Boolean Algebra

Dr. Muhammad Mahmoud

جامعة الملك فهد للبترول والمعادن King Fahd University of Petroleum & Minerals

© Muhammad Mahmoud

September 17, 2013

Entry Questions

- What are the logic functions we leaned so far?
- Can you name other logic functions?

A⊒ ▶ ∢ ∃

문 문

Objectives

1 Other Logic Operation

- Boolean Expressions
- Digital Logic Gates

æ

≣ >

< 🗗 ▶

Boolean Expressions

Table 2.8 Boolean Expressions for the 16 Functions of Two Variables

Boolean Functions	Operator Symbol	Name	Comments
$F_0 = 0$		Null	Binary constant 0
$F_1 = xy$	$x \cdot y$	AND	x and y
$F_2 = xy'$	<i>x/y</i>	Inhibition	<i>x</i> , but not <i>y</i>
$F_3 = x$		Transfer	x
$F_4 = x'y$	y/x	Inhibition	y, but not x
$F_5 = y$		Transfer	у
$F_6 = xy' + x'y$	$x \oplus y$	Exclusive-OR	<i>x</i> or <i>y</i> , but not both
$F_7 = x + y$	x + y	OR	x or y
$F_8 = (x + y)'$	$x \downarrow y$	NOR	Not-OR
$F_9 = xy + x'y'$	$(x \oplus y)'$	Equivalence	x equals y
$F_{10} = y'$	<i>y'</i>	Complement	Not y
$F_{11} = x + y'$	$x \subset y$	Implication	If y, then x
$F_{12} = x'$	<i>x'</i>	Complement	Not x
$F_{13} = x' + y$	$x \supset y$	Implication	If x, then y
$F_{14} = (xy)'$	$x \uparrow y$	NAND	Not-AND
$F_{15} = 1$		Identity	Binary constant 1

Copyright ©2012 Pearson Education, publishing as Prentice Hall

æ

イロト イヨト イヨト イヨト

AND, OR, Not (review)

• AND: Output c is TRUE if inputs a AND b are TRUE, else it is FALSE.

• OR: Output c is TRUE if input a OR b is TRUE, else it is FALSE.

(a+b)

• NOT: Output c is TRUE if input a is FALSE, else it is FALSE. c is the inverse of a.

NAND & NOR

• NAND: Output c is FALSE if inputs a AND b are TRUE, else it is TRUE.

(*ab*)'

 NOR: Output c is FALSE if input a OR b is TRUE, else it is TRUE.

(a + b)'

→ 三→

XOR & XNOR

• XOR: Output c is TRUE if input a OR b is TRUE, else it is FALSE.

$$(a\oplus b=a'b+ab')$$

 XNOR: Output c is TRUE if both input a AND b are TRUE or FALSE, else it is FALSE.

$$(a \oplus b)$$
'=ab+a'b'

_∢≣≯

Logic Gates

Copyright ©2013 Pearson Education, publishing as Prentice Hall

æ

・ロト ・回ト ・ヨト ・ヨト

Extending Logic Properties

• NAND and NOR are not associative.

æ

< ≣ >

・ロト ・回ト ・ヨト

1 Other Logic Operation

- Boolean Expressions
- Digital Logic Gates

문 🕨 문

Image: A mathematical states and a mathem

Next Lecture

- Boolean Functions.
- Canonical and Standard Forms.

æ

・ロト ・回ト ・ヨト ・ヨト