EE 200- Digital Logic Circuit Design 1.5 Complements of Numbers 1.6 Signed Binary Numbers

Dr. Muhammad Mahmoud

جامعـة الـملك فـهد للبتـرول والـمعـادن King Fahd University of Petroleum \&t Minerals

September 8, 2013

Entry Question

- What is a complement of a number?
- Can you name a use for complements?

Objectives

(1) Complements of Numbers

(2) Addition and Subtraction of Signed Binary Numbers

Review on Complements

One's Complement:	$12=00001100$
Flip bits for -ve number	$-12=11110011$
Two's Complement:	
One's complement +1	$12=00001100$
OR	$-12=11110100$
Toggle bits after the 1st 1 from the LSB	

Why Number's Complements?

- Complements are used to simplify the subtraction operation and for logical manipulations.
- For each base (r), there are two complements:
(1) $(r-1)$'s complement.
(2) r's complement, also called radix/base complement.
- For decimal numbers, there are two complements:
(1) 9's complement.
(2) 10's complement.

Complements of Decimal Numbers

Example:

$$
\begin{aligned}
\text { For the decimal number } & 134795 \\
\text { The 9th complement is } & 865204 \\
\text { The 10th complement is } & 865205
\end{aligned}
$$

Subtraction using r's complement

- To find $M-N$ in base r, we add $M+r$'s complement of N.
- If $M>N$, the end carry must be neglected.
- If $M<N$, no end carry will result and the result is the r's complement of the answer.

Complements of Numbers

Addition and Subtraction of Signed Binary Numbers

Example

Subtract (76425-28321) using 10 's complements.
The 10's complement of 28321 is 71679 .

76425
$+\underline{71679}$
148104

Example

Subtract (28531-345920) using 10's complements.
The 10 's complement of of 345920 is 654080 .
28531
$+\underline{654080}$
No end carry $\rightarrow 682611$
Therefore the difference is negative and is equal to the 10 's complement of the answer, - (10's comp[682611]) $=-317389$

Subtraction using (r-1)'s complement

- To find $M-N$ in base r, we add $M+(r-1)$'s complement of N.
- If $M>N$, the end carry must be added to the result.
- If $M<N$, no end carry will result and the result is the ($r-1$)'s complement of the answer.

Example

Subtract (76425-28321) using 9's complements.
The 9's complement of 28321 is 71678 .

Signed vs. Unsigned Binary Numbers

- Unsigned binary number: All bits carries an arithmetic weight.
- Signed binary number: MSB represents the sign of the number ($0=+$ ve, $1=-$ ve).

Addition of Signed Binary Numbers

Addition of signed binary numbers $(\mathrm{M}+\mathrm{N})$

- If M and N have the same sign, add $\mathrm{M}+\mathrm{N}$ and give the result the same sign, otherwise subtract and give the result the sign of the bigger number.
- In complement representation, add the two numbers including the sign bit. End carry from the sign bit is ignored. No comparison or subtraction is needed.

Examples

- Add $(-6)+(+13)$ using signed 2's complement form with 8 bits. Repeat for $(+6)+(-13)$.
$(+6) \equiv 00000110$ and $(+13) \equiv 00001101$
$(-6) \equiv 11111010$ and $(-13) \equiv 11110011$

Examples

$(+6) \equiv 00000110$ and $(+13) \equiv 00001101$
$(-6) \equiv 11111010$ and $(-13) \equiv 11110011$

Summary

(1) Complements of Numbers

(2) Addition and Subtraction of Signed Binary Numbers

Complements of Numbers
Addition and Subtraction of Signed Binary Numbers

Signed vs. Unsigned Binary Numbers Addition of Signed Binary Numbers

Next Lecture

Binary Codes

