
COE 205 Lab Manual Experiment No 7

COE Department 45 KFUPM (2000)

Experiment No 7

Subroutine Handling Instructions and Macros

Introduction:

In this experiment you will be introduced to subroutines and how to call them. You
will verify the exchange of data between a main program and a subroutine in the 8086
environment. You will also use Macros, and as applications you will deal to a useful
data representation: look-up tables. .

You will need some of the programs developed in previous experiments to rewrite
them in a more structured way.

Objectives:

1- Procedures and Procedure Calls
2- Parameter Passing through Memory, Registers and the Stack
3- Use of Macros
4- Look-up Tables
5- Real-time clock reading,

References:
Textbook:

- Section 3.4,
- Section 3.5,
- Lecture notes.

Macros:

Macro sequences relieve the programmer from retyping the same instructions. They
allow you create your own pseudo language for instruction sequences that often
appear in programming. A macro sequence starts by the MACRO directive and ends
by an ENDM directive. Associated with MACRO is the name of the macro and any
parameters that are carried with the macro to the instructions between MACRO and
ENDM statements. Program 7.3 contains two macros. A MACRO is declared and
used as shown in the following example

DISPLAY MACRO STRING

 MOV DX,OFFSET STRING
 MOV AH,09H
 INT 21H

ENDM

;If “Message”is the string to be displayed, the
; Macro is called as follows:

DISPLAY MESSAGE

COE 205 Lab Manual Experiment No 7

COE Department KFUPM (2000) 46

Macros can be saved in a separate file, to which a name such as “MACRO.INC” can
be given. This file can then be used as a library, and therefore can be included in the
program using the directive INCLUDE, in the following manner:

 INCLUDE MACRO.INC

Provided that both, the program and the macro library are in the same directory.
Alternatively the path has to be specified as follows:

 INCLUDE Path\MACRO.INC

Labels local to a Macro:

When a MACRO contains labels, and the Macro is used more than once in a program,
which is usually the case, the assembler gives the following error: Label referenced
more than once. To avoid such an error, these labels should be made local to the
MACRO, this is done using the following:

DISPLAY MACRO STRING

 Local Label1
 …

Label1:…

 …
ENDM

The Stack:

The stack is a special segment in memory used to facilitate subroutine handling. The
SS register contains the Stack Segment number where the stack is stored. The
".STACK" directive instructs the assembler to reserve a stack segment of a desired
size. For example, to reserve a stack segment of size 80 bytes, “.STACK 50” is used
before the ".CODE" directive. In this case, the “.STACK” directive initializes the
Stack Pointer to 50H. If the “.STACK” directive is missing from a program, the
assembler issues the warning: “LINK: Warning L4021: no stack segment”.

The stack always starts at a high address and grows towards the beginning of the stack
segment at a lower address. When a program starts, the stack is empty, and its size is
zero. The microprocessor stores data on the stack as needed, and uses the SP register
to point to the last item stored on the stack. The stack size dynamically changes as
data is stored or retrieved from the stack.

The stack handling instructions are summarized in Table 7. 1. The PUSH instruction is
used to store the content of a 16-bit register, or memory location, on the stack. It first
decreases the content of SP by two and then stores the data into the two bytes on the
top of the stack. The high order byte of the data goes to the high addressed byte in the
stack.

COE 205 Lab Manual Experiment No 7

COE Department KFUPM (2000) 47

Instruction Example Meaning
PUSH PUSH AX [SP] AH

[SP-1] AL
SP SP –2

POP POP NUM1 [NUM1] [SP]
[NUM+1] [SP+1]
SP SP + 2

PUSHF PUSHF [SP-1] MSB(FR)
[SP-2] LSB(FR)
SP SP –2

POPF POPF LSB(FR) [SP]
MSB(FR) [SP+1]
SP SP + 2

Note: FR = Flag Register

Table 7. 1: Summary of the Satck Handling Instructions

The PUSHF instruction is similar to the PUSH instruction, except that the PUSHF is
used to push the contents of the flag register onto the stack. The POP and POPF
instructions have a reverse action of the PUSH and PUSHF, respectively. The POP
instruction retrieves a word from the stack and then increases SP by two. The POPF
has the same effect, except that the word retrieved is saved to the flag register.

Subroutine calls:

A procedure is a reusable section of the software that is stored in memory once, but
used as often as necessary. The CALL instruction links to the procedure and the RET
(return) instruction returns from the procedure. The Stack stores the return address
whenever a procedure is called during the execution of a program. The CALL
instruction pushes the address of the instruction following the CALL (return address)
onto the stack. The RET instruction removes an address from the stack, so the
program returns to the instruction following the CALL.

With the Assembler (MASM) there are specific ways for writing, and storing,
procedures. A procedure begins with the PROC directive and ends with the ENDP
directive. Each directive appears with the name of the procedure. The PROC directive
is followed by the type of the procedure: NEAR (intra-segment) or FAR (inter-
segment).

In MASM version 6.X, a NEAR or FAR procedure can be followed by the USES
statement. The USES statement allows any number of registers to be automatically
pushed onto the stack and popped from the stack within the procedure.

Procedures that are to be used by all software (global) should be written as FAR
procedures. Procedures that are used by a given task (local) are normally defined as
NEAR procedures.

COE 205 Lab Manual Experiment No 7

COE Department KFUPM (2000) 48

The CALL Instruction:

The CALL instruction transfers the flow of the program to the procedure. The CALL
instruction differs from the jump instruction in the sense that a CALL saves a return
address on the stack. The RET instruction return control to the instruction that
immediately follows the CALL. There exist two types of calls: FAR and NEAR, and
two types of addressing modes used with calls, Register and Indirect Memory modes.

Near CALL:

A near CALL is three bytes long, with the first byte containing the opcode, and the
two remaining bytes containing the displacement or distance of ±32 K. When a
NEAR CALL executes, it pushes the offset address of the next instruction on the
stack. The offset address of the next instruction appears in the IP register. After saving
this address, it then adds the displacement from bytes 2 and 3 to the IP to transfer
control to the procedure. A variation of NEAR CALL exists, CALLN, but should be
avoided.

Far CALL:

The FAR CALL can call a procedure anywhere in the system memory. It is a five-
byte instruction that contains an opcode followed by the next value for the IP and CS
registers. Bytes 2 and 3 contain the new contents of IP, while bytes 4 and 5 contain
the new contents for CS. The FAR CALL instruction places the contents of both IP
and CS on the stack before jumping to the address indicated by bytes 2 to 5 of the
instruction. This allows a call to a procedure anywhere in memory and return from
that procedure. A variant of the FAR CALL is CALLF but should be avoided.

CALLs with register operand:

CALLs can contain a register operand. An example is CALL BX, in which the
content of IP is pushed into the stack, and a jump is made to the offset address located
in register BX, in the current code segment. This type of CALL uses a 16-bit offset
address stored in any 16-bit register, except the segment registers.

Program 7.1 illustrates the use of the CALL register instruction to call a procedure
that begins at offset address DISP. The offset address DISP is placed into the BX
register, then the CALL BX instruction calls the procedure beginning at address
DISP. This program displays “OK” on the monitor screen.

CALLs with Indirect Memory Address:

A CALL with an indirect memory address is useful when different subroutines need
to be chosen in a program. This selection process is often keyed with a number that
addresses a CALL address in a lookup table.

Program 7.2 shows three separate subroutines referenced by Number 1,2 and 3 as read
from the keyboard. The calling sequence adjusts the value of AL and extends it to a
16-bit number before adding it to the location of the lookup table. This references one

COE 205 Lab Manual Experiment No 7

COE Department KFUPM (2000) 49

of the three subroutines using the CALL TABLE[BX] instruction. When this program
executes, the letter A is displayed when a 1 is typed, B if 2 and C if 3 is typed.

The CALL instruction can also reference far pointers if the data in the table are
defined as double-word data with the DD directive, using the CALL FAR PTR[SI] or
CALL TABLE[SI] instructions. These instructions retrieve a 32-bit address from the
data segment memory location addressed by SI and use it as the address of a far
procedure.

Parameter Passing:

To pass data (parameters) between the main program and the routines, data may be
left in the general-purpose registers. This method has the disadvantage of changing
the contents of the registers every time the subroutine is called. A more elegant way is
to exchange data through the stack, or through memory. The data to be passed to a
subroutine is saved in the memory before calling the subroutine. All the registers that
need to be saved, and are used by the subroutine, should also be saved and retrieved
afterwards.

Instruction Example Effect
CALL CALL SQRT [SP-1] 34

[SP-2] 5B
SP SP-2
IP 34A0

RET RET LSB(IP) [SP]
MSB(IP) [SP+1]
SP SP + 2

Note: Assuming SQRT is a Near Procedure, starting at CS:34A0H, and the instruction

CALL is at CS:345BH.

Table 7. 2: Summary of the Subroutine Handling Instructions

Reading the System Date: Function 2AH, INT 21H:

Function 2AH of Interrupt INT 21H is used to read the system date. It returns the Day
of the week in AL register, the year in CX register, the month in DH register and the
day of the month in DL register. Note that as indicated in Table 7. 3, the returned
values are in hexadecimal format, which, in order to be displayed, need to be
converted to decimal, as indicated in experiment 5.

COE 205 Lab Manual Experiment No 7

COE Department KFUPM (2000) 50

Effect: Read system date
 Function

ENTRY Exit

AL = Day of the week CX = Year (1980-2099) 2AH AH = 2AH
DH = Month DL = Day of the month

Note The day of the week is encoded as Sunday = 00 through Saturday = 06.
The year is a binary number equal to 1980 through 2099.

Table 7. 4: Read Time and Date Function: 2AH, INT 21H

Note on the use of the XLAT instruction:

The XLAT instruction adds the contents of AL to the contents of BX to form an
address in a look-up-table. It then transfers the contents of the data at that address
[BX+AL] to the AL register.

 MOV BX, OFFSET TABLE ; BX Offset TABLE
 MOV AL, INDEX ; AL Index of the element in table
 XLAT ; AL [BX+AL]
 ; AL will contain the data in TABLE at index INDEX.

COE 205 Lab Manual Experiment No 7

COE Department KFUPM (2000) 51

Pre Lab Work:

1. Write, assemble, link and run program 7.1 and 7.2. Try to understand how
the different routines are written and how they are called. See also how the
different procedures pass parameters between them.

2. Write, assemble, link and run program 7.3. See how Macros are used.
3. Rewrite program 6.1, from Experiment 6, using Procedures and Macros.

Call it program 7.4.
4. Bring your work to the lab.

Lab Work:

1- Show programs 7.3 and 7.4 to your lab instructor.
2- Modify program 6.3, from experiment 6, using Procedures and Macros.

Call it program 7.5.
3- Program 7.4 reads a string and encrypts it. Complete the program and use

Macros and Procedures.
4- Modify Program 7.4, so that it reads an encrypted string and converts it

back to the original one. Write this program using procedures and Macros.
Call it program 7.6.

Lab Assignment:

DOS Function 2CH reads the system time, and works as described below:

MOV AH,2CH
INT 21H
; and returns (in binary) the time as follows:
CH: hours (0-23);
CL: minutes (0-59);
DH: seconds (0-59); and
DL: hundredths of a second.

Use program 7.3, and the above function, to develop a program that reads the date,
and displays it in the following format:

Today is: Sunday 24/October/1999, The Time is: 12:02:32

Make the program loop for a large number of times, so that you can see the time
changing.

COE 205 Lab Manual Experiment No 7

COE Department KFUPM (2000) 52

TITLE “Program 7.1”
; a program that display OK on the monitor screen using procedure DISP

 .MODEL TINY ; select TINY model
 .CODE ; indicate start of CODE segment
 .STARTUP ; indicate start of program

 MOV BX, OFFSET DISP ; address DISP with BX
 MOV DL, 'O' ; display 'O'
 CALL BX
 MOV DL, 'K' ; display 'K'
 CALL BX
 .EXIT ; exit to DOS
;
; a procedure that displays the ASCII contents of DL on the monitor screen.
; **
DISP PROC NEAR
 MOV AH, 2 ; select function 02H
 INT 21H ; execute DOS function
 RET ; return from procedure
DISP ENDP

END ; end of file
; ___

TITLE “Program 7.2”
; program that uses a CALL lookup table to access one of three different procedures:
; ONE, TWO, or THREE.

.MODEL SMALL ; select SMALL model

.DATA ; indicate start of DATA segment

TABLE DW ONE ; define lookup table
 DW TWO
 DW THREE

.CODE ; indicate start of CODE segment
 ONE PROC NEAR
 MOV AH, 2 ; display a letter A
 MOV DL, 'A'
 INT 21H
 RET
ONE ENDP

TWO PROC NEAR
 MOV AH, 2 ; display letter B
 MOV DL, 'B'
 INT 21H
 RET
TWO ENDP

COE 205 Lab Manual Experiment No 7

COE Department KFUPM (2000) 53

THREE PROC NEAR
 MOV AH, 2 ; display letter C
 MOV DL, 'C'
 INT 21H
 RET
THREE ENDP

; Start of Main Program
 .STARTUP
TOP:
 MOV AH, 1 ; read key into AL
 INT 21H
 SUB AL, 31H ; convert from ASCII to 0, 1, or 2
 JB TOP ; if below 0
 CMP AL, 2
 JA TOP ; if above 2
 MOV AH, 0 ; form lookup address
 MOV BX, AX
 ADD BX, BX
 CALL TABLE [BX] ; call procedure ONE, TWO, or THREE
.EXIT ; exit to DOS
END ; end of file
; ___

TITLE “Program 7.3”
; This program uses the function read time and displays the current day

.MODEL SMALL ; select SMALL model
.STACK 100
.DATA
 CRLF DB 0DH,0AH,'$'
 PROMPT1 DB 'Today is : ','$'

 DAY DW D0,D1,D2,D3,D4,D5,D6
 D0 DB ‘SUNDAY’,’$’
 D1 DB ‘MONDAY’,’$’
 D2 DB ‘TUESADY’,’$’
 D3 DB ‘WEDNESDAY’,’$’
 D4 DB ‘THURSDAY’,’$’
 D5 DB ‘FRIDAY’,’$’
 D6 DB ‘SATURDAY’,’$’

.CODE
.STARTUP

; Display Prompt1
MOV AH, 2AH ;GET SYSTEM DATE

 INT 21H
 MOV SI, OFFSET DAY
 MOV AH, 00
 ADD AX, AX
 ADD SI, AX
 MOV DX, [SI]
 MOV AH, 09H
 INT 21H

 LEA DX, CRLF ;MOVE CURSOR TO NEXT LINE
 MOV AH, 09H
 INT 21H
.EXIT
END

COE 205 Lab Manual Experiment No 7

COE Department KFUPM (2000) 54

 TITLE “Program 7.4”

; This program reads a string of 200 characters max. and encrypts it.

.MODEL SMALL
.STACK 100
.DATA
 CRLF DB 0DH,0AH,'$'
 PROMPT1 DB 'Enter a string : ','$'
 STRING DB 100 DUP(?)
 CODED DB 100 DUP(?)
 UTAB DB 'MNBVCXZLKJHGFDSAPOIUYTREWQV'
 LTAB DB 'bgtnhymjukilopvfrcdexswzaq'

.CODE
.STARTUP

; DISPLAY PROMPT1

 ; Read a string from the keyboard, save it in the array STRING

; Scan the string STRING, and do the following:
; if character is an upper case letter
; that is:
; if AL >= 'A' and AL =< 'Z'

 MOV BX, OFFSET LTAB

 SUB AL, 41H
 XLAT
 ; Save the character in AL in the array CODED.
 ; if character is a lower case letter
 ; i.e.
 ; if AL >= 'a' and AL =< 'z'
 MOV BX, OFFSET UTAB
 SUB AL, 61H
 XLAT
 ; Save the character in AL in the array CODED.
 ; MOVE CURSOR TO NEXT LINE

; Display the array CODED.
; exit to DOS

END

