Digital Systems

COE 202
Digital Logic Design

Dr. Muhamed Mudawar

King Fahd University of Petroleum and Minerals

Welcome to COE 202

*»» Course Webpage:

http://faculty. kfupm.edu.sa/coe/mudawar/coe202/

«» Lecture Slides:

http://faculty. kfupm.edu.sa/coe/mudawar/coe202/lectures/

* Assignments and Projects:

http://faculty . kfupm.edu.sa/coe/mudawar/coe202/assignments.htm

++» Blackboard:

https://blackboard.kfupm.edu.sa/

Digital Systems COE 202 - Digital Logic Design © Muhamed Mudawar — slide 2

Which Book will be Used?

¢ Introduction to Logic Design

+» Alan B. Marcovitz
< Third Edition

<> McGraw Hill

< 2010

Digital Systems COE 202 - Digital Logic Design © Muhamed Mudawar — slide 3

What you will I Learn in this Course?

\/

*» Towards the end of this course, you should be able to:
<> Carry out arithmetic computation in various number systems
< Apply rules of Boolean algebra to simplify Boolean expressions

<> Translate truth tables into equivalent Boolean expressions and logic
gate implementations and vice versa

<> Design efficient combinational and sequential logic circuit
Implementations from functional description of digital systems

< Use CAD tools to simulate and verify the operation of logic circuits

Digital Systems COE 202 - Digital Logic Design © Muhamed Mudawar — slide 4

Is it Worth the Effort?

*» Absolutely!

¢ Digital circuits are employed in the design of:
< Digital computers
< Data communication
<> Digital phones
< Digital cameras

< Digital TVs, etc.

¢ This course provides the fundamental concepts and the basic
tools for the design of digital circuits and systems

Digital Systems COE 202 - Digital Logic Design © Muhamed Mudawar — slide 5

Grading Policy

s Assignments & Quizzes 20%

«» Midterm Exam | 20%
«» Midterm Exam Il 25%
+* Final Exam 35%

“*NO makeup exam will be given whatsoever

Digital Systems COE 202 - Digital Logic Design © Muhamed Mudawar — slide 6

Digital Systems

Presentation Outline

* Analog versus Digital Systems

*» Digitization of Analog Signals

¢ Binary Numbers and Number Systems
** Number System Conversions

** Representing Fractions

** Binary Codes

COE 202 - Digital Logic Design

© Muhamed Mudawar — slide 7

Analog versus Digital

“» Analog means continuous

*» Analog parameters have continuous range of values
< Example: temperature is an analog parameter
< Temperature increases/decreases continuously
< Like a continuous mathematical function, No discontinuity points

< Other examples?
¢ Digital means using numerical digits

*» Digital parameters have fixed set of discrete values
< Example: month number 0 {1, 2, 3, ..., 12}
< Thus, the month number is a digital parameter (cannot be 1.5!)

< Other examples?

Digital Systems COE 202 - Digital Logic Design © Muhamed Mudawar — slide 8

Analog versus Digital System

*» Are computers analog or digital systems?
Computer are digital systems
*» Which is easier to design an analog or a digital system?

Digital systems are easier to design, because they deal with a
limited set of values rather than an infinitely large range of
continuous values

¢ The world around us is analog
It Is common to convert analog parameters into digital form

¢ This process is called digitization

Digital Systems COE 202 - Digital Logic Design © Muhamed Mudawar — slide 9

Digitization of Analog Signals

*» Digitization Is converting an analog signal into digital form
“+ Example: consider digitizing an analog voltage signal

¢ Digitized output is limited to four values = {V1,v2,V3,V4}

d_,d-f"'f‘__ ll"x_x ‘___
" .-"'-'#" I.."'—.____\
= Time

Digital Systems COE 202 - Digital Logic Design © Muhamed Mudawar — slide 1C

Digitization of Analog Signals - cont'd

/
= o 4
\-‘] e P ——— . E— | S C——

V4 b

V3 S S — N S

7/

Y | I

¢ Some loss of accuracy, why?

* How to improve accuracy? Add more voltage values

Digital Systems COE 202 - Digital Logic Design © Muhamed Mudawar — slide 11

ADC and DAC Converters

* Analog-to-Digital Converter (ADC) l inpsui; analag
<> Produces digitized version of analog signals Analog-to-Digital
Converter (ADC)
< Analog input => Digital output input digital
signals
*» Digital-to-Analog Converter (DAC) Digital System
<> Regenerate analog signal from digital form output digital
signals
<> Digital input => Analog output Digital-to-Analog
Converter (DAC)
< Our focus is on digital systems only loutp_ut analog
signals

<> Both input and output to a digital system are digital signals

Digital Systems COE 202 - Digital Logic Design © Muhamed Mudawar — slide 12

Digital Systems

Next . ..

*» Analog versus Digital Systems

*» Digitization of Analog Signals

*» Binary Numbers and Number Systems
** Number System Conversions

** Representing Fractions

** Binary Codes

COE 202 - Digital Logic Design

© Muhamed Mudawar — slide 13

How do Computers Represent Digits?

¢ Binary digits (O and 1) are the simplest to represent

¢ Using electric voltage

F)
>
< Used in processors and digital circuits S -
. o | Unused
< High voltage = 1, Low voltage = 0 = N
§ Low =0

“ Using electric charge

< Used in memory cells

< Charged memory cell = 1, discharged memory cell =0
*+ Using magnetic field

<> Used in magnetic disks, magnetic polarity indicates 1 or O
¢ Using light

< Used in optical disks, optical lens can sense the light or not

Digital Systems COE 202 - Digital Logic Design © Muhamed Mudawar — slide 14

Binary Numbers

*» Each binary digit (called a bit) is either 1 or O

¢ Bits have no inherent meaning, they can represent ...

< Unsigned and signed integers

< Fractions Most Lenst
& Characters Significant Bit Significant Bit
< Images, sound, etc. /7 6 5 4 3 2 1 0

1/0 01|11 |01

27 26 25 24 23 22 21 20

¢ Bit Numbering
<> Least significant bit (LSB) is rightmost (bit 0)

< Most significant bit (MSB) is leftmost (bit 7 in an 8-bit number)

Digital Systems COE 202 - Digital Logic Design © Muhamed Mudawar — slide 15

Decimal Value of Binary Numbers

L)

% Each bit represents a power of 2

o0

» Every binary number is a sum of powers of 2

4

<+ Decimal Value = (d,,; x 2"%) + ... + (d; x 2) + (d, x 29)

L)

< Binary (10011101), = 27+ 2%+ 23+ 22+ 1 =157

7 6 5 4 3 > 1 0 2" Decimal Value an Decimal Value

111]1]0]1 20 n 28 256

27 26 25 24 23 22 21 20 2! ’ 2’ 012

22 4 210 1024

23 8 211 2048

24 I ¢ 212 4096

Some common |:> 3 > 13 2192

powers of 2 2 64 21 16384

27 128 215 32768

Digital Systems COE 202 - Digital Logic Design © Muhamed Mudawar — slide 1€

Positional Number Systems

Different Representations of Natural Numbers

XXVII Roman numerals (not positional)
27 Radix-10 or decimal number (positional)
11011, Radix-2 or binary number (also positional)

Fixed-radix positional representation with n digits

Number N inradixr=(d__,d ,...d,dy)),

N, Value =d__,xr"™t+d xr"2+ . +d,xr+d,

Examples: (11011), = 1x2%+ 1x23+ 0x22 + 1x2 +1 =27
(2107)g = 2x83 + 1x82 + 0x8 + 7 = 1095

Digital Systems COE 202 - Digital Logic Design © Muhamed Mudawar — slide 17

Convert Decimal to Binary

*+ Repeatedly divide the decimal integer by 2

*» Each remainder is a binary digit in the translated value

< Example: Convert 37,, to Binary

Division

Quotient

Remainder

3772

15

| 4

least significant bit

18 /2

e

0

92

._I_

|

37 = (100101),

]

0

0

|

most significant bit

A

Digital Systems

COE 202 - Digital Logic Design

stop when quotient is zero

© Muhamed Mudawar — slide 18

Decimal to Binary Conversion

“N=(d,, x2")+ ... +(d, x2) + (d, x 29)
¢ Dividing N by 2 we first obtain
< Quotient, = (d,; X 2"?) + ... + (d, x 2) + d;
< Remainder, = d,
< Therefore, first remainder is least significant bit of binary number
¢ Dividing first quotient by 2 we first obtain
< Quotient, = (d,; X 2™3) + ... + (d3 x 2) + d,
< Remainder, = d;
“* Repeat dividing quotient by 2
<> Stop when new quotient is equal to zero

< Remainders are the bits from least to most significant bit

Digital Systems COE 202 - Digital Logic Design © Muhamed Mudawar — slide 19

Popular Number Systems

¢ Binary Number System: Radix = 2
< Only two digit values: 0 and 1
< Numbers are represented as Os and 1s
¢ Octal Number System: Radix = 8
< Eight digit values: 0, 1, 2, ..., 7
¢ Decimal Number System: Radix = 10
< Tendigit values: 0, 1, 2, ..., 9
*» Hexadecimal Number Systems: Radix = 16
< Sixteen digit values: 0,1, 2, ..., 9,A,B, ..., F
<~ A=10,B=11,...,F=15

¢ Octal and Hexadecimal numbers can be converted easily to
Binary and vice versa

Digital Systems COE 202 - Digital Logic Design © Muhamed Mudawar — slide 2C

Octal and Hexadecimal Numbers

¢ Octal = Radix 8
“ Only eight digits: O to 7

¢ Digits 8 and 9 not used

+» Hexadecimal = Radix 16

“* 16digits: 0to 9, Ato F
 A=10, B=11, ..., F=15

¢ First 16 decimal values (O
to15) and their values in

binary, octal and hex.
Memorize table

Digital Systems

Decimal Binary Octal Hex

Radix 10 Radix 2 Radix 8 Radix 16
0 0000 0 0
1 0001 1 1
2 0010 2 2
3 0011 3 3
4 0100 4 4
5 0101 5 5
6 0110 6 6
7 0111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

COE 202 - Digital Logic Design

© Muhamed Mudawar — slide 21

Binary, Octal, and Hexadecimal

¢ Binary, Octal, and Hexadecimal are related:
Radix 16 = 24 and Radix 8 = 23
*» Hexadecimal digit = 4 bits and Octal digit = 3 bits

» Starting from least-significant bit, group each 4 bits into a hex
digit or each 3 bits into an octal digit

“» Example: Convert 32-bit number into octal and hex

3| 5 3 0 5 5 2 3 6 2 4 |Octal
1/1/1/0/1/0(1|1(0|0|0|1|0|1{1|0|1|0|1/0|0|1|1|1({1]|0/0|1|0|10|0| 32-bit binary
E B 1 6 A 7 9 4 Hexadecimal

Digital Systems COE 202 - Digital Logic Design © Muhamed Mudawar — slide 22

Converting Octal & Hex to Decimal

“ Octal to Decimal: Ng = (d,.; x 8"™1) +... + (d; X 8) + d,
“ Hex to Decimal: N = (d,,; X 16™1) +... + (d; X 16) + d,

“» Examples:
(7204), = (7 x8%) +(2%x8%) +(0x8)+4=3716

(3BA4), = (3 x 163) + (11 x 162) + (10 x 16) + 4 = 15268

Digital Systems COE 202 - Digital Logic Design © Muhamed Mudawar — slide 23

Converting Decimal to Hexadecimal

*+ Repeatedly divide the decimal integer by 16
“+ Each remainder is a hex digit in the translated value

*» Example: convert 422 to hexadecimal

Division Quotient Remainder
422/ 16 26 6 < least significant digit
26/ 16 | A
1/16 0 | < most significant digit
“_ g g

422 = (1A6) 1, \ stop when

guotient is zero

¢ To convert decimal to octal divide by 8 instead of 16

Digital Systems COE 202 - Digital Logic Design © Muhamed Mudawar — slide 24

Important Properties

“* How many possible digits can we have in Radix r ?
rdigits:0tor—1

“* What is the result of adding 1 to the largest digit in Radix r?
Since digit r is not represented, result is (10), in Radix r
Examples: 1, + 1 = (10), /g+1=(10)4

910 + 1= (10)40 Fig +1=(10)4

* What is the largest value using 3 digits in Radix r?
In binary: (111), =23-1
In octal: (777)g=83-1
In decimal: (999),, =103 -1

In Radix r:

largest value =3 -1

Digital Systems COE 202 - Digital Logic Design © Muhamed Mudawar — slide 25

Important Properties - cont'd

* How many possible values can be represented ...

Using n binary digits? 2"values: 0to2"-1
Using n octal digits 8"values: 0to8"—-1
Using n decimal digits? 10" values: 0 to 10" -1
Using n hexadecimal digits 16" values: 0to 16" -1

Using n digits in Radix r ? Mvalues: 0torm—1

Digital Systems COE 202 - Digital Logic Design © Muhamed Mudawar — slide 26

Digital Systems

Next . ..

*» Analog versus Digital Systems

*» Digitization of Analog Signals

¢ Binary Numbers and Number Systems
** Number System Conversions

“* Representing Fractions

** Binary Codes

COE 202 - Digital Logic Design

© Muhamed Mudawar — slide 27

Representing Fractions

< A number N, In radix r can also have a fraction part:

Nr:dn-ldn-Z dldo . d-ld-Z"' d_m+1d_m OSdI <Tr
Integer Part Fraction Part
Radix Point

< The number N, represents the value:

N, =d, xrmi+ . +d;xr+d,+ (Integer Part)
d,xrt+d,xr2..+d ,xr-m (Fraction Part)
i=n-1 j=-1
N, = Zdixr' + Z:djxrJ
=0 j=-m

Digital Systems COE 202 - Digital Logic Design © Muhamed Mudawar — slide 28

Examples of Numbers with Fractions

% (2409.87),, = 2x103 + 4x102 + 9 + 8x101 + 7x102
% (1101.1001), =23+ 22+ 20+ 21 4 24 = 13,5625

< (703.64), = 7x82 + 3 + 6x81 + 4x82 = 451.8125
% (A1F.8),, = 10x162 + 16 + 15 + 8x161 = 2591.5
% (423.1). = 4x52 + 2x5 + 3 + 51 = 113.2

% (263.5), Digit 6 iIs NOT allowed In radix 6

Digital Systems COE 202 - Digital Logic Design © Muhamed Mudawar — slide 29

Converting Decimal Fraction to Binary

*» Convert N = 0.6875 to Radix 2
¢ Solution: Multiply N by 2 repeatedly & collect integer bits

Multiplication

New Fraction

Bit

— First fraction bit

0.6875x2=1.375 0.375 1 -
0.375x2=0.75 0.75 0
0.75x2=1.5 0.5 1

05x2=1.0 0.0 1 -

—> Last fraction bit

s Stop when new fraction = 0.0, or when enough fraction bits

are obtained

% Therefore, N = 0.6875 = (0.1011),,

% Check (0.1011), = 21 + 23 + 24 = 0.6875

Digital Systems

COE 202 - Digital Logic Design

© Muhamed Mudawar — slide 3C

Converting Fraction to any Radix r

¢ To convert fraction N to any radix r
N,=(0.d,d,..d,)=d;xrt+d,xr2..+d,xr™m

< Multiply N by r to obtain d ,
N xr=d, +d,xrt. .. +d,xr-m1

“ The integer part is the digit d_, in radix r

< The new fractionisd,xr-1 ... +d xr-m*

“* Repeat multiplying the new fractions by r to obtaind_, d , ...

s Stop when new fraction becomes 0.0 or enough fraction digits
are obtained

Digital Systems COE 202 - Digital Logic Design © Muhamed Mudawar — slide 31

More Conversion Examples

*» Convert N = 139.6875 to Octal (Radix 8)
“» Solution: N =139 + 0.6875 (split integer from fraction)

*» The Integer and fraction parts are converted separately

Division | Quotient | Remainder Multiplication New Fraction | Digit
139/8 17 3 0.6875x8=5.5 0.5 5
17 /8 2 1 05x8=4.0 0.0 4

218 0 2

% Therefore, 139 = (213)5 and 0.6875 = (0.54),4
“* Now, join the integer and fraction parts with radix point
N =139.6875 = (213.54),

Digital Systems COE 202 - Digital Logic Design © Muhamed Mudawar — slide 32

Conversion Procedure to Radix r

¢ To convert decimal number N (with fraction) to radix r

*» Convert the Integer Part

< Repeatedly divide the integer part of number N by the radix r and save
the remainders. The integer digits in radix r are the remainders in
reverse order of their computation. If radix r > 10, then convert all
remainders > 10 to digits A, B, ... etc.

+» Convert the Fractional Part

< Repeatedly multiply the fraction of N by the radix r and save the
iInteger digits that result. The fraction digits in radix r are the integer
digits in order of their computation. If the radix r > 10, then convert all
digits > 10to A, B, ... etc.

¢ Join the result together with the radix point

Digital Systems COE 202 - Digital Logic Design © Muhamed Mudawar — slide 33

Simplified Conversions

* Converting fractions between Binary, Octal, and Hexadecimal

can be simplified

 Starting at the radix pointing, the integer part is converted
from right to left and the fractional part is converted from left
to right

“» Group 4 bits into a hex digit or 3 bits into an octal digit

< integer: right to left

fraction: left to right —»

Octal
Binary

Hexadecimal

71216]|1]3 2 14|74 |52
1|1(1/0[1/0|1|1/0j0jO[1[01[1]|. |O|1/0|1|0[01[1|1|1]0j0|1[0I1[01
71 5 8 B 5 3 cC | A 8

* Use binary to convert between octal and hexadecimal

Digital Systems

COE 202 - Digital Logic Design

© Muhamed Mudawar — slide 34

Important Properties of Fractions

* How many fractional values exist with m fraction bits?
2™ fractions, because each fraction bitcan be O or 1

** What is the largest fraction value if m bits are used?
Largest fraction value =21+ 22+ .., +2Mm=1-2"M
Because If you add 2™ to largest fraction you obtain 1

*+ In general, what is the largest fraction value if m fraction digits
are used Iin radix r?

Largest fractionvalue=rt+r2+ .. +rm=1—-rMm
For decimal, largest fraction value = 1 — 10™

For hexadecimal, largest fraction value =1 - 16™

Digital Systems COE 202 - Digital Logic Design © Muhamed Mudawar — slide 35

Digital Systems

Next . ..

*» Analog versus Digital Systems

*» Digitization of Analog Signals

¢ Binary Numbers and Number Systems
** Number System Conversions

** Representing Fractions

*+ Binary Codes

COE 202 - Digital Logic Design

© Muhamed Mudawar — slide 36

Binary Codes

** How to represent characters, colors, etc?
*» Define the set of all represented elements
¢ Assign a unigue binary code to each element of the set

*» Given n bits, a binary code Is a mapping from the set of
elements to a subset of the 2" binary numbers

*» Coding Numeric Data (example: coding decimal digits)
< Coding must simplify common arithmetic operations

< Tight relation to binary numbers

¢ Coding Non-Numeric Data (example: coding colors)

<> More flexible codes since arithmetic operations are not applied

Digital Systems COE 202 - Digital Logic Design © Muhamed Mudawar — slide 37

Example of Coding Non-Numeric Data

“ Suppose we want to code 7 colors of the rainbow

* As a minimum, we need 3 bits to define 7 unique values

¢ 3 bits define 8 possible combinations
> Only 7 combinations are needed
¢ Code 111 is not used

¢ Other assignments are also possible

Digital Systems COE 202 - Digital Logic Design

Color | 3-bit code
Red 000
Orange 001
Yellow 010
Green 011
Blue 100
Indigo 101
Violet 110

© Muhamed Mudawar — slide 38

Minimum Number of Bits Required

*» Given a set of M elements to be represented by a binary code,
the minimum number of bits, n, should satisfy:

20-1) <« M < 20

n =[log, M | where[x], called the ceiling function, is the
Integer greater than or equal to x

** How many bits are required to represent 10 decimal digits with
a binary code?

% Answer: |_Iog2 10_‘: 4 bits can represent 10 decimal digits

Digital Systems COE 202 - Digital Logic Design © Muhamed Mudawar — slide 39

Decimal Codes

¢ Binary number system is most natural for computers
“+ But people are used to the decimal number system

¢ Must convert decimal numbers to binary, do arithmetic on
binary numbers, then convert back to decimal

“+ To simplify conversions, decimal codes can be used
*» Define a binary code for each decimal digit

¢ Since 10 decimal digits exit, a 4-bit code is used

¢ But a 4-bit code gives 16 unigue combinations

¢ 10 combinations are used and 6 will be unused

Digital Systems COE 202 - Digital Logic Design © Muhamed Mudawar — slide 4C

Binary Coded Decimal (BCD)

*» Simplest binary code for decimal digits
¢+ Only encodes ten digits from 0 to 9
*» BCD Is a weighted code
*» The weights are 8,4,2,1
“ Same weights as a binary number
¢ There are six invalid code words
1010, 1011, 1100, 1101, 1110, 1111
s Example on BCD coding:

13 < (0001 0011)qcp

Digital Systems COE 202 - Digital Logic Design

Decimal

BCD

)

0000

0001

0010

0011

0100

0101

0110

0111

1000

VW(N/aoaon|h~h|WIN|EF

1001

Unused

1010

1111

© Muhamed Mudawar — slide 41

Warning: Conversion or Coding?

¢ Do NOT mix up conversion of a decimal number to a binary
number with coding a decimal number with a binary code

% 13,,=(1101), This Is conversion
“ 13 < (0001 0011)gp This is coding
¢ In general, coding requires more bits than conversion

“ A number with n decimal digits is coded with 4n bits in BCD

Digital Systems COE 202 - Digital Logic Design © Muhamed Mudawar — slide 42

Other Decimal Codes

“ BCD, 5421, 2421, and 8 4 -2 -1 are weighted codes
¢ Excess-3 is not a weighted code

o 2421, 8 4 -2 -1, and Excess-3 are se

Digital Systems

f complementary codes

Decimal BCD 5421 2421 84-2-1 | Excess-3
8421 code code code code
0 0000 0000 0000 0000 0011
1 0001 0001 0001 0111 0100
2 0010 0010 0010 0110 0101
3 0011 0011 0011 0101 0110
4 0100 0100 0100 0100 0111
5 0101 1000 1011 1011 1000
6 0110 1001 1100 1010 1001
I 0111 1010 1101 1001 1010
8 1000 1011 1110 1000 1011
9 1001 1100 1111 1111 1100
Unused

COE 202 - Digital Logic Design

© Muhamed Mudawar — slide 43

Gray Code

* As we count up/down using binary codes, the number of bits
that change from one binary value to the next varies

000 — 001 (1-bit change) Digit | Binary | Gray Code
001 — 010 (2-bit change) 0 000 000
. 1 001 001
011 — 100 (3-bit change) > 010 011
*» Gray code: only 1 bit changes j (1)(1)3) (ﬁg
as we count up or down 5 101 111
6 110 101
*» Binary reflected code 7 111 100

*» Gray code can be used in low-power logic circuits that count
up or down, because only 1 bit changes per count

Digital Systems COE 202 - Digital Logic Design © Muhamed Mudawar — slide 44

Character Codes

¢ Character sets
< Standard ASCII: 7-bit character codes (0 — 127)
< Extended ASCII: 8-bit character codes (0 — 255)
<> Unicode: 16-bit character codes (0 — 65,535)

< Unicode standard represents a universal character set
» Defines codes for characters used in all major languages
» Used in Windows-XP: each character is encoded as 16 bits

< UTF-8: variable-length encoding used in HTML
= Encodes all Unicode characters

» Uses 1 byte for ASCII, but multiple bytes for other characters

** Null-terminated String

< Array of characters followed by a NULL character

Digital Systems COE 202 - Digital Logic Design

© Muhamed Mudawar — slide 45

Printable ASCII Codes

0O(1(2|3(4|5|6|7]|8 BIC|D|E|F
2 fswece| I |" # B P & |" () , |- [
310(1(2|3 (4 |5 1|6 |7 |8 |9 < 3 > ?
4|l@ A B G D E F G H K L M N O
5P| Q sl T U vV w z [\ 1]~
6 a |b |[c |d |e g h 1 | |m 0
7lplgjr(sjt by w x Yy |1} |~ DEL

“ Examples:

Digital Systems

<> ASCII code for space character = 20 (hex) = 32 (decimal)

<> ASCII code for 'L' = 4C (hex) = 76 (decimal)
<> ASCII code for 'a' = 61 (hex) = 97 (decimal)

COE 202 - Digital Logic Design

© Muhamed Mudawar — slide 46

Control Characters

**» The first 32 characters of ASCII table are used for control

¢ Control character codes = 00 to 1F (hexadecimal)
<> Not shown in previous slide

*» Examples of Control Characters
< Character O is the NULL character = used to terminate a string
< Character 9 is the Horizontal Tab (HT) character
< Character OA (hex) = 10 (decimal) is the Line Feed (LF)
< Character 0D (hex) = 13 (decimal) is the Carriage Return (CR)
< The LF and CR characters are used together
» They advance the cursor to the beginning of next line
“ One control character appears at end of ASCII table
< Character 7F (hex) is the Delete (DEL) character

Digital Systems COE 202 - Digital Logic Design © Muhamed Mudawar — slide 47

Parity Bit & Error Detection Codes

*» Binary data are typically transmitted between computers
*+ Because of noise, a corrupted bit will change value

¢ To detect errors, extra bits are added to each data value
“ Parity bit: Is used to make the number of 1's odd or even
“* Even parity: number of 1’s in the transmitted data is even

“ Odd parity: number of 1's in the transmitted data is odd

7-bit ASCII Character With Even Parity With Odd Parity
‘A’ = 1000001 0 1000001 1 1000001
“T'=1010100 11010100 0 1010100

Digital Systems COE 202 - Digital Logic Design © Muhamed Mudawar — slide 48

Detecting Errors

7-bit ASCII character + 1 Parity bit _
Sender » Recelver
Sent ‘A’ = 01000001, Received ‘A’ = 01000101

“ Suppose we are transmitting 7-bit ASCII characters
¢ A parity bit is added to each character to make it 8 bits

*» Parity can detect all single-bit errors

< If even parity is used and a single bit changes, it will change the parity
to odd, which will be detected at the receiver end

< The receiver end can detect the error, but cannot correct it because it
does not know which bit Is erroneous

+» Can also detect some multiple-bit errors

<> Error in an odd number of bits

Digital Systems COE 202 - Digital Logic Design © Muhamed Mudawar — slide 49

