
COE 205 Lab Manual Experiment No 3

COE Department KFUPM (2000) 17

Experiment No 3

Segmentation and Addressing Modes

Introduction:

In this experiment you will be introduced to physical segmentation of the memory,
and the logical segmentation of programs. You will also deal with the different
addressing modes, and learn how to calculate the physical and offset addresses.

Objectives:

1- Addressing modes in the 8086 processor
2- Segmentation: Physical Segments and Logical Segments.

References:
Textbook:

- Addressing modes: section 4.3,
- Segmentation: section 3.1,
- Lecture notes.

Addressing Modes:

The following table summarizes all addressing modes used by the 8086 processor.

Source operand
Assuming: DS = 1000H, BX = 0200H, SI = 0300H

Addressing
Mode

Example

Type Address Generation Addres
s

Register MOV AX,BX Register - -
Immediate MOV AX, 0F7H Immed. - -
Direct MOV AX,[1234H] Mem. DS x 10H +1234H 11234H
Register-Indirect MOV AX,[BX] Mem. DS x 10H +0200H 10200H
Based MOVAX,[BX+06] Mem. DS x 10H +0200H + 0006H 10206H
Indexed MOVAX,[SI+06] Mem. DS x 10H +0300H + 0006H 10306H
Based-Indexed MOV AX,[BX+SI+06] Mem. DS x 10H +0200H +0300H + 0006H 10506H

Table 3.1: Addressing modes

Structure of an Assembly Language Program:

An assembly language program is written according the following structure and
includes the following assembler directives:

COE 205 Lab Manual Experiment No 3

COE Department KFUPM (2000) 18

TITLE “Optional: Write the Title of your program”
 .MODEL SMALL

Assembler directive that defines the memory model to use in the program.
The memory model determines the size of the code, stack and data segments
of the program

 .STACK

Assembler directive that reserves a memory space for program instructions
in the stack

 .DATA

Assembler directive that reserves a memory space for constants and variables

 .CODE

Assembler directive that defines the program instructions

 END

Assembler directive that finishes the assembler program

Each of the segments is called a logical segment. Depending on the memory, the code
and data segments may be in the same or in different physical segments according to
table 3.3.

Memory
Model

Size of Code and Data

TINY Code and data no more than 64KB combined
SMALL Code and data segments must be no more than 64KB each
MEDIUM Code can be more than 64KB, data still limited to no more than

64KB
COMPACT Code limited to no more than 64KB, data can be more than

64KB
LARGE Code and data can each be more than 64K, no array can be

larger than 64KB
HUGE Code and data can each be more than 64KB, arrays can be

larger than 64KB

Table 3.3: Memory Models

COE 205 Lab Manual Experiment No 3

COE Department KFUPM (2000) 19

Stack Directive:

- Directive is .stack for stack segment
- Should be declared even if program itself doesn't use stack needed for

subroutine calling (return address) and possibly passing parameters
- May be needed to temporarily save registers or variable content
- Will be needed for interrupt handling while program is running

Memory allocation:

- Directive is .data for data segment
- All variables must be declared, and memory space for each allocated.
- Data definition directive can be followed by a single value, or a list of

values separated by commas
- Different data definition directives for different size types of memory

1. DB - define byte (8 bits)
2. DW - define word (16 bits)
3. DD - define double word (32 bits)
4. DQ - define quad word (64 bits)

Code Segment:

- Directive is .code for code segment
- The "program" resides here

End of Program:

- Directive is End
- Tells assembler that this is the end of the program

Note:

The sequence of instructions at the beginning of a program used to assign the data
segment:
 MOV AX, @DATA
 MOV DS, AX

May be replaced by the following directive:

.STARTUP

which assigns both DATA and CODE segments, and hence no warning will be issued
by the assembler. However, it should be noted that the program would start at address
CS:0017h. The Startup directive occupies the bytes CS:0000 to CS:0017.

Identically, the sequence used to terminate and exit to DOS can be replaced by the
.EXIT directive, which has exactly the same effect.

COE 205 Lab Manual Experiment No 3

COE Department KFUPM (2000) 20

Pre Lab Work:

1. Study the attached hand out, and review the material related to
 segmentation and addressing modes.

2. Write programs 3-1 and 3-2
3. Write the program given in assignment.
4. Fill in the tables associated with the different programs.
5. Bring your work to the lab.

Lab Work:

1- Assemble, Link and Run program 1.
2- Use CodeView Debugger to fill in the table associated with program 3.1.
3- Calculate both the effective and physical addresses of each instruction. Put

the results on the given table.
4- Assemble, Link and Run program 2.
5- Fill in table 2, associated with program 2, in which you specify only the

addressing mode, for both source and destination, for each instruction.

6- Show all tables to the instructor.
7- Submit all your work at the end of the lab session.

Lab Assignment:

Write a program that prompts the user to enter a string, in capital letters, of a
maximum length of 20 characters. Read the string in capital letters and convert it to
small letters. Then display the new string.

Note:
To convert a capital letter to a small one, use the following instruction:

;Read character
MOV AL, character_read
ADD AL, 20H
; Display character in AL register

Use the following to loop through the string you just entered.

 MOV CX, Number_of_bytes_read

Again: Start loop here
 ; Convert to small letters.

 LOOP Again

COE 205 Lab Manual Experiment No 3

COE Department KFUPM (2000) 21

; This program displays a string terminated by a $ sign using INT 21H function 09H.

TITLE “Program 3-1”
.MODEL SMALL

.STACK 200
.DATA
 MESSAGE DB 'This is the message to be displayed: ', '$'
 MESSAGE2 DB 0dh, 0ah, 'The message you just entered : ' , '$'
 BUF DB 10 ; Number of characters to be read
 DB 11 DUP('$') ; Reserve 10 bytes for string

.CODE
 MOV AX,@DATA
 MOV DS,AX

 LEA DX,MESSAGE
 MOV AH,09H
 INT 21H
 MOV AH, 0AH
 MOV DX, OFFSET BUF
 INT 21H

 LEA DX,MESSAGE2
 MOV AH,09H
 INT 21H

 LEA DX, BUF
 Add DX,02
 MOV AH,09H
 INT 21H

 MOV AX,4C00H
 INT 21H
END

COE 205 Lab Manual Experiment No 3

COE Department KFUPM (2000) 22

TITLE “PROGRAM 2 EXPERIMENT 3”
; This program displays a message and reads a new message from the keyboard

.MODEL SMALL
.STACK 200
.DATA

CRLF DB 0DH,0AH,'$'
 PROMPT DB 'Enter a name of max. length 30 char.: ',0DH,0AH,'$'
 STRING1 DB 'Mr. ','$'
 STRING2 DB ' studies 8086 programming. ','$'

; Allocate 32 bytes for BUFFER, and put the value 31 in the second byte.
BUFFER DB 31,32 DUP(?)

.CODE
.STARTUP ;This directive initializes the DS and CS segments.
 LEA DX,PROMPT ;display prompt
 MOV AH,09H
 INT 21H

 MOV AH,0AH ;read into buffer

LEA DX, BUFFER
 INT 21H

LEA DX, CRLF ;move cursor to next line
 MOV AH,09H
 INT 21H

 LEA DX,STRING1 ;display string1
 MOV AH,09H
 INT 21H

 ;now display the buffer i.e. what has been read.

 MOV AH,09H
 MOV BH,00H
 MOV BL,BUFFER[1] ;move in BL buffer length
 MOV BUFFER[BX+2],'$' ;put a $ sign at the end of buf
 LEA DX,BUFFER[2] ;load actual length of buffer
 INT 21H

 LEA DX,STRING2 ;display string2
 MOV AH,09H
 INT 21H

 LEA DX, CRLF ;move cursor to next line
 MOV AH,09H
 INT 21H

MOV AH, 02H ; display number of characters read if less than 10
 MOV DL,BUFFER[1] ; read second byte of buffer
 ADD DL, 30H ; convert to number
 INT 21H
 MOV AX,4C00H
 INT 21H
END

