

Lab-200 Guide

Welcome to COE-200 Digital Logic Design Laboratory. This lab
will introduce you to the exciting world of digital system design.

The field or rather art of designing digital systems has brought
about profound changes in every sphere of our lives. Most of us
are aware of the importance of some pervasive digital devices like
digital-watches, calculators, personnel-computers, digital-
notebooks etc. But more interestingly, digital devices have made
deep inroads in nearly every electronic device we are aware of
(rewrite). Digital systems are used in broad spectrum of areas
ranging from industry, military, household automation & control to
home multimedia devices (rewrite). Such devices incorporate mini
digital processing machines and are said to have embedded
(invisible) systems.

Due to the widespread and complex use of digital devices, there
always existed a constant drive to cut the design time and increase
their design efficiency. The classic paradigm of designing using
individual ICs (Integrated Circuits) is far lagging the pace and thus
(in terms of design time) increasingly being replaced by automated
design procedures. Today, rapid prototyping and development of
embedded systems have become a reality through the use of
FPGAs (Field Programmable Gate Arrays) and front-end tools.

The purpose of this lab is at one end to introduce students to digital
logic, a hands-on-practice for digital designing and at the other end
to familiarize them with the high-level design process.

We hope that this would be an interesting journey.

 1

1. Introduction

Xilinx
Xilinx is leader of

programmable ICs, FPGAs,
provider

www.xilinx.com/

Front-End Tools
GUI Based tools that

streamline digital design
process using either

schematics or Hardware
Description Languages

(HDLs)

Figure 1.1: Design
Flow

In this lab, you would be designing digital systems
applying your design knowledge acquired through
course work. You will be using Xilinx’s front-end tool,
Xilinx Foundation Series 2.1i software (XF), to enter the
design using its schematic drawer. To verify that your
design is correct and that you have implemented
(connected) it properly, you would then be simulating
the design using internal simulator of XF 2.1i and check
for functional correctness. After on-screen verification
of the design, you are required to download it on
Digilent Board and do the hardware verification. For
downloading, you would be using software provided in
the suit of Xilinx ISE 4.2i.

The above two Xilinx softwares are available as
shortcuts in the program menu of your PCs and are in
the folder Start-Menu/Programs/Xilinx. Their names are
the Project-Navigator and the Program. Project
Navigator is the Xilinx 2.1i interface and Program is
Xilinx 4.2 design downloader. The two softwares are
used because of incompatibility problem associated
with older 2.1 editions while downloading the design
and inability of 4.2 editions to support schematic entry
for Spartan devices (Spartan device is the FPGA chip on
the Digilent board).

Thus your design process involves interaction with Xilinx
software and Digilent hardware that contains Xilinx
FPGA. In a few labs, you would also be interfacing a
few external ICs with the board using the accompanying
breadboard.

The design outline is also pictorially presented in Figure
1.1.

 2

http://www.xilinx.com/

2. The Software

Info

Xilinx Foundation Series
offers a wealth of online

documentation and
multimedia tutorials.

FPGA

The FPGA device has an
array-like architecture
and is volatile (SRAM
based). It is good to
realize complex logic
functions that contain

both combinational and
sequential circuits. Its

capacity is usually
limited by the number of
input/output pins and not

by its complexity.

CPLD

Complex Programmable
Logic Device has a PAL-

like architecture and is
non-volatile. It gives

relatively good
performance (up to 250
MHz) and is well suited
for combinational logic

circuits and control logic
of medium complexity

(up to about 10,000 logic
gates).

HDL

A hardware description
language allows you to
describe the behavior of

a system rather than
specifying individual

gates. There are several
popular hardware

description languages
such as VHDL, Verilog

and ABEL.

The Xilinx Foundation© CAE (Computer Aided Environment) system is
a development tool that consists of an integrated set of programs to
create, simulate and implement digital designs in a FPGA or CPLD
target device. All the tools use a graphical user interface (GUI) that
allows all programs to be executed from toolbars, menus or icons.
On-line help is available.

Designs can be entered in two basic modes: Schematic and HDL
(Hardware Description Language) mode. This lab requires you to
specify the designs using schematic mode. Schematic entry flow is
presented in Figure 2.1.

Figure 2.1: Schematic Flow

 3

1.1 Project Manager
Xilinx Foundation Series project manager is an integrated development
environment (IDE) that provides coordination among the different tools that
come with the package.

Project manager can be invoked from the Start menu. Start the project
manager with a new project command (also available in the file menu) and
enter the design name and the directory to store it. (Hint: It is a good practice
to make a new directory under \Projects with its name being the same as that
of your current experiment). Also specify the name of the project. Choose
other options as shown in Figure 2.2.

Figure 2.2: New Project Settings

The Digilab boards on which we are going to download our designs have a
Spartan™ family FPGA whose device number is S10. The remaining part of the
string (S10PC84), which is PC84 in the device names, indicates that it has a pin-
count of 84. The ‘3’ in the last box represents the speed grade of the device.
You can also confirm these markings from the FPGA installed on the board
provided to you.

Once you have specified the above information, project manger opens and your
screen would look like the snapshot shown in Figure 2.3.

When you create a new project e.g. myproj, the Foundation tools will create
some extra files whose description follows:

 A project configuration file (PDF), called Project Description File (myproj.pdf)

 The project library file (myproj), which contains information of the design

 The simulation library file (simprims), which contains information regarding
simulation

 Device library file, which is the library of the device being used. In the present
case it would show ‘spartan’

 4

The libraries are shown in the left window-pane (called the Hierarchy browser)
of the Project Manager. A project must always have one or more top-level
design files. In case the top-level cell is a schematic, the file will be shown in
the hierarchy browser with an extension .sch (not yet present in our diagram).
The foundation tools will create additional folders and files during different
stages of the project design/implementation.

Figure 2.3: Project Manager Window

The right window-pane in the Project Manager has several tabs. The Flow tab
graphically shows the different steps involved in the design of a project as was
shown schematically in Figure 2.1. You can click on the icons to access a
particular tool, as we will be seeing later. The bottom window-pane (status
pane) gives status and error or warning messages.

In case a library is missing (e.g. the device library), the tools will give you a
warning. This will also show up when you try to open the schematic, as symbols
will be missing or blanked out. If that happens, you can add the library to the
project. In the Project Manager, go to File\Project-Libraries. This will open the
Project Libraries window, shown in Figure 2.4. The left side panel shows the
"Attached Libraries" and the right side windows the Project Libraries. If any of
these are missing, you can add them from the list in the left side window. For
using Digilab board, which contains a Spartan device, we would only be
concerned with the three libraries that are being displayed in the project
libraries list in Figure 2.4. Add any library if missing.

 5

Figure 2.4: Project Libraries

1.2 Design Entry using Schematics Editor
Schematics editor can be invoked by clicking on its icon in project manager. Schematics
Editor’s window appears (Figure 2.5). Throughout the lab, we would be using
schematics editor to design our systems. We will now see how to use various features of
schematics editor to design our labs.

Figure 2.5: Schematic Editor

 6

Placing Symbols
Tip

To place a symbol

that is already present
in the schematic sheet,

simply click on the
previous instantiation

and click anywhere
you like to place the

new symbol.

You can add the logic symbols by clicking on the Symbol
Toolbox (Symbols icon) in the toolbar on the left. An SC
Symbols Toolbox will pop up (Figure 2.6). You can scroll down
the list and select your symbol or type the symbol name at the
bottom box of the list. Notice that a brief description of the
selected symbol appears at the bottom. You can now place
the gate with your cursor on the schematic by clicking the
mouse.

Drawing and Naming Wires
To connect one gate to the other, use the Draw Wire feature available in the
toolbox. This can be done by clicking on the wire symbol just below the Symbol
Toolbox icon of the left side toolbar. The shape of the cursor will change into
a pencil-like image upon its selection. To connect two symbols through a wire,
click on the first symbol’s input/output pin after entering the draw-wire mode
and then click on the pin you want to connect to. All symbols must be
connected with wires (Figure 2-7).

You can name a wire by clicking on the
"Name Wire Icon" just below "bus" icon on
the vertical toolbar. Type in a name in the Net
Name window and put the cursor over the
location of the wire. Make sure you point to
the wire that you want to name; otherwise the
name will not be connected to anything. Always fill out the net
name between the IO pads and buffers. Net names should appear
in blue (green names indicate that the name is not connected to a
net).

Tip

A shortcut to
naming nets is

double clicking on
the net

1.2.1.1 Tip
You can make a mirror

copy of a symbol by
pressing Ctrl+M or rotate
it by pressing the Ctrl+L.

1.2.1.1.1 Tip
To make sure that the

wires are properly
connected, try

moving components
around. The

connected wires will
move along with them

Figure 2.6: SC Symbols

 Figure 2.7: Connecting the wires
7

Info

The SC Symbols Toolbox provides library primitives of the
selected device. In other words, it provides components that

directly map to the device architecture. Make sure that Spartan
device is selected as you place the symbols.

Tip

To redraw the screen,
press the F10 function

key.

Adding IO Pads and Buffers
For taking outputs or applying inputs externally through
the boundaries of FPGA, you need to route your input
signals through an input pad and buffer before applying it
to the logic. Similarly the output signals have to be taken
through output buffer before applying to the output pad.

You can add buffers and IO-pads in
the same manner as you place
individual components. All device
pins MUST be represented with one
of these I/O pads. Pads should be
given a name (label) and possibly a
pin number (pin location).

IB
OBU

Y
cloc
spe
buf

IO-Pads

IPAD: Input Pad
OPAD: Output Pad

IOPAD: Input/Output
Pad

Drawing and Using Buses
Schematic editor allows you to
include buses in your design. A
bus can be added by using ‘Draw
Buses’ icon in the Symbols
toolbox. Click on any part of the
schematic where you want to
introduce bus. Double clicking

will terminate the bus along
screen asking you to define
the bus you just made. T
defined in Figure 2.8 defin
type Input having 8 bit-widt
and LSB is bit 0. Similarly
directional buses can be crea

Figure 2.9: A 7-Bit Input Bus

Figure 2.8: Bus Prop

IO Buffers

UF: Input Buffer
F: Output Buffer
Info

ou need to route
k inputs through a
cial global clock
fer having name

‘BUFG’

 with a pop-up
parameters for
he parameters
e a bus IN of
h, MSB is bit 7
output and bi-
ted.

erties

8

Once a bus has been created, you need to put input or output buffers
depending on the direction of data, the bus is transmitting. After that,
connect the buffers with the bus using ‘bus taps’ tool found in the toolbox just
below the bus tool. Rename the connections so they reflect the bit they are
carrying. An example of 7-bit input bus (IN[6:0]) is shown in Figure 2.9.

Pin Assignment
The pins on the FPGA are connected on
specific locations on the prototype board.
Pin assignment is necessary while taking
input from a particular location, for
example input buttons. Similarly the
outputs have to be routed on particular
pins to get them displayed on seven-
segment displays or LEDs that are
hardwired to some pin location on FPGA
(See pin assignment detail of Digilent
board later in the document).

You can assign pin numbers to each input
and output pad. If you don't do this, the
tool will automatically assign the pin
numbers for you.

There are several ways you can assign pin
numbers. First, you can place the pin
numbers on the schematic using the ‘LOC’
property. This is done by double clicking
on the PAD symbol. In the pop-up Symbol
Properties window (see Figure 2.10),
enter (or select from drop down list) Parameter Name: LOC in the paramete
section, and pin number as P#, where # represents the pin number as show
in the figure (the letter P is required in front of the number). Click on the AD
button. Two diamonds will appear next to the description just added in th
list. Click OK when finished.

1.1.1.1.1.1.1 Figure 2.10:

An alternative way is to assign pin numbers using Constraints Edit
(Tools\Implementation\Constraints Editor from Project Manager ma
window). For editing constraints like pin assignment, first finish yo
schematic and exit it after saving and generating its netlist (more on saving an
generating netlist follows). If the option of constraints editor appears in gra
in the project manager window then compile the project once and then use th
constraints editor (See later pin assignment using constraints editor).

rs
n
D
e

or
in
ur
d
y
e

9

Adding Designer’s Name, Project Title and Date
It is good practice to specify a name to your design. There is a standard way of
doing so. Go to the bottom of the page and fill out the small rectangle. If the
box has a predefined name, you can change this by going to the File\Table
Setup. You can now change the Address, Name, Description, Date, etc.

Netlist and Integrity Test
You will need to generate a netlist, which is in a format that is readable by the
compiler. This is done by going through Options\Create Netlist. When finished,
it is always a good idea to check that the schematic has no electrical design
rule errors. This is done through invoking Options\Integrity-Check. A message
indicating the success of integrity test appears as shown in Figure 2-13.

Debugging
If there are any errors/warnings while
performing the integrity test or during
compilation, they will get displayed in the
status pane of the project manager. To
easily locate any nets causing
error/warning, you may change the mode
into ‘Query’ (Mode\Query) in the schematics
editor. A SC Query/Find window will appear
as shown in Figure 2.11. You can now click
on the various nets and components in
schematics editor to locate the problem
(Figure 2.12). Alternately, you can also put
the name of the net that is causing the
problem in the text box of SC Query window
with proper selection of type of device.

Figure 2.11: SC Query/Find
Window

Tip

Most of the warnings are due to improper connections. Make sure you have
removed the problem by performing integrity check before proceeding to
compile the design.

Save your schematic
Use File\Save option to save your schematic with ‘.sch’ extension. When
finished with the schematic, exit the Schematic capture program, which will
bring you back to the Foundation Program Manager window.

 10

Figure 2.12: Debugging using Query Mode

Adding the schematic to the project
If the created schematic is not listed in the Project Manager window under the
Project you created (e.g., myproj.sch), add it manually using Document\Add in
the Project Manager window.

 11

Figure 2.13: An Integrity Tested Schematic

1.3 Creating Macros
Often, you will use a circuit (consisting of different logic gates) again and
again, for example, a seven-segment decoder or a full adder. Instead of
drawing the full logic again, it would be more efficient to make a module or
macro of it with its own symbol. This macro can then be added to library and
can be used like other available devices. A macro hides all the underlying logic
and simplifies the design by providing only the interface signals for use in the
design. The macro then gets added to your symbol library. You can use it like
you use ordinary symbols of the library.

A macro’s creation is essentially the same as creating the schematic with just
two main differences.

Since the output of the macro need not be routed outside the FPGA, you don’t
need to add input/output buffers (IBUF, OBUF).

You do not use IPADs or OPADs for the input and output ports. Use I/O
terminals instead to indicate the input and output I/Os (More on this later).

 12

A macro can be created by three different methods

Using Symbol Wizard
By using this method, the wizard automatically adds I/O terminals and adds the
symbol in the library for you. What remains is to draw the logic of the macro.

From an Existing Schematic
You might face a situation where you want to convert an existing schematic
into macro. Here you will need to manually replace the I/O Pads and Buffers
with I/O terminals and add the macro to the symbol library.

Creating Schematic First
This is essentially the same as creating macro from the schematic. The only difference is
instead of replacing I/O Pads and Buffers from the schematic with I/O terminals, you add
I/O terminals directly.

1.3.1 Using Symbol Wizard
Open the Schematic Entry tool by clicking on the Schematic Entry icon in the
Project Manager Window.

In the Schematic Entry window, go to the Tools\Symbol Wizard. A Wizard will
guide you through by asking several questions.

 For the Symbol Name, type in the name you want to give, e.g. 7Decoder
(for seven segment decoder). Select the Schematic for Contents.

 Then click the NEXT button. Specify, by filling in, the names of the
input and output ports. When all input and output ports have been
defined, click the NEXT button. Follow the instructions.

 When finished click the FINISH button.

The symbol will now be created and added to the project library. An underlying
design file will also be created that has the defined port names. The
schematic editor will open showing an empty schematic page for the macro,
except for the input and output pins. Then, you draw the logic for the macro
in the same way as you draw a new schematic.

1.3.2 Using an existing schematic as a macro
In case you created a schematic as part of another project and would like to
use this schematic as a macro in a new project you can do so. The steps are as
follows:

 First you will have to add the old schematic to the current (new)
project. In the Project Manager window, go to the File\Add Document
menu. Use the browser to locate the schematic of interest. When done,
you will see that the schematic has been added to the project in the left
window page (Files tab). Let’s assume that the schematic is named
TEST1.sch.

 13

 You may want to modify this schematic, e.g., to change the pin names,
replace input PADS (IPADS) by I/O terminals and remove buffers (BUF).
Remember that for macros you do not use IPADs or OPADS (these
indicate the physical pins of the device) but I/O terminals

 Next you need to create a macro from the schematic. This is done as
follows: go to Hierarchy\Create Macro Symbol from Current Sheet. A
window will pop up. You can change the name of the macro, and add a
brief description in the comment line. Let’s call the macro MACRO1. You
can also check the input and output signals. Click OK.

 When you convert the schematic TEST1.sch into the macro MACRO1,
there is no longer any relationship between the schematic TEST1.sch and
the project, even though you can still open the schematic TEST1.sch.
You can remove the schematic from the project directory using the
Windows Explorer.

1.3.3 I/O Terminals
You can add I/O terminals (pins) by clicking on the I/O Terminal icon (hierarchy
connector) on the left-hand side of the toolbar or at the top of the SC Symbols
window. A pop-up Terminal window will open. Fill out the name of the
terminal (ex. X, Y or Z) and indicate whether it is an Input or Output port. Be
careful to indicate the right direction for the inputs and outputs.

1.4 Simulation
Design verification is an important aspect of project design. Powerful
simulators are available that help check each and every design unit before its
download and chip verification.

Simulation is of two types, functional and timing simulation. The position for
either type of simulation is shown in Figure 2.1. Functional simulation is
concerned with logic verification of the design so as to ascertain the correct
operation of the required logic. Apart from this, timing simulation also utilizes
gate level delays of the device type selected in showing the output. Thus,
timing simulation requires information of the chip as well as the design for its
working. Hence it is carried out after the chip has been compiled for a
particular device. The method of performing either type of simulation is pretty
much the same with some extra steps included in the latter for timing analysis.
Both types of simulations are discussed in this guide though our major focus in
labs would be to simulate functionally.

1.4.1 Functional Simulation
Invoke the simulator either from the project manager or through its icon in the
schematics editor. The simulation window appears as shown in Figure 2.14.

 14

Figure 1.14: Simulator Window

Below are the steps you need to perform simulation.

Adding Signals
To simulate the circuit and probe if it is working correctly, you need to add the
signals you need to view. The signals added are displayed in the signals pane
and their simulation waveforms in the waveform pane. We proceed inputting
the signals by clicking on the component selector button in the toolbox. The
component selector window appears as shown in Figure 2.15. Select the signals
to view and while selected right click to add the signals in the signals pane.

 15

Figure 2.15: Component Selector

An alternate way to add signals is to add probe in the schematics window at
the wires you wish to include in the signals pane. You can invoke schematics
editor within simulator by clicking on the schematic capture icon in the
toolbox. Schematics editor will open along with schematic probes (SC probes
toolbox). You can add probes on any wire in the schematic by selecting the
probe tool in the SC probes toolbox and clicking on the nets you wish to be
included in the simulator (Figure 2.16).

 16

Figure 2.16: Adding Probes in Schematic Editor

Adding Stimuli
After the signals have been added, you can apply stimuli to input signals and
view the behavior of the circuit on your chosen set of inputs.

Xilinx Foundation Series in-built simulator provides many ways to apply the
stimuli. One of the best ways is to use ‘stimulator selection’. Click on the
stimulator icon in the toolbox to view the ‘stimulator selection’ window (Figure
2.17).

 17

Figure 2.17: Stimulator Selection

A key on the keyboard of your PC can be also assigned to any signal using the
stimulator shown in Figure 2.17. This will cause the selected signal to get
associated with that keyboard key so that it toggles whenever you press that
key. You can also permanently ground or high a signal by assigning 0 or 1 key
in the keyboard section of the stimulator.

Underneath the keyboard section are two rows of round LEDs and one row of
square ones. The round LEDs represent the bits of a free-running 16-bit binary
counter. This counter can be used to generate clock signals of various
frequencies with a 50% duty cycle (See more in the following section on how to
define frequency of the counter).

The top row of LEDs, labeled Bc: gives the output in true format and the 2nd
row, labeled NBc: gives it in the inverted format. The first four outputs from
the far right are labeled B0 to B3; the next four outputs are labeled B4 to B7,
etc. The outputs will go through the following sequence:

0000 0000 0000 0000
0000 0000 0000 0001
0000 0000 0000 0010
.…………………
1111 1111 1111 1111
0000 0000 0000 0000
…………………
The outputs of the inverted counter, NBc, will be

1111 1111 1111 1111
1111 1111 1111 1110
.……………………..
An alternate way of applying stimuli is to use ‘Logic State Descriptor’ available
in the toolbox. For applying the stimuli through this method, select the signals
that have to be assigned value after opening up the logic state descriptor
window and click on the appropriate button.

 18

Defining the Frequency of the Free-Running Counter
One can define the clock frequency of the free-running counter. This can be
done from Options\Preference menu in the Waveform Viewer. Under the
Simulation section, click on the B0 period drop-down list and select the
required period. The frequency will automatically adjust. The precision
depends on the type of simulation. A functional simulation requires less
precision (e.g. 1ns) while a timing simulation requires higher precision (e.g.,
100ps or less).

Simulating and Viewing the Waveforms
To conduct functional simulation, choose "Functional" from the pull down menu
at the top of the simulator window. Then click on the Simulation step icon at
the top of the window to initiate the simulation. The inputs and corresponding
output waveform are displayed, as shown in Figure 2.18. To change the size of
the step, use the pull down menu next to the step icon. You can also change
the scale of the time axis by clicking on the zoom icons on top of the Signal
list. An alternative way is to click and drag on the time axis on top of the
waveforms pane. The time scale is displayed as well.

You can switch back to the schematics window by clicking on the SC icon in the
Simulator window. The schematic window will show the actual logic levels (0
or 1) of each of the signals added to the Waveform Viewer window. The results
will be shown on the schematic for the signals you have added to the Waveform
Viewer window. You can add additional signals by clicking on the Probe icon in
the SC Probes window. Click on the nets that you want to display. Figure 2.18
shows the results of the simulation in both the Simulator and Schematic
windows. The value of the logic signals displayed on the schematic
corresponds to the last time step displayed in the Simulator window or to the
position of the cursor (47ns in Figure 2.18). One can also view the values of
the logic signals on the schematic diagram. This is another convenient way to
check the operation of the circuit.

Now you can verify if the circuit performs as expected. If problems occur,
check your logic or the schematic.

To clear the waveform and start the simulation over again, go to the
Waveform\Delete\All Waveforms-With-Power-on menu item.

You can also save the waveform from File\Save Waveform.

 19

Figure 2.18: Schematic and its Simulation Output

1.4.2 Timing Simulation
Timing simulation is performed in the same manner as functional simulation. It
is invoked by clicking on the ‘Verification’ button (First icon on the button). By
this, the timing simulator will be loaded and is ready to be used. The only
difference you might notice from Figure-2.14 is the selection of ‘Timing’
instead of ‘Functional’ in the drop down menu.

You can now proceed in selecting the signals in the waveform viewer and
adding the stimuli in the same manner as you did for functional simulation.
Alternatively, you can load an earlier created waveform by going to the
File\Load Waveform menu.

 20

In case you are using Flip-flops you have to assert the Global Reset. The global
reset (GSR) must be pulsed at the beginning of all timing simulations. This sets
or resets the flip-flops in the schematic. The Global Reset signal does not exist
in the schematic but it exists in the device and timing simulation netlist.

When all signals have been added and stimuli been specified, make sure
‘TIMING’ is selected from the drop-down list on the horizontal toolbar. You can
now run the simulation by clicking on the Step icon.

You may have to zoom in on the waveform in order to see the timing delays.
Click on the time ruler and drag to zoom at that particular time reference. To
measure the delay, go to the Waveform\Measurements\Measurements-On.
Position the cursor over the edge of the signal of interest to indicate the
beginning of the measurement. Click on another transition to complete the
measurement.

For instance, consider Figure 2.19, and note the delay between application of
the input and its propagation to the output of the buffer. Refer to Figure 2.20
for relating assignments with the actual nets of the schematic.

Figure 2.19: Timing Simulator Output Diagram for Schematic of Figure 2.20

 21

Figure 2.20: Schematic for Timing Simulation

 22

2 Implementation of Design

After the design has been found to be functionally correct, the next step is its
translation into the programmable device. This step is the ‘Design
Implementation’ phase, which is mostly a push button operation with the
software doing all the hard work.

Click on the implementation button in the project manager to start design
implementation process. For the first time, a pop-up window (Figure 3.1)
would inquire about the device and design information. Make sure the device
and its speed grade match the one shown in the figure. These settings match
with the device we have on Digilab Board. Click at ‘Run’ to proceed with the
implementation process.

Figure 3.1: Device/Version Information

A window indicating the flow appears as shown in Figure 3.2

The first step is the translation of the design file in a proper format. This
implies that the representation of your schematic (or HDL) is translated into
FPGA elements corresponding to the target device (look-up tables, etc). The
next step is mapping of the design to the specific target device. The mapper
optimizes and maps the design in the targeted FPGA device. Next is the Place
& Route operation, followed by the generation of the timing information for
use by the timing simulator. The final step is the generation of the BitStream
that is a configuration file that can be used to program the FPGA.

 23

Figure 3.2: Design implementation flow

A pop up window appears informing the success of design implementation
phase. Click OK. In case errors are reported, refer to Implementation Log file
in the Project Manager (click on the Reports tab on top of the right window
pane)

2.1 Implementation Results
You can view the reports from the Project Manager. Click on the Reports tab in
the design flow window-pane and double click on the Implementation Report
Files. This will open the report browser window. You will see the Translation,
Map, Place & Route, Pad reports and others. Click on the Pad report to see the
assignments of the I/O pins. You will recognize the same names as the ones
you constrained earlier. Another interesting report is the Map report, which
informs if any logic has been removed (as part of the optimization) or added.
The Place & Route report indicates how much of the device has been utilized.
It gives also a rough estimate of the average interconnection delay.

In case of errors/warnings at any step in the design implementation phase, the
report file of that process will transcript description of that problem. Check
with the report file and work along the directions given in the description.
Recompile after removing the cause of the problem.

 24

2.2 Assigning pins with user constraint
There are two types of constraints: (1) location and (2) timing. In general
location constraints allow you to control mapping and positioning of logic
elements in the target device, such as the location of the pads (IO pins).
Timing constraints inform the system which paths are critical and need short
interconnections (high speed lines) in order to ensure that your design's
performance functions properly under worst-case conditions. We will
concentrate on the location constraints.

Constraint Editor
If you did not assign pin numbers to the input and outputs in your schematic,
you should do it now, before compiling the design. If you don't assign the pins,
the compiler will assign them for you. It is necessary to assign the pins by
yourself to make use of on-board switches, LEDs and seven segments available
on the Digilab board.

Constraints editor can be run after you have implemented your design. Invoke
Constraints Editor from the project manager window
(Tools\Implementation\Constraints-Editor). Constraints editor window opens as
shown in Figure 3.3.

Figure 3.3: Constraints Editor

 25

Click on the ‘Ports’ Tab and assign pin locations in the location textbox next to
the unassigned pins. See Figure 3.4.

Figure 3.4: Assigning pin constraints

After editing the pin constraints you will need to save before exiting the
constraints editor and recompile the design to cause the changes to take
effect.

 26

3 DigiLab Board

The Digilab is a handy board to implement digital circuits on a Xilinx FPGA.
The board contains a Spartan XCS10 (5V) FPGA. The board also provides 4
seven-segment displays, 8 LEDs, 8 general-purpose switches, four button
switches, a serial port, a parallel port, PS/2 mouse and keyboard connector,
VGA port, an 1/8” audio connector, a BNC connector, 2 on-board clocks, a
ROM, a regulated power supply, a breadboard and several connectors for easy
access to the FPGA pins. A simplified schematic of the board is shown in Figure
4.1 below.

Figure 4.1: Digilab Board

3.1 General Purpose Slide Switches SW1-SW8
These switches (SW1-SW8) can be used to supply a “1” (Vdd) or a “0” (GND) to
the pins of the FPGA. The switches connect both to the FPGA pins and the pins
of the J1 connector as indicated in the Table 1 below. The switch will provide a
“1” (Vdd) when the slider is in the down position (towards the edge of the
board) and a “0” (GND) when in the up position.

 27

Slide Switch # Pin # on FPGA Pin on J1 Connector
1 28 SW1
2 27 SW2
3 26 SW3
4 25 SW4
5 24 SW5

6 23 SW6
7 20 SW7
8 19 SW8

Table 4.1: Slide Switches Connections

3.2 Push Buttons BTN1-BTN4
The Digilab board provides four push buttons which are normally connected to
GND (“0”) and which can be momentarily connected to Vdd (“1”). The buttons
are connected to both to the FPGA pins and the pins of the J1 connector as
indicated in the Table 4.2.

Push Button # Pin # on FPGA Pin on J1 Connector

1 59 BTN1
2 58 BTN2
3 57 BTN3
4 56 BTN4

Table 4.2: Push Buttons Connections

3.3 LEDs
Eight LEDs are provided to display the value of output signals. The LED will
light up when a “1” (Vdd) is applied to its input (anode) and will be off when a
“0” (0V, low or GND) is applied. The signals can come both from the FPGA and
from the pins on the J1 connector, as shown in the table below. One should be
careful not to drive the LEDs from both the FPGA and the J1 connector.

 LED drive signal LD Gate Signal LDG

LED# Pin # on FPGA Pin J1 Pin # on FPGA Pin J1
1 69 LD1
2 68 LD2
3 67 LD3
4 66 LD4
5 65 LD5
6 62 LD6
7 61 LD7
8 60 LD8

70

LDG

Table 4.3: LED Connections

3.4 Seven-Segment Displays
The Digilab provides four seven-segment displays that can be used to display
data from the FPGA or from other circuits through the J1 connector. The
segments of each display are called A, B, up to G as is standard. In order to

 28

reduce the number of connections needed to address each of the LEDs, the
anodes of the LEDs of each seven-segment display have been connected
together. The common anode for the first seven-segment display is called A1;
A2 for the second display, etc. In addition, the cathode pins from each display
have been connected together to form seven common terminals, called A, B, C,
D, E, F and G, corresponding to the seven-segments. Thus to illuminate a
segment of a particular display, e.g. segment E of the third display, one has to
apply a “1” (High or Vdd) to anode A3 and a “0” (GND or Low) to cathode node
E. In addition to the seven segments LED, there is also a decimal point
available (DP). However, the decimal point is not connected to the FPGA but
to a pin of the J1 connector. If one needs to drive the decimal point, one can
use a general-purpose output of the FPGA and connect this output to the DP pin
on the J1 connector.

Seven-segment Terminal Pin # of FPGA Pin on J1 connector
A1 (Anode digit 1) 44 A1
A2 (Anode digit 2) 40 A2
A3 (Anode digit 3) 39 A3
A4 (Anode digit 3) 38 A4
A (Cathode of segment A) 51 CA
B 50 CB
C 49 CC
D 48 CD
E 47 CE
F 46 CF
G 45 CG
Dec. point - DP

Table 4.4: Seven segment displays' connections

3.5 Clocks
The Digilab board has two clocks, CLK1 and CLK2. CLK1 clock is the general
system clock that has been connected to pin 13 (PGCK1) of the FPGA. It
provides a clock of 25.175MHz. CLK2 is connected to pin 35 (PGCK2) of the
FPGA as well as to pin CLK2 on the J1 connector. The second clock can come
in handy for peripheral devices that need a clock.

We would be using CLK2 to provide manual pulses in many experiments. For
doing so, we would be connecting CLK2 pin with some push-button like BTN1.

Clock Pin # on FPGA Pin on J1 connector

CLK1 (25.175 MHz) 13 (PGCK1) No Connection

CLK2 35 (PGCK2) CLK2

Table 4.5: Clock Connections

 29

3.6 Parallel Port (J7)
The parallel port can be used for two purposes: data communication and for
programming the FPGA. The choice between the two modes are set by setting
switch SW9 in the “PORT” (for parallel data communication) or in the “PROG”
(programming) position. We would mostly be concerned with programming
through the parallel port.

The parallel port can be used to program the FPGA. Make sure that switch SW9
is in the “PROG” position. The Xilinx Project Manager will automatically detect
the parallel cable and enable programming over this port. However, for the
first time it may be required to manually set the cable type in the Hardware
Debugger Window (more on it in Section xx4.0).

Detailed Pin Description of the Digilab Board
Shaded boxes represent dedicated pins that are not available for use.

Pin# Function Pin# Function Pin# Function
1 GND 29 O1 57 BTN3
2 VDD 30 M1_NC 58 BTN2
3 PWE 31 GND 59 BTN1
4 PD0 32 MODE 60 LD8
5 PD1 33 Vdd 61 LD7
6 PD2 34 M2_NC 62 LD6
7 PD3 35 CLK2 63 Vdd
8 PD4 36 O2 64 GND
9 PAS 37 O3 65 LD5
10 PRS 38 A4 66 LD4
11 Vdd 39 A3 67 LD3
12 GND 40 A2 68 LD2
13 CLK1 41 O4 69 LD1
14 PDS 42 Vdd 70 LDG
15 PWT 43 GND 71 O5
16 PD5 44 A1 72 RXD
17 PD7 45 CG 73 CCLK
18 PD6 46 CF 74 Vdd
19 SW8 47 CE 75 PINT
20 SW7 48 CD 76 GND
21 GND 49 CC 77 R
22 Vdd 50 CB 78 G
23 SW6 51 CA 79 B
24 SW5 52 GND 80 HS
25 SW4 53 DONE 81 VS
26 SW3 54 Vdd 82 PS2C
27 SW2 55 PROG 83 PS2D
28 SW1 56 BTN4 84 PINT

 30

4 Design Download

Once you have successfully simulated and implemented the design along with
proper pin assignments, it is time to check the design on board.

Before proceeding, make sure that

The Digilab board is connected with the PC using parallel port cable
It is being supplied with power.
That SW9 is in PROG mode
That LED is glowing

Go in Start-Menu/Programs/Xilinx and run Program shortcut. The ‘Program’
shortcut runs Design Impact software of Xilinx 4.2. A screen as shown in Figure
5.1 appears.

Figure 5.1: Design Impact - Initial Setup - 1

Select Configuration Devices

 31

Figure 5.2: Deign Impact - Initial Setup - 2

In the ensuing dialog box shown in Figure5.2, select Slave Serial Mode.

The Design Impact will try to find the hardware board attached to it. If all the
connections are made properly, it will detect the board and show the
successful status in the status portion (the light blue box)

The Design-Impact will now ask for the design file to be loaded as shown in
Figure 5.3. This is the file that is generated when implementing the design.
The default extension of this file is .bit. It is saved in the folder where the
design is saved. The name of the file is the name of the project. For e.g if abc
is the project name, the design file to be loaded is abc.bit.

 32

Figure 5.3: Bit File Loading

Design Impact is ready for design downloading. The ready setup is shown in
Figure 5.4. Right click on the device and click on download to download the
design.

Figure 5.4: Downloading Design

 33

Design download success is displayed as shown in Figure 5.5.

Figure 5.5: Successful Download

 34

	�
	Lab-200 Guide
	Introduction
	Front-End Tools

	The Software
	
	
	
	
	
	
	
	Placing Symbols
	Drawing and Naming Wires

	Tip
	Tip
	
	
	
	Adding IO Pads and Buffers
	Drawing and Using Buses
	Pin Assignment
	Adding Designer’s Name, Project Title and Date
	Netlist and Integrity Test
	Debugging
	Save your schematic
	Adding the schematic to the project

	Using Symbol Wizard
	Using an existing schematic as a macro
	I/O Terminals
	Functional Simulation
	
	
	
	
	
	Adding Signals
	Adding Stimuli
	Defining the Frequency of the Free-Running Counter
	Simulating and Viewing the Waveforms

	Timing Simulation

	Implementation of Design
	
	
	
	
	
	
	
	Constraint Editor

	DigiLab Board
	
	
	
	
	
	
	
	Detailed Pin Description of the Digilab Board

	Pin#
	Function

	Pin#
	Function

	Pin#
	Function

	Design Download

