EE 200- Digital Logic Circuit Design Boolean Algebra (2.1-2.4)

Dr. Muhammad Mahmoud

جامعـة الـملك فـهد للبـترول والـمعـادن King Fahd University of Petroleum \&t Minerals

September 15, 2013

Entry Questions

- What is Algebra?
- What is Boolean Algebra?

Objectives

(1) Boolean Algebra

- Definition
- Theorems
- Operator Precedence

Definition

Algebraic structure defined by a set of element, B, with two binary operators (+ and \cdot) satisfying the following:
(1) The structure is closed with respect to (+ and \cdot).
(2) 0 is the identity element for $(+)$, and 1 is the identity element for (\cdot).
(3) The structure is commutative with respect to (+ and \cdot).
(9) (\cdot) is distributive over + and + is distributive over (\cdot).
(5) for $x \in B$ there is $\bar{x} \in B$.
(0) there exit at least two elements $x, y \in B$ such that $x \neq y$.

Properties of Boolean Algebra

1.

$$
x+0=x
$$

$$
x \cdot 1=x
$$

Identity
Complement
2. $x+x^{\prime}=1$
$x \cdot x^{\prime}=0$
$x \cdot y=y \cdot x$
Commutative Law
4. $x+(y+z)=(x+y)+z$
$x \cdot(y \cdot z)=(x \cdot y) \cdot z$
Associative Law
5. $x+(y \cdot z)=(x+y) \cdot(x+z) \quad x \cdot(y+z)=(x \cdot y)+(x \cdot z) \quad$ Distributive Law

Duality Principle

A principle can be obtained by interchanging AND and OR operators and replacing 0 's by 1 's and 1 's by 0 's.

- $(x+y+z+\cdots)^{D}=x . y . z \cdots$
- Example: $(x+0=x)^{D}=(x \cdot 1=x)$
- $x+1=1$ has the dual $x \cdot 0=0$
- $(x y)^{\prime}=x^{\prime}+y^{\prime}$ has the dual $(x+y)^{\prime}=x^{\prime} y^{\prime}$

Compare the identities on the left side with the identities on the right. Can you try to prove it by truth table?

- $\left(x . y+z^{\prime}\right)^{D}=$?

Theorem 1

$$
\begin{array}{ll}
& =x \\
& =(x+x) \cdot 1 \\
& =(x+x)\left(x+x^{\prime}\right) \\
& =x+x x^{\prime} \\
& =x+0 \\
& =x x+0 \\
& =x x+x x^{\prime} \\
& \\
& \\
& =x\left(x+x^{\prime}\right) \\
& \\
& =x \cdot 1 \\
& \\
&
\end{array}
$$

Theorem 2

- A) $x+1=1$

$$
\begin{aligned}
& =1 \cdot(x+1) \\
& =\left(x+x^{\prime}\right)(x+1) \\
& =x+x^{\prime} \cdot 1 \\
& =x+x^{\prime} \\
& =1
\end{aligned}
$$

- B) $x \cdot 0=0$, by duality.

Theorem 3 \& 4

- Theorem 3 (involution): $\left(x^{\prime}\right)^{\prime}=x$.
- Theorem 4 (associative):
$x+(y+z)=(x+y)+z$, and $x(y z)=(x y) z$.

Theorem 5

Exercise: Show the truth table for (xy) ' and $\mathrm{x}^{\prime}+\mathrm{y}$ '

$$
\left(\left.\begin{array}{c|c|c|c|}
\mathrm{y} & \mathrm{x} & \mathrm{xy} & (\mathrm{xy})^{\prime} \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}|\quad| \begin{array}{c|c|c|c}
\mathrm{y} & \mathrm{x} & \mathrm{y}^{\prime} & x^{\prime} \\
0 & x^{\prime}+y^{\prime} \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 \\
1 \\
1 & 0 & 0 & 1 \\
1 \\
1 & 1 & 0 & 0 \\
0
\end{array} \right\rvert\,\right.
$$

- $\overline{+}=$.
- ${ }^{-}=+$
- Theorem 5 (DeMorgan):

$$
(x+y)^{\prime}=x^{\prime} y^{\prime} \text {, and }(x y)^{\prime}=x^{\prime}+y^{\prime} .
$$

Theorem 6 (Absorption)

- A) $x+x y=x$

$$
\begin{aligned}
& =x \cdot 1+(x y) \\
& =x(1+y) \\
& =x(y+1) \\
& =x \cdot 1 \\
& =x
\end{aligned}
$$

- B) $x(x+y)=x$, by duality.

Postulates \& Theorems of Boolean Algebra

Table 2.1

Postulates and Theorems of Boolean Algebra

Postulate 2	(a)	$x+0=x$	(b)	$x \cdot 1=x$
Postulate 5	(a)	$x+x^{\prime}=1$	(b)	$x \cdot x^{\prime}=0$
Theorem 1	(a)	$x+x=x$	(b)	$x \cdot x=x$
Theorem 2	(a)	$x+1=1$	(b)	$x \cdot 0=0$
Theorem 3, involution		$\left(x^{\prime}\right)^{\prime}=x$		
Postulate 3, commutative	(a)	$x+y=y+x$	(b)	$x y=y x$
Theorem 4, associative	(a)	$x+(y+z)=(x+y)+z$	(b)	$x(y z)=(x y) z$
Postulate 4, distributive	(a)	$x(y+z)=x y+x z$	(b)	$x+y z=(x+y)(x+z)$
Theorem 5, DeMorgan	(a)	$(x+y)^{\prime}=x^{\prime} y^{\prime}$	(b)	$(x y)^{\prime}=x^{\prime}+y^{\prime}$
Theorem6, absorption	(a)	$x+x y=x$	(b)	$x(x+y)=x$

Operator Precedence

To evaluate boolean expressions:
(1) Parentheses.
(2) NOT.
(3) AND.
(9) OR.

Summary

(1) Boolean Algebra

- Definition
- Theorems
- Operator Precedence

Next Lecture

- Boolean Algebra

