EE 200- Digital Logic Circuit Design 3.4 Product-of-Sums Simplification 3.5 Don't-Care Conditions

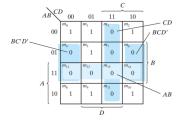
Dr. Muhammad Mahmoud

جامعة الملك فهد للبترول والمعادن King Fahd University of Petroleum & Minerals

October 1, 2013

Introduction

• Can you give an example of don't-care condition



Lecture Outline

- 1 The Map Method
 - Product-of-Sums Simplification
 - Don't-Care Conditions

- $F(A, B, C, D) = \sum (0, 1, 2, 5, 8, 9, 10)$
- F = B'D' + B'C' + A'C'D

- F' = AB + CD + BD'
- Using DeMorgan's F = (A' + B')(C' + D')(B' + D)

•
$$F = B'D' + B'C' + A'C'D$$

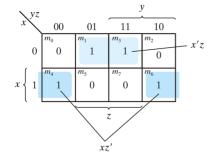
B'

C'

A'

D

•
$$F = (A' + B')(C' + D')(B' + D)$$



X	y	Z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

$$\bullet$$
 $F = m_1 + m_3 + m_4 + m_6$

- F = x'z + xz'
- F' = xz + x'z'
- (F')' = F = (x' + z')(x + z)

- What if the function was given as product of maxterms?
- F = (A' + B' + C')(B + D)
- F' = ABC + B'D'
- Mark F' minterms' squares with 0's and the remaining squares with 1's.

Don't-Care Conditions

• Simplify $F(w,x,y,z) = \sum (1,3,7,11,15)$ with don't-care conditions $d(w,x,y,z) = \sum (0,2,5)$

\	yz			y			
wx		00	01	11	10		
w'x'	00	X	1	1	M ₂		
()1	0	m ₅	m_7 1	0		
	1	m ₁₂	m ₁₃	m ₁₅	m ₁₄ 0) x	
w {	0	m ₈	m ₉ 0	m ₁₁	m ₁₀ 0	ĺ	
z vz							

• F = yz + w'x'

Don't-Care Conditions

•
$$F = yz + w'z$$

Summary

- The Map Method
 - Product-of-Sums Simplification
 - Don't-Care Conditions

Next Lecture

NAND and NOR Implementation.

