Binary Arithmetic

COE 202

Digital Logic Design

Dr. Muhamed Mudawar

King Fahd University of Petroleum and Minerals

Presentation Outline

- Binary Addition
- Binary Subtraction
- Binary Multiplication
- Hexadecimal Addition and Subtraction
- BCD Addition
- Signed Numbers and Complement Notation
- Carry and Overflow

Adding Bits

✤ 1 + 1 = 2, but 2 should be represented as $(10)_2$ in binary

Adding two bits: the sum is S and the carry is C

X	0	0	1	1
<u>+ Y</u>	+ 0	+ 1	+ 0	+ 1
CS	00	0 1	0 1	10

Adding three bits: the sum is S and the carry is C

0	0	0	0	1	1	1	1
0	0	1	1	0	0	1	1
+ 0	+ 1	+ 0	+ 1	+ 0	+ 1	+ 0	+ 1
00	01	0 1	10	01	10	10	11

Binary Addition

- Start with the least significant bit (rightmost bit)
- ✤ Add each pair of bits
- Include the carry in the addition, if present

Subtracting Bits

Subtracting 2 bits (X – Y): we get the difference (D) and the borrow-out (B) shown as 0 or -1

X	0	0	1	1
– Y	- 0	- 1	- 0	_ 1
BD	00	-1 1	01	00

Subtracting two bits (X – Y) with a borrow-in = -1: we get the difference (D) and the borrow-out (B)

borrow-in	-1	-1	-1	-1	-1
	Χ	0	0	1	1
	– Y	- 0	_ 1	- 0	_ 1
-	B D	-11	-1 0	00	-1 1

Binary Subtraction

- Start with the least significant bit (rightmost bit)
- Subtract each pair of bits
- Include the borrow in the subtraction, if present

Binary Multiplication

Binary Multiplication table is simple:

$0 \times 0 = 0$,	$0 \times 1 = 0$,	$1 \times 0 = 0$,	1×1=1
Multiplicar Multiplier	nd ×	1100 ₂ = 1101 ₂ =	12 13
	1 11	1100 0000 100 00	Binary multiplication is easy 0 × multiplicand = 0 1 × multiplicand = multiplicand
Product	100	$11100_{-} =$	156

- ✤ *n*-bit multiplicand × *n*-bit multiplier = 2*n*-bit product
- Accomplished via shifting and addition

Hexadecimal Addition

- Start with the least significant hexadecimal digits
- Let Sum = summation of two hex digits
- ✤ If Sum is greater than or equal to 16

```
\diamond Sum = Sum – 16 and Carry = 1
```

Example:

$$\begin{array}{c} \text{carry} & 1 & 1 & 1 \\ \textbf{+} & \begin{array}{c} \textbf{9 C 3 7 2 8 6 5} \\ \textbf{1 3 9 5 E 8 4 B} \\ \hline \textbf{A F C D 1 0 B 0} \end{array} \begin{array}{c} 5 + B = 5 + 11 = 16 \\ \text{Since Sum} \ge 16 \\ \text{Sum} = 16 - 16 = 0 \\ \text{Carry} = 1 \end{array}$$

Hexadecimal Subtraction

Start with the least significant hexadecimal digits

- Let Difference = subtraction of two hex digits
- ✤ If Difference is negative

 \diamond Difference = 16 + Difference and Borrow = -1

Example:

Single Digit BCD Addition

We use binary arithmetic to add the BCD digits

	1000	8
+	0101	+ 5
	1101	13 (>9)

Since the result is more than 9, it must use 2 digits

To correct the digit, add 6 to the digit sum

	1000		8				
+	0101		+ 5				
	1101		13	(>9)			
+	0110	_	+ 6	(add	6)		
1	0011		3	and a	car	ry	
0001	0011	←──	Fina	al ans	wer	in	BCD

Multiple Digit BCD Addition

Add: 2905 + 1897 in BCD

Showing carries and digit corrections

Ca	arry +1	+1	+1	
-	+ 0010	1001	0000	0101
_	0001	1000	1001	0111
	0100	10010	1010	1100
digit	correction	0110	0110	0110
	0100	1000	0000	0010

Final answer: 2905 + 1897 = 4802

Storage Sizes

- ✤ A register stores the bits of a number
- ✤ A register consists of a fixed number *n* of storage bits
- ✤ The storage size *n* can be 8 bits, 16 bits, 32 bits, or 64 bits
- The Byte size is always equal to 8 bits
- Numbers stored in registers are either unsigned or signed

- Binary Addition
- Binary Subtraction
- Binary Multiplication
- Hexadecimal Addition and Subtraction
- BCD Addition
- Signed Numbers and Complement Notation
- Carry and Overflow

Signed Numbers

Several ways to represent a signed number

- ♦ Sign-Magnitude
- ♦ 1's complement
- \diamond 2's complement
- Divide the range of values into 2 equal parts
 - ↔ First part corresponds to the positive numbers (≥ 0)
 - \diamond Second part correspond to the negative numbers (< 0)
- The 2's complement representation is widely used
 - ♦ Has many advantages over other representations

Sign-Magnitude Representation

- Independent representation of the sign and magnitude
- Leftmost bit is the sign bit: 0 is positive and 1 is negative
- ↔ Using *n* bits, largest represented magnitude = $2^{n-1} 1$

Sign-magnitude representation of +45 using 8-bit register

Sign-magnitude representation of -45 using 8-bit register

Properties of Sign-Magnitude

- Two representations for zero: +0 and -0
- Symmetric range of represented values:

For n-bit register, range is from $-(2^{n-1} - 1)$ to $+(2^{n-1} - 1)$ For example using 8-bit register, range is -127 to +127

- Hard to implement addition and subtraction
 - ♦ Sign and magnitude parts should be processed independently
 - ♦ Sign bit should be examined to determine addition or subtraction
 - Addition is converted into subtraction when adding numbers with different signs
 - ♦ Increases the cost of the add/subtract circuit

1's Complement Representation

✤ Given a binary number N

The 1's complement of *N* is obtained by reversing each bit in *N* (0 becomes 1, and 1 becomes 0)

- Example: 1's complement of $(01101001)_2 = (10010110)_2$
- ✤ If N consists of n bits then

1's complement of $N = (2^n - 1) - N$

- ♦ $(2^n 1)$ is a binary number represented by *n* 1's
- ♦ Example: if n = 8 then $(2^8 1) = 255 = (11111111)_2$

1's complement of $(01101001)_2 =$

 $(11111111)_2 - (01101001)_2 = (10010110)_2$

2's Complement Representation

- Almost all computers today use 2's complement to represent signed integers
- ✤ A simple definition for 2's complement:

```
Given a binary number N
```

The 2's complement of N = 1's complement of N + 1

• Example: 2's complement of $(01101001)_2 =$

 $(10010110)_2 + 1 = (10010111)_2$

✤ If N consists of n bits then

```
2's complement of N = 2^n - N
```

Computing the 2's Complement

starting value	$00100100_2 = +36$
step1: reverse the bits (1's complement)	110110112
step 2: add 1 to the value from step 1	+ 1 ₂
sum = 2's complement representation	$11011100_2 = -36$

2's complement of 11011100_2 (-36) = $00100011_2 + 1 = 00100100_2 = +36$

The 2's complement of the 2's complement of N is equal to N

Another way to obtain the 2's complement: Start at the least significant 1 Leave all the 0s to its right unchanged Complement all the bits to its left

Unsigned and Signed Value

Positive numbers

♦ Signed value = Unsigned value

Negative numbers

- ♦ Signed value = Unsigned value 2^n
- \Rightarrow *n* = number of bits
- Negative weight for MSB
 - Another way to obtain the signed value is to assign a negative weight to mostsignificant bit

```
-128 + 32 + 16 + 4 = -76
```

8-bit Binary value	Unsigned value	Signed value
00000000	0	0
00000001	1	+1
00000010	2	+2
01111110	126	+126
01111111	127	+127
10000000	128	-128
10000001	129	-127
11111110	254	-2
11111111	255	-1

Properties of the 2's Complement

- \clubsuit The 2's complement of *N* is the negative of *N*
- The sum of N and 2's complement of N must be zero
 The final carry is ignored
- Consider the 8-bit number $N = 00101100_2 = +44$

-44 = 2's complement of $N = 11010100_2$ 00101100₂ + 11010100₂ = **1** 00000000₂ (8-bit sum is 0)

In general: Sum of N + 2's complement of N = 2ⁿ where 2ⁿ is the final carry (1 followed by n 0's)
There is only one zero: 2's complement of 0 = 0

Ranges of Unsigned/Signed Integers

For *n*-bit unsigned integers: Range is 0 to $(2^n - 1)$

For *n*-bit signed integers: Range is -2^{n-1} to $(2^{n-1} - 1)$

Positive range: 0 to $(2^{n-1} - 1)$

Negative range: -2^{n-1} to -1

Storage Size	Unsigned Range	Signed Range
8 bits (byte)	0 to $(2^8 - 1) = 0$ to 255	-2^7 to $(2^7 - 1) = -128$ to $+127$
16 bits	0 to $(2^{16} - 1) = 0$ to 65,535	-2^{15} to $(2^{15} - 1) = -32,768$ to $+32,767$
32 bits	0 to (2 ³² - 1) = 0 to 4,294,967,295	-2^{31} to $(2^{31} - 1) =$ -2,147,483,648 to +2,147,483,647
64 bits	0 to (2 ⁶⁴ – 1) = 0 to 18,446,744,073,709,551,615	-2^{63} to $(2^{63} - 1) =$ -9,223,372,036,854,775,808 to +9,223,372,036,854,775,807

Sign Extension

Step 1: Move the number into the lower-significant bits

- Step 2: Fill all the remaining higher bits with the sign bit
- This will ensure the correctness of the signed value

Examples

Infinite 0's can be added to the left of a positive number

Infinite 1's can be added to the left of a negative number

Subtraction with 2's Complement

When subtracting A – B, convert B to its 2's complement
Add A to (2's complement of B)

- Final carry is ignored, because
 - ♦ Negative number is sign-extended with 1's
 - ♦ You can imagine infinite 1's to the left of a negative number
 - ♦ Adding the carry to the extended 1's produces extended zeros

Carry and Overflow

- ✤ Carry is important when …
 - ♦ Adding or subtracting unsigned integers
 - ♦ Indicates that the unsigned sum is out of range
 - ♦ Either < 0 or >maximum unsigned *n*-bit value
- ✤ Overflow is important when …
 - ♦ Adding or subtracting signed integers
 - ♦ Indicates that the signed sum is out of range
- Overflow occurs when
 - ♦ Adding two positive numbers and the sum is negative
 - ♦ Adding two negative numbers and the sum is positive
 - ♦ Can happen because of the fixed number of sum bits

Carry and Overflow Examples

- We can have carry without overflow and vice-versa
- Four cases are possible (Examples are 8-bit numbers)

Range, Carry, Borrow, and Overflow

Unsigned Integers: n-bit representation

Signed Integers: 2's complement representation

