EE 200- Digital Logic Circuit Design Boolean Algebra (2.1-2.4)

Dr. Muhammad Mahmoud

جامعة الملك فهد للبترول والمعادن King Fahd University of Petroleum & Minerals

A⊒ ▶ ∢ ∃

September 15, 2013

Entry Questions

- What is Algebra?
- What is **Boolean** Algebra?

문 🕨 🗉 문

∂ ►

Objectives

1 Boolean Algebra

- Definition
- Theorems
- Operator Precedence

æ

< ≣⇒

Definition

Algebraic structure defined by a set of element, B, with two binary operators (+ and \cdot) satisfying the following:

- **①** The structure is closed with respect to $(+ \text{ and } \cdot)$.
- **②** 0 is the identity element for (+), and 1 is the identity element for (\cdot) .
- **③** The structure is commutative with respect to $(+ \text{ and } \cdot)$.
- **(**) is distributive over + and + is distributive over (·).
- **(**) for $x \in B$ there is $\bar{x} \in B$.
- **(**) there exit at least two elements $x, y \in B$ such that $x \neq y$.

イロト イヨト イヨト イヨト

Properties of Boolean Algebra

1.	x + 0 = x	$\mathbf{x} \cdot 1 = \mathbf{x}$	Identity
2.	x + x' = 1	x . x' = 0	Complement
3.	$\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$	$\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x}$	Commutative Law
4.	x + (y + z) = (x + y) + z	$\mathbf{x} \cdot (\mathbf{y} \cdot \mathbf{z}) = (\mathbf{x} \cdot \mathbf{y}) \cdot \mathbf{z}$	Associative Law
5.	$\mathbf{x} + (\mathbf{y} \cdot \mathbf{z}) = (\mathbf{x} + \mathbf{y}) \cdot (\mathbf{x} + \mathbf{z})$	$\mathbf{x} \cdot (\mathbf{y} + \mathbf{z}) = (\mathbf{x} \cdot \mathbf{y}) + (\mathbf{x} \cdot \mathbf{z})$	Distributive Law

æ

・ロト ・回ト ・ヨト ・ヨト

Duality Principle

A principle can be obtained by interchanging AND and OR operators and replacing 0's by 1's and 1's by 0's.

•
$$(x+y+z+\cdots)^D = x.y.z\cdots$$

• Example:
$$(x + 0 = x)^D = (x \cdot 1 = x)$$

•
$$x + 1 = 1$$
 has the dual $x \cdot 0 = 0$

Compare the identities on the left side with the identities on the right. Can you try to prove it by truth table?

•
$$(x.y + z')^D = ?$$

Boolean Algebra

Definition Theorems Operator Precedence

Theorem 1

æ –

Theorem 2

• A)
$$x + 1 = 1$$

= $1 \cdot (x + 1)$
= $(x + x')(x + 1)$
= $x + x' \cdot 1$
= 1
• B) $x \cdot 0 = 0$, by duality.

æ –

< □ > < □ > < □ > < □ > < □ > .

Theorem 3 & 4

- Theorem 3 (involution): (x')'=x.
- Theorem 4 (associative): x+(y+z)=(x+y)+z, and x(yz)=(xy)z.

æ

<ロ> (日) (日) (日) (日) (日)

Theorem 5

Definition Theorems Operator Precedence

Exercise: Show the truth table for (xy)' and x'+y'

y	x	xy	(xy)'	y	x	y'	x'	x'+y' 1
0	0	0	(xy)' 1	0	0	1	1	1
0	1	0	1	0	1	1	0	1
1	0	0	1	1	0	0	1	1
1	1	0 1	0	1	1	0	1 0	0

- $\bullet \ \bar{+} = \cdot$
- $\overline{\cdot} = +$
- Theorem 5 (DeMorgan): (x+y)'=x'y', and (xy)'=x'+y'.

æ

- < ∃ >

・ロト ・回ト ・ヨト

Theorem 6 (Absorption)

æ

・ロン ・回 と ・ ヨン ・ ヨン

Postulates & Theorems of Boolean Algebra

Table 2.1Postulates and Theorems of Boolean Algebra

		~		
Postulate 2	(a)	x + 0 = x	(b)	$x \cdot 1 = x$
Postulate 5	(a)	x + x' = 1	(b)	$x \cdot x' = 0$
Theorem 1	(a)	x + x = x	(b)	$x \cdot x = x$
Theorem 2	(a)	x + 1 = 1	(b)	$x \cdot 0 = 0$
Theorem 3, involution		(x')' = x		
Postulate 3, commutative	(a)	x + y = y + x	(b)	xy = yx
Theorem 4, associative	(a)	x + (y + z) = (x + y) + z	(b)	x(yz) = (xy)z
Postulate 4, distributive	(a)	x(y+z) = xy + xz	(b)	x + yz = (x + y)(x + z)
Theorem 5, DeMorgan	(a)	(x + y)' = x'y'	(b)	(xy)' = x' + y'
Theorem 6, absorption	(a)	x + xy = x	(b)	x(x + y) = x

Copyright ©2012 Pearson Education, publishing as Prentice Hall

æ

イロト イヨト イヨト イヨト

Operator Precedence

To evaluate boolean expressions:

- Parentheses.
- ONOT.
- AND.
- OR.

æ

<ロ> <同> <同> <同> < 同>

- < ≣ →

Summary

- Definition
- Theorems
- Operator Precedence

æ

イロト イヨト イヨト イヨト

Boolean Algebra

Definition Theorems Operator Precedence

Next Lecture

• Boolean Algebra

2

・ロン ・回 と ・ ヨン ・ ヨン