
Digital Systems

COE 202

Digital Logic Design

Dr. Muhamed Mudawar

King Fahd University of Petroleum and Minerals

Digital Systems COE 202 – Digital Logic Design © Muhamed Mudawar – slide 2

Welcome to COE 202

� Course Webpage:

http://faculty.kfupm.edu.sa/coe/mudawar/coe202/

� Lecture Slides:

http://faculty.kfupm.edu.sa/coe/mudawar/coe202/lectures/

� Assignments and Projects:

http://faculty.kfupm.edu.sa/coe/mudawar/coe202/assignments.htm

� Blackboard:

https://blackboard.kfupm.edu.sa/

Digital Systems COE 202 – Digital Logic Design © Muhamed Mudawar – slide 3

Which Book will be Used?

� Introduction to Logic Design

� Alan B. Marcovitz

� Third Edition

� McGraw Hill

� 2010

Digital Systems COE 202 – Digital Logic Design © Muhamed Mudawar – slide 4

What you will I Learn in this Course?

� Towards the end of this course, you should be able to:

� Carry out arithmetic computation in various number systems

� Apply rules of Boolean algebra to simplify Boolean expressions

� Translate truth tables into equivalent Boolean expressions and logic
gate implementations and vice versa

� Design efficient combinational and sequential logic circuit
implementations from functional description of digital systems

� Use CAD tools to simulate and verify the operation of logic circuits

Digital Systems COE 202 – Digital Logic Design © Muhamed Mudawar – slide 5

Is it Worth the Effort?

� Absolutely!

� Digital circuits are employed in the design of:

� Digital computers

� Data communication

� Digital phones

� Digital cameras

� Digital TVs, etc.

� This course provides the fundamental concepts and the basic
tools for the design of digital circuits and systems

Digital Systems COE 202 – Digital Logic Design © Muhamed Mudawar – slide 6

Grading Policy

� Assignments & Quizzes 20%

� Midterm Exam I 20%

� Midterm Exam II 25%

� Final Exam 35%

�NO makeup exam will be given whatsoever

Digital Systems COE 202 – Digital Logic Design © Muhamed Mudawar – slide 7

Presentation Outline

� Analog versus Digital Systems

� Digitization of Analog Signals

� Binary Numbers and Number Systems

� Number System Conversions

� Representing Fractions

� Binary Codes

Digital Systems COE 202 – Digital Logic Design © Muhamed Mudawar – slide 8

Analog versus Digital

� Analog means continuous

� Analog parameters have continuous range of values
� Example: temperature is an analog parameter

� Temperature increases/decreases continuously

� Like a continuous mathematical function, No discontinuity points

� Other examples?

� Digital means using numerical digits

� Digital parameters have fixed set of discrete values
� Example: month number ∈ {1, 2, 3, …, 12}

� Thus, the month number is a digital parameter (cannot be 1.5!)

� Other examples?

Digital Systems COE 202 – Digital Logic Design © Muhamed Mudawar – slide 9

Analog versus Digital System

� Are computers analog or digital systems?

Computer are digital systems

� Which is easier to design an analog or a digital system?

Digital systems are easier to design, because they deal with a

limited set of values rather than an infinitely large range of

continuous values

� The world around us is analog

� It is common to convert analog parameters into digital form

� This process is called digitization

Digital Systems COE 202 – Digital Logic Design © Muhamed Mudawar – slide 10

Digitization of Analog Signals

� Digitization is converting an analog signal into digital form

� Example: consider digitizing an analog voltage signal

� Digitized output is limited to four values = {V1,V2,V3,V4}

Voltage

Time

Digital Systems COE 202 – Digital Logic Design © Muhamed Mudawar – slide 11

Digitization of Analog Signals – cont’d

� Some loss of accuracy, why?

� How to improve accuracy?

Voltage

Time

Voltage

Time

Add more voltage values

Digital Systems COE 202 – Digital Logic Design © Muhamed Mudawar – slide 12

ADC and DAC Converters

� Analog-to-Digital Converter (ADC)

� Produces digitized version of analog signals

� Analog input => Digital output

� Digital-to-Analog Converter (DAC)

� Regenerate analog signal from digital form

� Digital input => Analog output

� Our focus is on digital systems only

� Both input and output to a digital system are digital signals

Analog-to-Digital
Converter (ADC)

Digital-to-Analog
Converter (DAC)

Digital System

input digital
signals

output digital
signals

input analog
signals

output analog
signals

Digital Systems COE 202 – Digital Logic Design © Muhamed Mudawar – slide 13

Next . . .

� Analog versus Digital Systems

� Digitization of Analog Signals

� Binary Numbers and Number Systems

� Number System Conversions

� Representing Fractions

� Binary Codes

Digital Systems COE 202 – Digital Logic Design © Muhamed Mudawar – slide 14

How do Computers Represent Digits?

� Binary digits (0 and 1) are the simplest to represent

� Using electric voltage
� Used in processors and digital circuits

� High voltage = 1, Low voltage = 0

� Using electric charge
� Used in memory cells

� Charged memory cell = 1, discharged memory cell = 0

� Using magnetic field
� Used in magnetic disks, magnetic polarity indicates 1 or 0

� Using light
� Used in optical disks, optical lens can sense the light or not

High = 1

Low = 0

Unused

V
ol

ta
ge

 L
ev

el

Digital Systems COE 202 – Digital Logic Design © Muhamed Mudawar – slide 15

Binary Numbers

� Each binary digit (called a bit) is either 1 or 0

� Bits have no inherent meaning, they can represent …

� Unsigned and signed integers

� Fractions

� Characters

� Images, sound, etc.

� Bit Numbering

� Least significant bit (LSB) is rightmost (bit 0)

� Most significant bit (MSB) is leftmost (bit 7 in an 8-bit number)

1 0 0 1 1 1 0 1

27 26 25 24 23 22 21 20

01234567

Most
Significant Bit

Least
Significant Bit

Digital Systems COE 202 – Digital Logic Design © Muhamed Mudawar – slide 16

Decimal Value of Binary Numbers

� Each bit represents a power of 2

� Every binary number is a sum of powers of 2

� Decimal Value = (dn-1 × 2n-1) + ... + (d1 × 21) + (d0 × 20)

� Binary (10011101)2 =

1 0 0 1 1 1 0 1

27 26 25 24 23 22 21 20

01234567

Some common
powers of 2

27 + 24 + 23 + 22 + 1 = 157

Digital Systems COE 202 – Digital Logic Design © Muhamed Mudawar – slide 17

Different Representations of Natural Numbers

XXVII Roman numerals (not positional)
27 Radix-10 or decimal number (positional)

110112 Radix-2 or binary number (also positional)

Fixed-radix positional representation with n digits

Number N in radix r = (dn–1dn–2 . . . d1d0)r

Nr Value = dn–1×r n–1 + dn–2×r n–2 + … + d1×r + d0

Examples: (11011)2 =

(2107)8 =

Positional Number Systems

1×24 + 1×23 + 0×22 + 1×2 + 1 = 27

2×83 + 1×82 + 0×8 + 7 = 1095

Digital Systems COE 202 – Digital Logic Design © Muhamed Mudawar – slide 18

Convert Decimal to Binary

� Repeatedly divide the decimal integer by 2

� Each remainder is a binary digit in the translated value

� Example: Convert 3710 to Binary

37 = (100101)2

least significant bit

most significant bit

stop when quotient is zero

Digital Systems COE 202 – Digital Logic Design © Muhamed Mudawar – slide 19

Decimal to Binary Conversion

� N = (dn-1 × 2n-1) + ... + (d1 × 21) + (d0 × 20)

� Dividing N by 2 we first obtain
� Quotient1 = (dn-1 × 2n-2) + … + (d2 × 2) + d1

� Remainder1 = d0

� Therefore, first remainder is least significant bit of binary number

� Dividing first quotient by 2 we first obtain
� Quotient2 = (dn-1 × 2n-3) + … + (d3 × 2) + d2

� Remainder2 = d1

� Repeat dividing quotient by 2
� Stop when new quotient is equal to zero

� Remainders are the bits from least to most significant bit

Digital Systems COE 202 – Digital Logic Design © Muhamed Mudawar – slide 20

Popular Number Systems

� Binary Number System: Radix = 2
� Only two digit values: 0 and 1

� Numbers are represented as 0s and 1s

� Octal Number System: Radix = 8
� Eight digit values: 0, 1, 2, …, 7

� Decimal Number System: Radix = 10
� Ten digit values: 0, 1, 2, …, 9

� Hexadecimal Number Systems: Radix = 16
� Sixteen digit values: 0, 1, 2, …, 9, A, B, …, F

� A = 10, B = 11, …, F = 15

� Octal and Hexadecimal numbers can be converted easily to
Binary and vice versa

Digital Systems COE 202 – Digital Logic Design © Muhamed Mudawar – slide 21

Octal and Hexadecimal Numbers

� Octal = Radix 8

� Only eight digits: 0 to 7

� Digits 8 and 9 not used

� Hexadecimal = Radix 16

� 16 digits: 0 to 9, A to F

� A=10, B=11, …, F=15

� First 16 decimal values (0
to15) and their values in
binary, octal and hex.
Memorize table

Decimal
Radix 10

Binary
Radix 2

Octal
Radix 8

Hex
Radix 16

0 0000 0 0
1 0001 1 1
2 0010 2 2
3 0011 3 3
4 0100 4 4
5 0101 5 5
6 0110 6 6
7 0111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

Digital Systems COE 202 – Digital Logic Design © Muhamed Mudawar – slide 22

Binary, Octal, and Hexadecimal

� Binary, Octal, and Hexadecimal are related:

Radix 16 = 24 and Radix 8 = 23

� Hexadecimal digit = 4 bits and Octal digit = 3 bits

� Starting from least-significant bit, group each 4 bits into a hex
digit or each 3 bits into an octal digit

� Example: Convert 32-bit number into octal and hex

497A61BE Hexadecimal

32-bit binary00101001111001010110100011010111

42632550353 Octal

Digital Systems COE 202 – Digital Logic Design © Muhamed Mudawar – slide 23

� Octal to Decimal: N8 = (dn-1 × 8n-1) +... + (d1 × 8) + d0

� Hex to Decimal: N16 = (dn-1 × 16n-1) +... + (d1 × 16) + d0

� Examples:

(7204)8 = (7 × 83) + (2 × 82) + (0 × 8) + 4 = 3716

(3BA4)16 = (3 × 163) + (11 × 162) + (10 × 16) + 4 = 15268

Converting Octal & Hex to Decimal

Digital Systems COE 202 – Digital Logic Design © Muhamed Mudawar – slide 24

Converting Decimal to Hexadecimal

422 = (1A6)16
stop when

quotient is zero

least significant digit

most significant digit

� Repeatedly divide the decimal integer by 16

� Each remainder is a hex digit in the translated value

� Example: convert 422 to hexadecimal

� To convert decimal to octal divide by 8 instead of 16

Digital Systems COE 202 – Digital Logic Design © Muhamed Mudawar – slide 25

Important Properties

� How many possible digits can we have in Radix r ?

r digits: 0 to r – 1

� What is the result of adding 1 to the largest digit in Radix r?

Since digit r is not represented, result is (10)r in Radix r

Examples: 12 + 1 = (10)2 78 + 1 = (10)8

910 + 1 = (10)10 F16 + 1 = (10)16

� What is the largest value using 3 digits in Radix r?

In binary: (111)2 = 23 – 1

In octal: (777)8 = 83 – 1

In decimal: (999)10 = 103 – 1

In Radix r:

largest value = r3 – 1

Digital Systems COE 202 – Digital Logic Design © Muhamed Mudawar – slide 26

Important Properties – cont’d

� How many possible values can be represented …

Using n binary digits?

Using n octal digits

Using n decimal digits?

Using n hexadecimal digits

Using n digits in Radix r ?

2n values: 0 to 2n – 1

10n values: 0 to 10n – 1

rn values: 0 to rn – 1

8n values: 0 to 8n – 1

16n values: 0 to 16n – 1

Digital Systems COE 202 – Digital Logic Design © Muhamed Mudawar – slide 27

Next . . .

� Analog versus Digital Systems

� Digitization of Analog Signals

� Binary Numbers and Number Systems

� Number System Conversions

� Representing Fractions

� Binary Codes

Digital Systems COE 202 – Digital Logic Design © Muhamed Mudawar – slide 28

Representing Fractions

� A number Nr in radix r can also have a fraction part:

Nr = dn-1dn-2 … d1d0 . d-1 d-2 … d-m++++1 d-m

� The number Nr represents the value:

Nr = dn-1 × rn-1 + … + d1 × r + d0 + (Integer Part)

d-1 × r -1 + d-2 × r -2 … + d-m × r –m (Fraction Part)

Integer Part Fraction Part

0 ≤ d i < r

Radix Point

Nr = ∑∑ +
j = -mi = 0

d i × r i
i = n -1 j = -1

d j × r j

Digital Systems COE 202 – Digital Logic Design © Muhamed Mudawar – slide 29

Examples of Numbers with Fractions

� (2409.87)10

� (1101.1001)2

� (703.64)8

� (A1F.8)16

� (423.1)5

� (263.5)6

= 2×103 + 4×102 + 9 + 8×10-1 + 7×10-2

= 23 + 22 + 20 + 2-1 + 2-4 = 13.5625

= 7×82 + 3 + 6×8-1 + 4×8-2 = 451.8125

= 10×162 + 16 + 15 + 8×16-1 = 2591.5

= 4×52 + 2×5 + 3 + 5-1 = 113.2

Digit 6 is NOT allowed in radix 6

Digital Systems COE 202 – Digital Logic Design © Muhamed Mudawar – slide 30

Converting Decimal Fraction to Binary

� Convert N = 0.6875 to Radix 2

� Solution: Multiply N by 2 repeatedly & collect integer bits

� Stop when new fraction = 0.0, or when enough fraction bits
are obtained

� Therefore, N = 0.6875 = (0.1011)2

� Check (0.1011)2 = 2-1 + 2-3 + 2-4 = 0.6875

Multiplication New Fraction Bit

0.6875 × 2 = 1.375 0.375 1

0.375 × 2 = 0.75 0.75 0

0.75 × 2 = 1.5 0.5 1

0.5 × 2 = 1.0 0.0 1

First fraction bit

Last fraction bit

Digital Systems COE 202 – Digital Logic Design © Muhamed Mudawar – slide 31

Converting Fraction to any Radix r

� To convert fraction N to any radix r

Nr = (0.d-1 d-2 … d-m)r = d-1 × r -1 + d-2 × r -2 … + d-m × r –m

� Multiply N by r to obtain d-1

Nr × r = d-1 + d-2 × r -1 … + d-m × r –m+1

� The integer part is the digit d-1 in radix r

� The new fraction is d-2 × r -1 … + d-m × r –m+1

� Repeat multiplying the new fractions by r to obtain d-2 d-3 ...

� Stop when new fraction becomes 0.0 or enough fraction digits
are obtained

Digital Systems COE 202 – Digital Logic Design © Muhamed Mudawar – slide 32

More Conversion Examples

� Convert N = 139.6875 to Octal (Radix 8)

� Solution: N = 139 + 0.6875 (split integer from fraction)

� The integer and fraction parts are converted separately

� Therefore, 139 = (213)8 and 0.6875 = (0.54)8

� Now, join the integer and fraction parts with radix point

N = 139.6875 = (213.54)8

Multiplication New Fraction Digit

0.6875 × 8 = 5.5 0.5 5

0.5 × 8 = 4.0 0.0 4

Division Quotient Remainder

139 / 8 17 3

17 / 8 2 1

2 / 8 0 2

Digital Systems COE 202 – Digital Logic Design © Muhamed Mudawar – slide 33

Conversion Procedure to Radix r

� To convert decimal number N (with fraction) to radix r

� Convert the Integer Part

� Repeatedly divide the integer part of number N by the radix r and save
the remainders. The integer digits in radix r are the remainders in
reverse order of their computation. If radix r > 10, then convert all
remainders > 10 to digits A, B, … etc.

� Convert the Fractional Part

� Repeatedly multiply the fraction of N by the radix r and save the
integer digits that result. The fraction digits in radix r are the integer
digits in order of their computation. If the radix r > 10, then convert all
digits > 10 to A, B, … etc.

� Join the result together with the radix point

Digital Systems COE 202 – Digital Logic Design © Muhamed Mudawar – slide 34

Simplified Conversions

� Converting fractions between Binary, Octal, and Hexadecimal
can be simplified

� Starting at the radix pointing, the integer part is converted
from right to left and the fractional part is converted from left
to right

� Group 4 bits into a hex digit or 3 bits into an octal digit

� Use binary to convert between octal and hexadecimal

AC35857

2547421627

Binary10101001111001010110100011010111 .

HexadecimalB . 8

Octal3 .

fraction: left to rightinteger: right to left

Digital Systems COE 202 – Digital Logic Design © Muhamed Mudawar – slide 35

Important Properties of Fractions

� How many fractional values exist with m fraction bits?

2m fractions, because each fraction bit can be 0 or 1

� What is the largest fraction value if m bits are used?

Largest fraction value = 2-1 + 2-2 + … + 2-m = 1 – 2-m

Because if you add 2-m to largest fraction you obtain 1

� In general, what is the largest fraction value if m fraction digits
are used in radix r?

Largest fraction value = r -1 + r -2 + … + r -m = 1 – r -m

For decimal, largest fraction value = 1 – 10-m

For hexadecimal, largest fraction value = 1 – 16-m

Digital Systems COE 202 – Digital Logic Design © Muhamed Mudawar – slide 36

Next . . .

� Analog versus Digital Systems

� Digitization of Analog Signals

� Binary Numbers and Number Systems

� Number System Conversions

� Representing Fractions

� Binary Codes

Digital Systems COE 202 – Digital Logic Design © Muhamed Mudawar – slide 37

Binary Codes

� How to represent characters, colors, etc?

� Define the set of all represented elements

� Assign a unique binary code to each element of the set

� Given n bits, a binary code is a mapping from the set of
elements to a subset of the 2n binary numbers

� Coding Numeric Data (example: coding decimal digits)

� Coding must simplify common arithmetic operations

� Tight relation to binary numbers

� Coding Non-Numeric Data (example: coding colors)

� More flexible codes since arithmetic operations are not applied

Digital Systems COE 202 – Digital Logic Design © Muhamed Mudawar – slide 38

� Suppose we want to code 7 colors of the rainbow

� As a minimum, we need 3 bits to define 7 unique values

� 3 bits define 8 possible combinations

� Only 7 combinations are needed

� Code 111 is not used

� Other assignments are also possible

Example of Coding Non-Numeric Data

Color 3-bit code
Red 000

Orange 001

Yellow 010

Green 011

Blue 100

Indigo 101

Violet 110

Digital Systems COE 202 – Digital Logic Design © Muhamed Mudawar – slide 39

� Given a set of M elements to be represented by a binary code,

the minimum number of bits, n, should satisfy:

2(n - 1) < M ≤ 2n

n = log2 M where x , called the ceiling function, is the

integer greater than or equal to x

� How many bits are required to represent 10 decimal digits with

a binary code?

� Answer: log2 10 = 4 bits can represent 10 decimal digits

Minimum Number of Bits Required

Digital Systems COE 202 – Digital Logic Design © Muhamed Mudawar – slide 40

Decimal Codes

� Binary number system is most natural for computers

� But people are used to the decimal number system

� Must convert decimal numbers to binary, do arithmetic on
binary numbers, then convert back to decimal

� To simplify conversions, decimal codes can be used

� Define a binary code for each decimal digit

� Since 10 decimal digits exit, a 4-bit code is used

� But a 4-bit code gives 16 unique combinations

� 10 combinations are used and 6 will be unused

Digital Systems COE 202 – Digital Logic Design © Muhamed Mudawar – slide 41

Binary Coded Decimal (BCD)

� Simplest binary code for decimal digits

� Only encodes ten digits from 0 to 9

� BCD is a weighted code

� The weights are 8,4,2,1

� Same weights as a binary number

� There are six invalid code words

1010, 1011, 1100, 1101, 1110, 1111

� Example on BCD coding:

13 ⇔ (0001 0011)BCD

Decimal BCD
0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

Unused

1010

···

1111

Digital Systems COE 202 – Digital Logic Design © Muhamed Mudawar – slide 42

Warning: Conversion or Coding?

� Do NOT mix up conversion of a decimal number to a binary

number with coding a decimal number with a binary code

� 1310 = (1101)2 This is conversion

� 13 ⇔ (0001 0011)BCD This is coding

� In general, coding requires more bits than conversion

� A number with n decimal digits is coded with 4n bits in BCD

Digital Systems COE 202 – Digital Logic Design © Muhamed Mudawar – slide 43

Other Decimal Codes

� BCD, 5421, 2421, and 8 4 -2 -1 are weighted codes

� Excess-3 is not a weighted code

� 2421, 8 4 -2 -1, and Excess-3 are self complementary codes

Decimal
BCD
8421

5421
code

2421
code

8 4 -2 -1
code

Excess-3
code

0 0000 0000 0000 0000 0011
1 0001 0001 0001 0111 0100
2 0010 0010 0010 0110 0101
3 0011 0011 0011 0101 0110
4 0100 0100 0100 0100 0111
5 0101 1000 1011 1011 1000
6 0110 1001 1100 1010 1001
7 0111 1010 1101 1001 1010
8 1000 1011 1110 1000 1011
9 1001 1100 1111 1111 1100

Unused ··· ··· ··· ··· ···

Digital Systems COE 202 – Digital Logic Design © Muhamed Mudawar – slide 44

Gray Code

� As we count up/down using binary codes, the number of bits
that change from one binary value to the next varies

000 → 001 (1-bit change)
001 → 010 (2-bit change)
011 → 100 (3-bit change)

� Gray code: only 1 bit changes
as we count up or down

� Binary reflected code

� Gray code can be used in low-power logic circuits that count
up or down, because only 1 bit changes per count

Digit Binary Gray Code
0 000 000
1 001 001
2 010 011
3 011 010
4 100 110
5 101 111
6 110 101
7 111 100

Digital Systems COE 202 – Digital Logic Design © Muhamed Mudawar – slide 45

Character Codes

� Character sets
� Standard ASCII: 7-bit character codes (0 – 127)

� Extended ASCII: 8-bit character codes (0 – 255)

� Unicode: 16-bit character codes (0 – 65,535)

� Unicode standard represents a universal character set

� Defines codes for characters used in all major languages

� Used in Windows-XP: each character is encoded as 16 bits

� UTF-8: variable-length encoding used in HTML

� Encodes all Unicode characters

� Uses 1 byte for ASCII, but multiple bytes for other characters

� Null-terminated String
� Array of characters followed by a NULL character

Digital Systems COE 202 – Digital Logic Design © Muhamed Mudawar – slide 46

Printable ASCII Codes

0 1 2 3 4 5 6 7 8 9 A B C D E F

2 space ! " # $ % & ' () * + , - . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y Z [\] ^ _

6 ` a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { | } ~ DEL

� Examples:
� ASCII code for space character = 20 (hex) = 32 (decimal)

� ASCII code for 'L' = 4C (hex) = 76 (decimal)

� ASCII code for 'a' = 61 (hex) = 97 (decimal)

Digital Systems COE 202 – Digital Logic Design © Muhamed Mudawar – slide 47

Control Characters

� The first 32 characters of ASCII table are used for control

� Control character codes = 00 to 1F (hexadecimal)
� Not shown in previous slide

� Examples of Control Characters
� Character 0 is the NULL character ⇒ used to terminate a string

� Character 9 is the Horizontal Tab (HT) character

� Character 0A (hex) = 10 (decimal) is the Line Feed (LF)

� Character 0D (hex) = 13 (decimal) is the Carriage Return (CR)

� The LF and CR characters are used together
� They advance the cursor to the beginning of next line

� One control character appears at end of ASCII table
� Character 7F (hex) is the Delete (DEL) character

Digital Systems COE 202 – Digital Logic Design © Muhamed Mudawar – slide 48

Parity Bit & Error Detection Codes

� Binary data are typically transmitted between computers

� Because of noise, a corrupted bit will change value

� To detect errors, extra bits are added to each data value

� Parity bit: is used to make the number of 1’s odd or even

� Even parity: number of 1’s in the transmitted data is even

� Odd parity: number of 1’s in the transmitted data is odd

7-bit ASCII Character With Even Parity With Odd Parity

‘A’ = 1000001 0 1000001 1 1000001

‘T’ = 1010100 1 1010100 0 1010100

Digital Systems COE 202 – Digital Logic Design © Muhamed Mudawar – slide 49

Detecting Errors

� Suppose we are transmitting 7-bit ASCII characters

� A parity bit is added to each character to make it 8 bits

� Parity can detect all single-bit errors
� If even parity is used and a single bit changes, it will change the parity

to odd, which will be detected at the receiver end

� The receiver end can detect the error, but cannot correct it because it
does not know which bit is erroneous

� Can also detect some multiple-bit errors
� Error in an odd number of bits

Sender Receiver
7-bit ASCII character + 1 Parity bit

Sent ‘A’ = 01000001, Received ‘A’ = 01000101

