EE 200- Digital Logic Circuit Design 3.3 Four-Variable K-Map

Dr. Muhammad Mahmoud

جامعـة الـملك فـهد للبتـرول والـمعـادن

 King Fahd University of Petroleum \&t Minerals

September 29, 2013

Introduction

- What is the order of minterms in three-variable K-maps?
- Can anyone guess the order of minterms in four-variable K-maps?

Lecture Outline

(1) The Map Method

- Four-Variable K-Map
- Prime Implicants
- Five(or more)-Variable Maps

Four-Variable K-Map

m_{0}	m_{1}	m_{3}	m_{2}
m_{4}	m_{5}	m_{7}	m_{6}
m_{12}	m_{13}	m_{15}	m_{14}
m_{8}	m_{9}	m_{11}	m_{10}

Four-Variable K-Map

- $F(w, x, y, z)=\sum(0,1,2,4,5,6,8,9,12,13,14)$

- $F=y^{\prime}+w^{\prime} z^{\prime}+x z^{\prime}$

Four-Variable K-Map

- $F=A^{\prime} B^{\prime} C^{\prime}+B^{\prime} C D^{\prime}+A^{\prime} B C D^{\prime}+A B^{\prime} C^{\prime}$
- $1^{\text {st }}$ term $A^{\prime} B^{\prime} C^{\prime}=A^{\prime} B^{\prime} C^{\prime} \mathrm{D}+A^{\prime} B^{\prime} C^{\prime} \mathrm{D}^{\prime}$
- $2^{\text {nd }}$ term $B^{\prime} C D^{\prime}=\mathrm{A} B^{\prime} C D^{\prime}+\mathrm{A}^{\prime} B^{\prime} C D^{\prime}$
- $3^{\text {rd }}$ term $A^{\prime} B C D^{\prime}$
- $4^{\text {th }}$ term $A B^{\prime} C^{\prime}=A B^{\prime} C^{\prime} \mathrm{D}+A B^{\prime} C^{\prime} \mathrm{D}^{\prime}$

Four-Variable K-Map

- $F=B^{\prime} D^{\prime}+B^{\prime} C^{\prime}+A^{\prime} C D^{\prime}$

Prime Implicants

- A prime implicant is a product term obtained by combining the maximum possible number of adjacent squares in the map.
- The prime implicants of a function can be obtained from the map by combining all possible maximum numbers of squares.
- Prime Implicant:
- 1 that is not adjacent to any other 1's.
- Two adjacent 1's that are not in a group of four adjacent 1's.
- Four adjacent 1's that are not in a group of eight adjacent 1's.
- Essential Prime Implicant: is the only prime implicant minterm(s).

Prime Implicants

- $F(A, B, C, D)=\sum(0,2,3,5,7,8,9,10,11,13,15)$

- Essential prime implicant $B D$ and $B^{\prime} D^{\prime}$

Prime Implicants

Prime Implicants

- $F=B D+B^{\prime} D^{\prime}+C D+A D$
- $=B D+B^{\prime} D^{\prime}+C D+A B^{\prime}$
- $\quad=B D+B^{\prime} D^{\prime}+B^{\prime} C+A D$
- $\quad=B D+B^{\prime} D^{\prime}+B^{\prime} C+A B^{\prime}$

Five(or more)-Variable Maps

- With five-variable maps we need 32 squares.
- With six-variable maps we need 64 squares.
- very complicated and will not be covered.

Summary

(1) The Map Method

- Four-Variable K-Map
- Prime Implicants
- Five(or more)-Variable Maps

Next Lecture

- Product-of-Sums Simplification
- Don't-Care Conditions.
- NAND and NOR Implementation.

