EE 200- Digital Logic Circuit Design 1.9 Binary Logic

Dr. Muhammad Mahmoud

جامعة الملك فهد للبترول والمعادن King Fahd University of Petroleum & Minerals

< 17 > <

September 12, 2013

Entry Questions

- What is logic?
- What is **binary** logic?

æ

< ≣⇒

Image: A math the second se

Objectives

1 Binary Logic

- Basic Logic Operations
- Logic Circuits
- Logic Gates

æ

-

< 🗗 🕨

Introduction Basic Logic Operations Logic Circuits Logic Gates

< □ > < □ > < □ > < □

Introduction

- Binary logic deals with binary quantities which can take one of two values (0 & 1, True & False, ... etc).
- A binary number can be represented by a variable (x, y, z, A, B, C ... etc).

Introduction Basic Logic Operations Logic Circuits Logic Gates

Basic Logic Operations

- AND: x.y = z (or xy = z), reads x **AND** y is equal to z.
- OR : x + y = z, reads x **OR** y is equal to z.
- NOT: x' = z (or $\bar{x} = z$), reads **NOT** x is equal to z.

<ロ> <同> <同> <三> < 回> < 回> < 三>

Introduction Basic Logic Operations Logic Circuits Logic Gates

Truth Tables

Example:

AND
$$(xy = z)$$
 $\begin{vmatrix} x & y & z \\ F & F & F \\ F & T & F \\ T & F & F \\ T & T & T \\ T & T & T \\ \end{vmatrix}$ OR $(x + y = z)$ $\begin{vmatrix} x & y & z \\ F & F & F \\ F & T & T \\ T & F & T \\ T & T & T \\ \end{array}$ NOT $(\bar{x} = z)$ $\begin{vmatrix} x & z \\ F & T \\ T & F \\ F & T \\ T & T \\ T$

2

・ロン ・回 と ・ ヨン ・ ヨン

Introduction Basic Logic Operations Logic Circuits Logic Gates

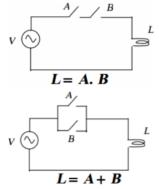
Truth Tables

Example:

	x	y	z		х	у	z	x z	
	x 0	0	0		0	0	0	NOT 0 1	
AND	0	1	0	OR	0	1	1	10	
	1	0	0		1	0	1		
	1	1	1		1	1	1		

æ

・ロン ・回 と ・ ヨン ・ ヨン


Logic Circuits

Binary Logic

Introduction Basic Logic Operations Logic Circuits Logic Gates

Image: A math the second se

• Binary logic can be demonstrated by switching circuits as follows:

æ

< ∃⇒

Introduction Basic Logic Operations Logic Circuits Logic Gates

Logic Voltage levels

æ

・ロト ・回ト ・ヨト

< ≣ >

Introduction Basic Logic Operations Logic Circuits Logic Gates

Binary Arithmetic vs. Binary Logic

- Binary Arithmetic: 1+1=10 (one plus one is equal to two).
- Binary Logic: 1+1=1 (one OR one is equal to one).

æ

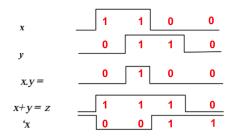
<ロ> <同> <同> <同> < 同> < 同>

Binary Logic Binary Logic Circuits Logic Gates

• Conventional symbols for logic gates.

- 2-input AND gate 2-input OR gate Inverter
- AND & OR gates can have more than two inputs.

イロト イヨト イヨト イヨト



Introduction Basic Logic Operations Logic Circuits Logic Gates

Image: A matrix and a matrix

Basic Logic Gates and Signal Waveforms

Signals for logic gates may be represented in a signal waveform.

∢ ≣⇒

Introduction Basic Logic Operations Logic Circuits Logic Gates

Properties of Boolean Algebra

1.	x + 0 = x	$\mathbf{x} \cdot 1 = \mathbf{x}$	Identity
2.	x + x' = 1	x . x' = 0	Complement
3.	x + y = y + x	$\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x}$	Commutative Law
4.	x + (y + z) = (x + y) + z	$\mathbf{x} \cdot (\mathbf{y} \cdot \mathbf{z}) = (\mathbf{x} \cdot \mathbf{y}) \cdot \mathbf{z}$	Associative Law

5. $x + (y \cdot z) = (x + y) \cdot (x + z)$ $x \cdot (y + z) = (x \cdot y) + (x \cdot z)$ Distributive Law

æ

<ロ> (日) (日) (日) (日) (日)

- Basic Logic Operations
- Logic Circuits
- Logic Gates

æ

・ロト ・回ト ・ヨト

< ≣⇒

• Boolean Algebra

2

・ロン ・回 と ・ ヨン ・ ヨン