mudawar – slide 3

Adding Bits

� 1 + 1 = 2, but 2 should be represented as (10)2 in binary

� Adding two bits: the sum is S and the carry is C

� Adding three bits: the sum is S and the carry is C

X
+ Y

C S

0
+ 0

0 0

0
+ 1

0 1

1
+ 0

0 1

1
+ 1

1 0

1
0

+ 0

0 1

1
0

+ 1

1 0

1
1

+ 0

1 0

1
1

+ 1

1 1

0
0

+ 0

0 0

0
0

+ 1

0 1

0
1

+ 0

0 1

0
1

+ 1

1 0

Binary Arithmetic COE 202 – Digital Logic Design © Muhamed Mudawar – slide 4

Binary Addition

� Start with the least significant bit (rightmost bit)

� Add each pair of bits

� Include the carry in the addition, if present

0 0 0 1 1 1 0 1

0 0 1 1 0 1 1 0

+

(54)

(29)

(83)

1carry

01234bit position: 567

11 1

0 1 0 1 0 0 1 1

Binary Arithmetic COE 202 – Digital Logic Design © Muhamed Mudawar – slide 5

Subtracting Bits

� Subtracting 2 bits (X – Y): we get the difference (D) and the

borrow -out (B) shown as 0 or -1

� Subtracting two bits (X – Y) with a borrow -in = -1 : we get the

difference (D) and the borrow -out (B)

X
– Y

B D

0
– 0

0 0

0
– 1

-1 1

1
– 0

0 1

1
– 1

0 0

-1
0

– 0

-1 1

-1
0

– 1

-1 0

-1
1

– 0

0 0

-1
1

– 1

-1 1

-1
X

– Y

B D

borrow-in

Binary Arithmetic COE 202 – Digital Logic Design © Muhamed Mudawar – slide 6

Binary Subtraction

� Start with the least significant bit (rightmost bit)

� Subtract each pair of bits

� Include the borrow in the subtraction, if present

0 0 0 1 1 1 0 1

0 0 1 1 0 1 1 0

–

(54)

(29)

(25)

01234bit position: 567

-1 -1

0 0 0 1 1 0 0 1

borrow -1

Binary Arithmetic COE 202 – Digital Logic Design © Muhamed Mudawar – slide 7

� Binary Multiplication table is simple:

0×0=0, 0×1=0, 1×0=0, 1×1=1

Multiplicand 1100 2 = 12
Multiplier × 1101 2 = 13

1100
0000

1100
1100

Product 10011100 2 = 156

� n-bit multiplicand × n-bit multiplier = 2n-bit product

� Accomplished via shifting and addition

Binary Multiplication

Binary multiplication is easy
0 × multiplicand = 0

1 × multiplicand = multiplicand

Binary Arithmetic COE 202 – Digital Logic Design © Muhamed Mudawar – slide 8

Hexadecimal Addition

� Start with the least significant hexadecimal digits

� Let Sum = summation of two hex digits

� If Sum is greater than or equal to 16

� Sum = Sum – 16 and Carry = 1

� Example:

A F C D B0

1

1

1

9 C 3 7 2 8 6 5
1 3 9 5 E 8 4 B

+ 5 + B = 5 + 11 = 16
Since Sum ≥ 16
Sum = 16 – 16 = 0
Carry = 10

1carry

Binary Arithmetic COE 202 – Digital Logic Design © Muhamed Mudawar – slide 9

Hexadecimal Subtraction

� Start with the least significant hexadecimal digits

� Let Difference = subtraction of two hex digits

� If Difference is negative

� Difference = 16 + Difference and Borrow = -1

� Example:

8 8 1 104

-1

9 C 3 7 2 8 6 5
1 3 9 5 E 8 4 B

-
Since 5 < B, Difference < 0
Difference = 16+5–11 = 10
Borrow = -1A

-1borrow

A

-1

Binary Arithmetic COE 202 – Digital Logic Design © Muhamed Mudawar – slide 10

Single Digit BCD Addition

� We use binary arithmetic to add the BCD digits

� Since the result is more than 9, it must use 2 digits

� To correct the digit, add 6 to the digit sum

8

+ 5

13 (>9)

1000

+ 0101

1101

8

+ 5

13 (>9)

+ 6 (add 6)

3 and a carry

Final answer in BCD

1000

+ 0101

1101

+ 0110

1 0011

0001 0011

Binary Arithmetic COE 202 – Digital Logic Design © Muhamed Mudawar – slide 11

Multiple Digit BCD Addition

Add: 2905 + 1897 in BCD

Showing carries and digit corrections

+1

0101
0111

1100
0110

0010

0000
1001

1010
0110

0000

+1

1001
1000

10010
0110

1000

+1

0010
0001

0100

0100

+

carry

digit correction

Final answer: 2905 + 1897 = 4802

Binary Arithmetic COE 202 – Digital Logic Design © Muhamed Mudawar – slide 12

Storage Sizes

� A register stores the bits of a number

� A register consists of a fixed number n of storage bits

� The storage size n can be 8 bits, 16 bits, 32 bits, or 64 bits

� The Byte size is always equal to 8 bits

� Numbers stored in registers are either unsigned or signed

1 Byte 8 bits

16 bits

32 bits

64 bits

2 Bytes

4 Bytes

8 Bytes

Storage Sizes

Binary Arithmetic COE 202 – Digital Logic Design © Muhamed Mudawar – slide 13

Next . . .

� Binary Addition

� Binary Subtraction

� Binary Multiplication

� Hexadecimal Addition and Subtraction

� BCD Addition

� Signed Numbers and Complement Notation

� Carry and Overflow

Binary Arithmetic COE 202 – Digital Logic Design © Muhamed Mudawar – slide 14

Signed Numbers

� Several ways to represent a signed number

� Sign-Magnitude

� 1's complement

� 2's complement

� Divide the range of values into 2 equal parts

� First part corresponds to the positive numbers (≥ 0)

� Second part correspond to the negative numbers (< 0)

� The 2's complement representation is widely used

� Has many advantages over other representations

Binary Arithmetic COE 202 – Digital Logic Design © Muhamed Mudawar – slide 15

Sign-Magnitude Representation

� Independent representation of the sign and magnitude

� Leftmost bit is the sign bit: 0 is positive and 1 is negative

� Using n bits, largest represented magnitude = 2n-1 – 1

Sign
Bit

bit
n-2

bit
2

bit
1

bit
0

. . .

Magnitude = n – 1 bits

n-bit register

10110100 10110101

Sign-magnitude
representation of +45

using 8-bit register

Sign-magnitude
representation of -45
using 8-bit register

Binary Arithmetic COE 202 – Digital Logic Design © Muhamed Mudawar – slide 16

Properties of Sign-Magnitude

� Two representations for zero: +0 and -0

� Symmetric range of represented values:

For n-bit register, range is from -(2n-1 – 1) to +(2n-1 – 1)

For example using 8-bit register, range is -127 to +127

� Hard to implement addition and subtraction

� Sign and magnitude parts should be processed independently

� Sign bit should be examined to determine addition or subtraction

� Addition is converted into subtraction when adding numbers with

different signs

� Increases the cost of the add/subtract circuit

Binary Arithmetic COE 202 – Digital Logic Design © Muhamed Mudawar – slide 17

1’s Complement Representation

� Given a binary number N

The 1’s complement of N is obtained by reversing each bit in
N (0 becomes 1, and 1 becomes 0)

� Example: 1’s complement of (01101001)2 = (10010110)2

� If N consists of n bits then

1’s complement of N = (2n – 1) – N

� (2n – 1) is a binary number represented by n 1’s

� Example: if n = 8 then (28 – 1) = 255 = (11111111)2

1’s complement of (01101001)2 =

(11111111)2 – (01101001)2 = (10010110)2

Binary Arithmetic COE 202 – Digital Logic Design © Muhamed Mudawar – slide 18

2’s Complement Representation

� Almost all computers today use 2’s complement to represent
signed integers

� A simple definition for 2’s complement:

Given a binary number N

The 2’s complement of N = 1’s complement of N + 1

� Example: 2’s complement of (01101001)2 =

(10010110)2 + 1 = (10010111)2

� If N consists of n bits then

2’s complement of N = 2n – N

Binary Arithmetic COE 202 – Digital Logic Design © Muhamed Mudawar – slide 19

Computing the 2's Complement

Another way to obtain the 2's complement:

Start at the least significant 1
Leave all the 0s to its right unchanged
Complement all the bits to its left

starting value 00100100 2 = +36

step1: reverse the bits (1's complement) 11011011 2

step 2: add 1 to the value from step 1 + 1 2

sum = 2's complement representation 11011100 2 = -36

Binary Value

= 00100 1 00

2's Complement

= 11011 1 00

least
significant 1

2’s complement of 110111002 (-36) = 001000112 + 1 = 001001002 = +36

The 2’s complement of the 2’s complement of N is equal to N

Binary Arithmetic COE 202 – Digital Logic Design © Muhamed Mudawar – slide 20

Unsigned and Signed Value

8-bit Binary
value

Unsigned
value

Signed
value

00000000 0 0

00000001 1 +1

00000010 2 +2

.

01111110 126 +126

01111111 127 +127

10000000 128 -128

10000001 129 -127

.

11111110 254 -2

11111111 255 -1

� Positive numbers

� Signed value = Unsigned value

� Negative numbers

� Signed value = Unsigned value – 2n

� n = number of bits

� Negative weight for MSB

� Another way to obtain the signed value
is to assign a negative weight to most-
significant bit

-128 + 32 + 16 + 4 = -76

1 0 1 1 0 1 0 0

-128 64 32 16 8 4 2 1

Binary Arithmetic COE 202 – Digital Logic Design © Muhamed Mudawar – slide 21

Properties of the 2’s Complement

� The 2’s complement of N is the negative of N

� The sum of N and 2’s complement of N must be zero

The final carry is ignored

� Consider the 8-bit number N = 001011002 = +44

-44 = 2’s complement of N = 110101002

001011002 + 110101002 = 1 000000002 (8-bit sum is 0)

� In general: Sum of N + 2’s complement of N = 2n

where 2n is the final carry (1 followed by n 0’s)

� There is only one zero: 2’s complement of 0 = 0

Ignore final carry

Binary Arithmetic COE 202 – Digital Logic Design © Muhamed Mudawar – slide 22

Ranges of Unsigned/Signed Integers

For n-bit unsigned integers: Range is 0 to (2n – 1)

For n-bit signed integers: Range is -2n–1 to (2n–1 – 1)

Positive range: 0 to (2n–1 – 1)

Negative range: -2n–1 to -1

Storage Size Unsigned Range Signed Range

8 bits (byte) 0 to (28 – 1) = 0 to 255 -27 to (27 – 1) = -128 to +127

16 bits 0 to (216 – 1) = 0 to 65,535 -215 to (215 – 1) = -32,768 to +32,767

32 bits
0 to (232 – 1) =

0 to 4,294,967,295

-231 to (231 – 1) =

-2,147,483,648 to +2,147,483,647

64 bits
0 to (264 – 1) =

0 to 18,446,744,073,709,551,615

-263 to (263 – 1) =

-9,223,372,036,854,775,808 to

+9,223,372,036,854,775,807

Binary Arithmetic COE 202 – Digital Logic Design © Muhamed Mudawar – slide 23

Sign Extension

Step 1: Move the number into the lower-significant bits

Step 2: Fill all the remaining higher bits with the sign bit

� This will ensure the correctness of the signed value

� Examples

� Sign-Extend 011000102 to 16 bits

� Sign-Extend 101100112 to 16 bits

� Infinite 0’s can be added to the left of a positive number

� Infinite 1’s can be added to the left of a negative number

10110011 2 = -77 11111111 10110011 = -77

01100010 2 = +98 00000000 01100010 = +98

Binary Arithmetic COE 202 – Digital Logic Design © Muhamed Mudawar – slide 24

Subtraction with 2’s Complement

� When subtracting A – B, convert B to its 2's complement

� Add A to (2’s complement of B)

0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1

0 0 1 1 1 0 1 0 1 1 0 0 0 1 1 0 (2's complement)

0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1 (same result)

� Final carry is ignored, because

� Negative number is sign-extended with 1's

� You can imagine infinite 1's to the left of a negative number

� Adding the carry to the extended 1's produces extended zeros

– +

borrow: carry:-1-1-1 1111

Binary Arithmetic COE 202 – Digital Logic Design © Muhamed Mudawar – slide 25

Carry and Overflow

� Carry is important when …

� Adding or subtracting unsigned integers

� Indicates that the unsigned sum is out of range

� Either < 0 or >maximum unsigned n-bit value

� Overflow is important when …

� Adding or subtracting signed integers

� Indicates that the signed sum is out of range

� Overflow occurs when

� Adding two positive numbers and the sum is negative

� Adding two negative numbers and the sum is positive

� Can happen because of the fixed number of sum bits

Binary Arithmetic COE 202 – Digital Logic Design © Muhamed Mudawar – slide 26

0 1 0 0 0 0 0 0

0 1 0 0 1 1 1 1
+

1 0 0 0 1 1 1 1

79

64

143
(-113)

Carry = 0 Overflow = 1

1

1 0 0 1 1 1 0 1

1 1 0 1 1 0 1 0
+

0 1 1 1 0 1 1 1

218 (-38)

157 (-99)

119

Carry = 1 Overflow = 1

111

Carry and Overflow Examples

� We can have carry without overflow and vice-versa

� Four cases are possible (Examples are 8-bit numbers)

1 1 1 1 1 0 0 0

0 0 0 0 1 1 1 1
+

0 0 0 0 0 1 1 1

15

248 (-8)

7

Carry = 1 Overflow = 0

11111

0 0 0 0 1 0 0 0

0 0 0 0 1 1 1 1
+

0 0 0 1 0 1 1 1

15

8

23

Carry = 0 Overflow = 0

1

Binary Arithmetic COE 202 – Digital Logic Design © Muhamed Mudawar – slide 27

�Unsigned Integers: n-bit representation

�Signed Integers: 2's complement representation

Range, Carry, Borrow, and Overflow

max = 2n–1min = 0

Carry = 1
Addition

Numbers > max

Borrow = -1
Subtraction

Numbers < 0

Positive
Overflow

Numbers > max

Negative
Overflow

Numbers < min

max = 2n-1–1

Finite Set of Signed Integers

0min = -2n-1

Finite Set of Unsigned Integers

