EE 200- Digital Logic Circuit Design 3.3 Four-Variable K-Map

Dr. Muhammad Mahmoud

جامعة الملك فهد للبترول والمعادن King Fahd University of Petroleum & Minerals

September 29, 2013

- What is the order of minterms in three-variable K-maps?
- Can anyone guess the order of minterms in four-variable K-maps?

Lecture Outline

1 The Map Method

- Four-Variable K-Map
- Prime Implicants
- Five(or more)-Variable Maps

Four-Variable K-Map

	V vz							<u>у</u>		
				wx	\sim	00	01	11	10	
m_0	m_1	<i>m</i> ₃	<i>m</i> ₂	w	00 01 w { 11	w'x'y'z'	m_1 w'x'y'z	m ₃ w'x'yz	m_2 w'x'yz'	'yz' yz' yz' yz'
m_4	<i>m</i> ₅	<i>m</i> ₇	<i>m</i> ₆			m ₄ w'xy'z'	m ₅ w'xy'z	m ₇ w'xyz	m ₆ w'xyz'	
<i>m</i> ₁₂	<i>m</i> ₁₃	<i>m</i> ₁₅	<i>m</i> ₁₄			m ₁₂ wxy'z'	m_{13} wxy'z	m ₁₅ wxyz	m ₁₄ wxyz'	
<i>m</i> ₈	m_9	<i>m</i> ₁₁	m_{10}		10	wx'y'z'	m ₉ wx'y'z	<i>m</i> ₁₁ <i>wx'yz</i>	wx'yz'	
								ž	,	

イロト イヨト イヨト イヨト

Four-Variable K-Map

• $F(w, x, y, z) = \sum (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$

• F = y' + w'z' + xz'

イロト イヨト イヨト イヨト

Four-Variable K-Map

- F = A'B'C' + B'CD' + A'BCD' + AB'C'
- 1st term A'B'C' = A'B'C'D + A'B'C'D'
- 2^{nd} term B'CD' = AB'CD' + A'B'CD'
- 3rd term A'BCD'
- 4^{th} term AB'C' = AB'C'D + AB'C'D'

The Map Method

Four-Variable K-Map Prime Implicants Five(or more)-Variable Maps

Four-Variable K-Map

• F = B'D' + B'C' + A'CD'

イロン 不同と 不同と 不同と

Prime Implicants

- A prime implicant is a product term obtained by combining the maximum possible number of adjacent squares in the map.
- The prime implicants of a function can be obtained from the map by combining all possible maximum numbers of squares.
- Prime Implicant:
 - 1 that is not adjacent to any other 1's.
 - Two adjacent 1's that are not in a group of four adjacent 1's.
 - Four adjacent 1's that are not in a group of eight adjacent 1's.
- Essential Prime Implicant: is the only prime implicant minterm(s).

Prime Implicants

• Essential prime implicant BD and B'D'

< ≣⇒

< 1[™] >

Prime Implicants

æ

・ロン ・回 と ・ ヨン ・ ヨン

Prime Implicants

- F = BD + B'D' + CD + AD
- = BD + B'D' + CD + AB'
- = BD + B'D' + B'C + AD
- = BD + B'D' + B'C + AB'

æ

Five(or more)-Variable Maps

- With five-variable maps we need 32 squares.
- With six-variable maps we need 64 squares.
- very complicated and will not be covered.

A ■

Summary

1 The Map Method

- Four-Variable K-Map
- Prime Implicants
- Five(or more)-Variable Maps

æ

< ≣ >

A ₽

Next Lecture

- Product-of-Sums Simplification
- Don't-Care Conditions.
- NAND and NOR Implementation.

æ

- < ∃ >

Image: A □ = 1