
Semantics-Preserving Application-Layer Protocol
Steganography∗

Norka B. Lucena, Douglas F. Calvert, James Pease, Steve J. Chapin
Center for Systems Assurance

Syracuse University
111 College Place 3-114, Syracuse, NY 13244

{norka,jmpease,chapin}@ecs.syr.edu, dfcalver@maxwell.syr.edu

Abstract

Protocol steganography allows users who wish
to communicate secretly to embed messages within
other messages. These secret messages can be used
for anonymous communication for purposes ranging
from entertainment to protected business communi-
cation or national defense.

In this paper, we describe our approach to
application-layer protocol steganography, and de-
scribe how we can embed messages into commonly
used TCP/IP protocols such as SSH and HTTP. We
also introduce the notion of semantics preservation,
which ensures that messages still conform to the host
protocol, even after embedding. Strong semantics
preservation ensures that the meaning of the mes-
sage is unchanged, while weak semantics preserva-
tion only guarantees the less stringent condition that
the message be semantically valid.

To demonstrate the efficacy of our approach,
we have implemented protocol steganography within
the Secure Shell (SSH) protocol.

Keywords: steganography, application proto-
cols, semantics

1 Introduction

Steganography, from the Greek “covered writ-
ing,” refers to the practice of hiding information
within other information [14]. Historically, notions
of classical steganography can be found even cen-
turies before Christ. In recent years, steganography
has become digital: the favorite media for informa-
tion hiding are images, music scores, formatted and
written text, digital sounds, and videos. This evolu-
tion of steganographic techniques has received partic-

∗This work was supported in part by the State of New York,
and the CASE Center’s SUPRIA program at Syracuse University.

ular attention, as have the security and robustness of
such methods [1, 3, 17, 19, 20]. Traditionally, most
steganographic systems relied on the secrecy of the
encoding system [22]. At present, the security of a
stegosystem depends on how well it conceals the ex-
istence of a hidden message and in the secrecy of a
key, if used, for embedding the message. Protocol
steganography is the art of embedding information
within messages and network control protocols used
by common applications [7].

An important consideration in the embedding
process is whether it is semantics-preserving, i.e.,
whether the resulting message still conforms to the
protocol specification. That property guarantees that
if the message is interpreted at any point during
its transmission, it will produce meaningful results.
In addition to that, semantic preservation in modi-
fied messages helps to make them indistinguishable
from unmodified cover messages. Using protocol
steganography, we can embed information in overt
channels, in contrast to the use of covert channels,
which allow signaling mechanisms to occur where
no explicit communication path exists. Advantages
of protocol steganography include achieving greater
bandwidth in hidden communication as well as tak-
ing advantage of the most widely-used network pro-
tocols.

We define two levels of semantics preservation,
both of which imply that the stego-message is a cor-
rect message within the protocol.Weak semantics
preservationmeans that the stego-message, while le-
gal, has a different meaning than the original cover
message.Strong semantics preservationmeans that
the stego-message has the same meaning as the orig-
inal cover.

Networking protocols are divided into multiple
layers, as shown in Figure 1. The physical layer is re-
sponsible for communicating with the actual network



Figure 1: TCP/IP Protocol Suite Layers.

hardware (e.g., the Ethernet card), dealing with the
format of the bits on the wire. Therefore, it is tied
to the local network technology, such as Fast Ether-
net or 802.11b wireless. The network layer handles
routing, and it is the IP layer of the TCP/IP protocol
suite. The network layer is invisible to user programs.
The transport layer handles the quality-control issues
of reliability, flow control, and error correction. The
TCP/IP protocol suite defines two widely-used trans-
port protocols: UDP and TCP1.

There are several application protocols in the
TCP/IP suite, including SMTP (for email service),
FTP (for file transfer), SSH (for secure login), LDAP
(for distributed directory services), and HTTP (for
web browsing, which alone accounts for approxi-
mately 70% of all Internet traffic).

A securestego system can withstand an oppo-
nent that understands the system (or even has grounds
for suspicion), meaning that the opponent cannot de-
termine with a high degree of certainty the existence
of the communication. Arobust system can with-
stand an active attack, where the adversary makes
legal (strong semantics-preserving) changes to the
message.

The most obvious way of hiding information
within messages is to place data in unused or re-
served fields of protocol headers or trailers. How-
ever, that method of steganography is easy to de-
tect using simple intrusion detection systems, or is
susceptible to traffic analysis, which makes it inse-
cure and not robust. Even if analyzing the content
of the hidden information becomes impossible, per-
haps due to encryption, this approach is weak. Our
techniques for protocol steganography aim to achieve
strong steganography, wherein the system is both se-
cure and robust.

Given those goals and the intention to pro-
vide means of private communication, our approach
to protocol steganography focuses mainly on trans-

1Other transport protocols, such as the Reliable Datagram Pro-
tocol (RDP), are defined but not widely used.

port layer protocols and application layer proto-
cols, although other protocols at different layers
of the TCP/IP protocol suite could also be consid-
ered. In particular, this paper describes how protocol
steganography is feasible using the SSH protocol as
proof-of-concept.

There are many potential applications for pro-
tocol steganography, considering when information
hiding is used for both positive and negative means.
When using information hiding for positive means,
protocol steganography is appropriate to achieve
private communication [29] and, in some cases,
anonymity and plausible deniability, such as envi-
ronments where censorship polices restrict web ac-
cess [10]. More specifically, protocol steganography
seems to be appropriate for environments where un-
obtrusive communications are required [14]. For ex-
ample, in the military and intelligence agencies, even
if the content of the communication is encrypted, a
significant increase in communications between mil-
itary units could signal an impending attack. Hid-
ing information inside regular Internet traffic, such
as browsing results, will avoid the need for extra
communication, thereby giving no indication to one’s
adversaries that something is about to happen. On
the other hand, considering a framework where the
agents that wish to communicate secretly are not nec-
essarily the initiators of the communication, the abil-
ity to embed messages in a variety of TCP/IP proto-
cols gives us a much higher likelihood of being able
to transmit the secret message within a reasonable
time bound. When using information hiding with ma-
lignant purposes, the study of protocol steganogra-
phy can help improving the design of network proto-
cols and firewalls. Protocols can be harder to misuse.
Firewalls can be harder to bypass.

The reminder of this paper is organized as fol-
lows. Section 2 describes the model for secret com-
munication considered in protocol steganography and
discusses its potential advantages. Section 3 presents
a summary of the research to date and related work in
relevant areas of steganography. Section 4 explores
the concept of protocol steganography through the
SSH protocol, describes a prototype implementation,
and discusses consequences and important issues re-
garding security and robustness of the approach as
well. Section 5 analyzes future research opportunities
in the area. Finally, Section 6 lists some conclusions.

2 Framework for Secret Communication

Our model for protocol steganography involves
two agents that wish to communicate secretly through



channels of Internet traffic in a hostile environment
(see Figure 2). The agentsA andB, named for Sim-
mons’s [26] famous prisoners Alice and Bob, take
advantage of a communication path already in place
between themselves or two arbitrary communicating
processes, thesenderand receiver. We assume that
Alice wishes to pass a message to Bob, and may in
fact be operating in an environment over which their
adversary has administrative control (such would be
the case if Alice were an undercover investigator or
intelligence operative).

Figure 2: Framework for Secret Communication.

Consequently, two scenarios are possible de-
pending on whether or not agent A and B are the same
as the sender and the receiver, respectively. In the first
case, agent A and agent B are trying to hide secret in-
formation in some of their own harmless messages,
as in traditional steganography models. They both
run a modified version of the communicating soft-
ware that allows them to convey the secret message.
In the second case, agent A and agent B are placed
somewhere along an arbitrary communication path,
modifying the message in transit to hide meaningful
information. In short, both the internal agent and the
external confederate might be either end points of the
communication or middlemen, acting to embed and
extract the hidden message as the data passes them
in the communication stream. In fact, the receiving
middleman has the option of removing the hidden
message, thus restoring and forwarding the original
message. The midpoints where agents A and B can
alter the message might be within the protocol stack
of the sending and receiving machines (which is still
distinct from the sending process), or at routers along
the communication path. These arbitrary boundaries
are indicated by the dashed boxes in Figure 2.

Considering all combinations of internal agents
and external confederates and all different points
where the message can be altered yields six differ-
ent roles for the agents, as shown in Figure 3. In
this discussion, following the established information
hiding terminology [21], agent A executes theem-
beddingprocess and agent B theextractionprocess,
represented in the picture as a circle and a diamond,
respectively. As pointed out by Pfitzmann [21], the

Figure 3: Message Paths.

embedding and extracting processes required the use
of a stego-key, not shown in the picture. The cover
(i.e. the original harmless message) ism, and the
stego-message(i.e. the message with steganographic
content) ism′.

The six possible sets of agent roles are as fol-
lows:

1. Agent Aacts as sender andagent Bas receiver—
the message along the entire path ism′.

2. Agent Ais a middleman, embedding information
to the message on its way, andagent Bacts as
receiver—the message from thesenderto agent
A’s location ism, while from there to the end-
point ism′.

3. Both agents are middlemen, andB restores the
message to its original form—the message from
thesender’s point to whereagent A’s location is
m, from A’s to B’s is m′, and from there to the
endpoint ism again, since extraction of the hid-
den content and restoration of the original cover
message occurred atB’s location.

4. Both agents are middlemen, butagent Bdoes
not restore the message—the message from the
sender’s point to theagent A’s location ism,
and fromA’s to thereceiver’s point ism′, with
the hidden information extracted atB’s location
while the message was in transit.

5. Agent Ais acting assender, with B as a mid-
dleman extracting the embedded information
and restoring the original message—the mes-
sage from the initial point toagent B’s location
is m′, and fromB’s location to thereceiver’s
point ism.

6. Agent Ais acting as sender andagent Bis a mid-
dleman extracting the hidden information with-
out restoring the message as it travels to there-
ceiver—the message from the end to end ism′,



butB gets the hidden content somewhere before
the message reaches its destination.

Not every one of these scenarios might be re-
alistic, but cases 1 and 3 certainly are. Therefore,
they have been the focus of this study. All the op-
tions where the hidden content is extracted but the
message is not restored seem very risky; in particu-
lar, case 4 wherein the message seen by the receiver
is clearly different from that seen by the sender, nei-
ther of whom are the agents communicating secretly.

Having the agents acting as middlemen in the
communication stream provides several advantages,
because any packet that will flow past the locations
where agents A and B are can be modified (as long as
a semantics-preserving embedding function is avail-
able for the transport or application protocol in that
packet). The idea is to lower our susceptibility to traf-
fic analysis, as there is no longer a single source/sink
for the stego-messages, and there is no specific pro-
tocol used. This also allows us to achieve a higher
bit rate as well as privacy, anonymity, and plausible
deniability, in some cases. An ideal situation would
be that agent A is located on the last router inside the
sender’s domain (the egress router for that domain),
and agent B is located on the first router outside the
domain (the ingress router). This will havem′ “on
the wire” for the minimum possible time, also lower-
ing the probability of detection.

2.1 Adversary Models

Depending on the goals of steganalysis, ad-
versaries can beactiveor passive[21]. Passive ad-
versaries observe the communication in order to de-
tect stego-messages, find out the embedded informa-
tion, if possible, and prove to third parties, when the
case requires it, the existence of the hidden message.
Active adversaries attempt to remove the embedded
message without changing the stego-message signifi-
cantly, i.e., they attempt to provide strong semantic
preservation. In some cases, active adversaries do
not need to verify the existence of the message be-
fore they attempt to block any secret communication,
thus appropriately manipulating the bits of the mes-
sages that pass through them is enough (e.g., zeroing
unused header fields).

Steganography systems consider both passive
and active adversaries [2], while in watermarking and
fingerprinting systems, generally, only active adver-
saries raise concern. However, most of the literature
in stegosystems deals only with passive adversaries.
For the purposes of this study, both passive and active

adversaries are taken into account, because of hostil-
ity of the Internet environment, the constant improve-
ment of routers and firewalls, and the goal of devel-
oping not only secure, but also robust, steganography
techniques.

3 Related Work

Handel and Sandford [12] reported the exis-
tence of covert channels within network communi-
cation protocols. They described different methods
of creating and exploiting hidden channels in the OSI
network model (see Figure 4), based on the character-
istics of each layer. In particular, regarding to the ap-
plication layer, they suggested covert messaging sys-
tems through features of the applications running in
the layer, such as programming macros in a word pro-
cessor. In contrast, the protocol steganography ap-
proach studies hiding information within messages
and network control protocols used by the applica-
tions, not inside images transmitted as attachments
by an email application, for example. They also con-
sidered techniques of embedding information that re-
quire substituting existing modules of the source code
that implements a particular layer, and some that do
not. In a similar order of ideas, when agent A and
agent B act as sender and receiver, respectively, some
application modules will be replace for embedding
and extracting secret messages.

Figure 4: The OSI Idealized Network Model Layers.

Examples of implementation of covert chan-
nels in the TCP/IP protocol suite (see Figure 1)
are presented by Rowland [24], Project Loki [23],
Ka0ticSH [13], and more deeply and extensively by
Dunigan [8]. These researchers focused their atten-
tion in the network and transport layers of the OSI
network model (shown in Figure 4). In spite of that,
Dunigan [8] did point out in his discussion of net-
work steganography that application-layer protocols,
such as telnet, ftp, mail, and http, could possibly carry
hidden information in their own set of headers and
control information. However, he did not develop
any technique targeting these protocols. More in de-
tail, Rowland [24] implemented three methods of en-



coding information in the TCP/IP header: manipu-
lating the IP identification field, with the initial se-
quence number field, and with the TCP acknowledge
sequence number field “bounce.” Dunigan [8] ana-
lyzed the embedding of information, not only in those
fields, but in some other fields of both the IP and the
UDP headers as well as in the ICMP protocol header.
He based his analysis, mainly, in the statistical distri-
bution of the fields and the behavior of the protocol
itself. Project Loki [13, 23] explored the concept of
ICMP tunneling, exploiting covert channels inside of
ICMP ECHO traffic. All these approaches, without
minimizing their importance, suffer from two prob-
lems: low bandwidth and simplicity of detection or
defeat with straightforward mechanisms.

One such mechanism is reported in Fisk et
al. [11]. Their work defines two classes of infor-
mation in network protocols:structured and un-
structuredcarriers. Structured carriers present well-
defined, objective semantics, and can be checked for
fidelity en route (e.g., TCP packets can be checked
to ensure they are semantically correct according to
the protocol). On the contrary, unstructured carri-
ers, such as images, audio, or natural language, lack
objectively defined semantics and are mostly inter-
preted by humans rather than computers. The defen-
sive mechanism they developed aims to achieve secu-
rity without spending time looking for hidden mes-
sages: using active wardens they defeat steganog-
raphy by making strong semantic-preserving alter-
ations to packet headers (e.g. zeroing the padding
bits in a TCP packet). The most important considera-
tions to their work related to protocol steganography
are the identification of the cover-messages in used as
structured carries, and the feasibility of similar meth-
ods of steganalysis that target application-layer pro-
tocols.

Lastly, Bowyer [5] described a theoretical ex-
ample without implementation, wherein a remote ac-
cess Trojan horse communicates secretly with its con-
trol using an http GET request. To send data up-
stream to a faux webserver, a remote access Trojan
horse could append data at the end of a GET re-
quest. Downstream communication is possible by
sending back steganographic images, or embedding
data within the HTML (e.g., in HTML tags). Al-
though this approach takes advantage of the seman-
tics of regular http messages, as we intent to do, it is
different from our approach because it has low band-
width and can be blocked by restricting access to
certain websites, or by scanning images for stegano-
graphic content.

4 A Case Study: SSH

The SSH protocol is defined by the Internet
drafts [30, 31, 32, 33] of the Internet Engineering
Task Force (IETF). It is a “protocol for secure login
and other secure network services over an insecure
network” [32]. The main goal of the protocol is to
provide server authentication, confidentiality, and in-
tegrity with perfect forward secrecy. There are sev-
eral, both commercial and open-source, implemen-
tations of SSH. The latest version of the protocol is
SSH2 and, being version most widely and currently
used, it is the one object of this study.

Figure 5: SSH2 Protocol Architecture.

The SSH2 protocol consists of three major
components as illustrated in Figure 5:

• Transport Layer Protocol

It provides server cryptographic authentication,
confidentiality through strong encryption, and
integrity plus, optionally, compression. Typi-
cally, it runs over a TCP/IP connection listening
for connections on port 22.

• User Authentication Protocol

It authenticates the client-side user to the server.
It runs over the transport layer protocol.

• Connection Protocol

It multiplexes the encrypted tunnel into sev-
eral logical channels. It runs over the user au-
thentication protocol. It provides interactive lo-
gin sessions, remote execution of commands,
forwarded TCP/IP connections, and forwarded
X11 connections.

In particular, the Transport Layer protocol de-
fines theBinary Packet Protocol, which establishes
the format SSH packets follow (see Figure 6). Ac-
cording to the specification [33], each packet is com-
posed of five fields:



Figure 6: SSH2 Binary Packet Protocol.

Packet Length

Number of octets representing the length
of the packet data, not including the MAC
or the packet length itself.

Padding Length

Number of octets representing the length
of the padding.

Packet Data

The payload, the actual content of the mes-
sage. If compression has been negotiated,
this field is compressed.

Random Padding

An arbitrary-length padding, such as
the total length ofpacket length +

padding length + packet data +

padding is a multiple of the cipher block
size or 8, whichever is larger.

MAC (message authentication code)

When message authentication is negoti-
ated, it contains the MAC octets. Only ini-
tially, the value of the MAC algorithm is
none (before authentication).

An SSH client and server start the communi-
cation negotiating an encrypted session, followed by
client password authentication. Establishing the en-
crypted session includes exchanging keys and nego-
tiating algorithms (key exchange algorithms, server
host key algorithms, encryption algorithms, MAC al-
gorithms and compression algorithms) as well as de-
termining a preferred language. The password au-
thentication process is similar to the one in any re-
mote login application, with the advantage of be-
ing more secure due to encryption. The password is
prone only to key logging.

The main reason for selecting the SSH protocol
as a case of study is the randomness of the content
of its packets, which is an excellent factor when try-
ing to blend hidden content in what is considered a

“normal” traffic. In addition to that, it is widely used
but encrypted, fact that by itself can keep adversaries
away from trying to analyze its content, and, as with
many other protocols, and pointed out by Barrett and
Silverman [4] its design does not attempt to eliminate
covert channels.

4.1 SSH Potential for Information Hiding

There are several potential places where infor-
mation can be hidden without breaking the SSH pro-
tocol. Four of those ways of steganography are de-
scribed below.

• Generating a MAC-like Message

As shown in Figure 6, the SSH2 specification
defines the fields:

uint32 packet length
octet padding length
octet[n1] payload; n1 = packet length - padding length - 1
octet[n2] random padding; n2 = padding length
octet[m] mac (message authentication code); m = mac length

whereoctet[m] contains the computed MAC.
The MAC is normally computed with the previ-
ously negotiated MAC algorithm using the key,
the sequence number of the packet, and the un-
encrypted (but compressed, if compression is re-
quired) packet data. The MAC algorithms de-
fined by the protocol are hmac-sha1, hmac-sha1-
96, hmac-md5, and hmac-md5-96 whose digest
lengths vary from 12 to 20 octets. Therefore,
generating a MAC-like message will open the
possibility to transmit from 12 to 20 octets of
information.

• Generating Random Padding-like Message

Basically, this idea is similar to the previous one,
but stores the message in the random padding
field.

• Hiding information in as part of the Authen-
tication Mechanism

The following is the defined format for the au-
thentication request established by the SSH au-
thentication protocol:

octet SSH MSG USERAUTH REQUEST
string user name (in ISO-10646 UTF8 encoding)
string service name (US-ASCII)
string method name (US-ASCII)
. . . method-specific data

The first four fields cannot be modified if we are
to conform to the protocol, but there is the pos-
sibility of embedding some information in the



method-specific data field and still retain-
ing the required semantics.

The format of the response to the authentication
request looks like this:

octet SSH MSG USERAUTH FAILURE
string authentications that can continue
boolean partial success

where authentications that can con-

tinue is a comma-separated list of authentica-
tion method names.

When the server accepts authentication, the re-
sponse is:

octet SSH MSG USERAUTH SUCCESS

but only when the authentication is complete.

We defined a handshake between client and
server about what method/type of steganogra-
phy is going to be used in the MAC-like mes-
sage generation or random padding-like mes-
sage generation. The idea is to take advantage
of the parameter exchange done by the regu-
lar authentication mechanism. The two agents,
A and B, just need to agree on a covert mean-
ing for the method-specific data sent as an op-
tion. Moreover, the protocol recommends the in-
clusion in the list ofauthentications that

can continue only those methods that are ac-
tually useful; it also says that even if there is no
point in clients sending requests for services not
provided by the server, sending such a request is
not an error, and the server should simply reject
it. Thus, sending a bogus list of authentications
that can continue is not an error.

Another advantage of using the authentication
mechanism for hiding data is the fact that the
plain text would be encrypted, so no matter what
is sent in the string fields, it will not be subject
to traffic analysis.

• Adding additional encrypted content to the
packet

The previous approaches are only effective
when the agents are the same as the sender and
receiver (see Figure 2). But the following idea
explores having, agent A and agent B, located
somewhere along the line of communication of
two arbitrary entities that produce SSH traffic.

Intercepting the traffic and inserting an
encrypted-like portion at the beginning of the
encrypted part of the packet is an option, as

detailed in Figure 7. The inserted portion
consists of two parts: the hidden message itself
and a “magic” number that tells agent B there is
a hidden message in that SSH packet.

This option offers the advantage of having

Figure 7: Adding an encrypted portion with a hidden
message to a regular SSH packet.

agents communicating secretly anywhere and
using any SSH traffic, but it requires careful
study of its susceptibility to traffic analysis.
Traffic analysis might indicate that those mod-
ified SSH packets are longer than normal, which
will indicate suspicion of being a stego-message
and, ultimately, compromise the security of the
method. The SSH protocol standard states
that any implementation must be able to han-
dle packets with uncompressed payload length
of 32,768 octets or less, being the maximum to-
tal packet size 35,000 (including length, padding
length, packet data, padding, and MAC). There-
fore, the length can vary widely. How much
variance there actually is in SSH packet length
in typical traffic is an open question. Another
question that needs to be answered is where
along the communication stream the agents can
be placed so an adversary analyzing the traf-
fic cannot perceive the length difference (i.e.,
the adversary is not able to get both the origi-
nal packet and the packet containing the stego-
message). Another issue with this approach is
that the “magic” number needs to be of certain
minimum length in order to minimize the prob-
ability of having the magic number appear nat-
urally in the data stream. We have chosen a
four octet magic number for our initial imple-
mentation, but this introduces a one in 4,096M
chance that we will incorrectly interpret a cover-
message as a stego-message.

4.2 Prototype Implementation

For implementing a prototype, two of the po-
tential cases for information hiding discussed in the
previous section were selected: the first one, gener-
ating a MAC-like message, and the last one, adding
additional encrypted content to the packet. Both im-
plementation were coded in C, tested under Red Hat
8.0, and each of them runs independently of the other.



4.2.1 Generating a MAC-like Message

This prototype of secret communication was
implemented modifying version 3.5. of OpenSSH
(http://www.openssh.org), a popular open-source
SSH product. It assumes that the agents secretly com-
municating,agent Aandagent B, act as sender and
receiver, respectively. That corresponds to case 1, de-
scribed in Section 2 and illustrated in Figure 3.

In order to simulate the randomness of the
MAC, the embedded messages are previously com-
pressed and then encrypted. The modified version of
the SSH client reads the content to be embedded from
a file compressed with GZip (http://www.gzip.org/)
and encrypted with the GNU Privacy Guard soft-
ware (http://www.gnupg.org/), using the Blowfish al-
gorithm. It embeds exactly the same amount of
octets reserved for computing the MAC according
to the previously negotiated algorithm during the
client-server handshaking. The technique used in the
stegosystem is a cover generation method, which in-
volves the generation of digital objects with the pur-
pose of being cover for a secret communication [14].
Basically, when substituting the original MAC with
the stego-message, a cover is generated, a MAC-like
hidden message. At the receiving end, the modified
version of the SSH server ignores recomputing the
MAC and comparing it with the one gotten from the
client, since the server is acting as agent B, and gets
the MAC-like message and saves it into a file.

During an SSH session, once encryption has
been negotiated and authentication performed, SSH
transmits a packet for every keystroke. That means
for every key typed a packet in the binary format is
sent, and that implies a MAC is computed for every
keystroke. Generating a MAC-like message for every
keystroke opens a great opportunity for secret com-
munication through an overt channel, since as much
hidden data as the MAC length can be transmitted
with every keystroke. More in detail, OpenSSH uses
the following C structure to store the MAC:

struct Mac {
char *name;
int enabled;
const EVP MD *md;
int mac len
u char *key;
int key len;
};

where mac len represents the length of the
MAC as specified in the standard. Depending on the
MAC algorithm negotiated, this value is between 12

and 20 octets. The samemac len was used to gener-
ate the stego-messages. Therefore, at least 12 octets
of information can be sent with every keystroke, once
a MAC-like message is built.

The implementation is a proof-of-concept that
illustrates what could be done in, for example, a
scenario where a military base regularly connects
with computers from other government agencies us-
ing means of secure login and encryption. In that
sense, even if the communication is subject to traffic
analysis, a traffic increase in critical situations will
not be observable because the agents can camouflage
special commands within the regular communication
traffic. The adversary would not be able to guess they
are running their own version of OpenSSH.

4.2.2 Adding Additional Encrypted Content to
the Packet

This prototype represents the case 3 of secret
communication, described in Section 2 and shown in
Figure 3. In this scenario, both agents,A andB, are
middlemen located somewhere in the communication
path. Agent Aintercepts a message from the sender,
embeds some secret message on it, and sends it back.
Agent Bextracts the hidden content and restores the
message as it originally was before it reaches its des-
tination. In order to be able to do that, we imple-
mented a Packet Transmogrifier2 (PT), inspired by
the Calvin and Hobbes transmogrifier shown in Fig-
ure 8. The PT is a piece of software that embeds a
message into an arbitrary stream of packets, and later
extracts that hidden message.

In principle, the PT is conceived as a combina-
tion of several individual packet transformers (each
of which could be used by an individual application
to embed a message in a data stream). This give
us the flexibility of embedding hidden messages in
packets of multiple types corresponding to different
protocols, and with a variety of sources and destina-
tions. The current implementation of the PT provides
a series of default embedder and extractor functions,
protocol dependent, that are called based on the op-
tions selected by the user and the application protocol
of a particular IP packet.

The corresponding functions for handling SSH
packets are called,sshEmbedder andsshExtrac-

tor , respectively. Both of them analyze SSH packets
in a similar way, but execute opposite processes: em-
bedding and extraction of the hidden content.

2With appropriate apologies and thanks to Bill Watterson, cre-
ator of “Calvin and Hobbes” [27].



Figure 8: The Calvin and Hobbes Transmogrifier

When establishing an SSH session [4], initially
the client contact the server and following both, client
and server, disclose the SSH protocol version they
support as well as the implementation version. Then
they start communicating using the binary packet
protocol mentioned in the SSH Transport Layer Pro-
tocol [33] and illustrated in Figure 6. The client
and the server negotiate the algorithms to be used in
the session, exchanging a list of supported algorithms
and methods for key exchange, host key, encryption,
compression, and message authentication code com-
putation as well as a list of supported languages. Im-
mediately after that, the key exchange process be-
gins. The number of messages exchanged at this
point between client and server depend on the chosen
key exchange mechanism. All the packets sent until
this point by client and server are unencrypted, there-
fore, sshEmbedder andsshExtractor are not in-
terested in working with such packets. They analyze
their content and discharge them if they correspond
to any of those plaintext packets. Once the session
key exchange is done, both sides, client and server,
turn on encryption, perform authentication, and the
secure connection is established. From that particular
point, sshEmbedder begins altering the SSH pack-
ets, embedding content that looks encrypted. Such
content, as mentioned in the previous section is com-

posed of two parts: the hidden message itself and
“magic” number that will allowsshExtractor to
identify packets containing secret information. Con-
versely,sshExtractor checks for the existence of a
“magic” number in every encrypted packet and if so,
extracts it along with the hidden message and refor-
mats the SSH packet to its original form.

We selected to have a hidden message of 12-
byte length and a “magic” number of 4-byte length,
which will add 16 bytes to the total SSH packet
length. This amount of bytes seems small, con-
sidering that the maximum SSH packet size can be
of 35,000 bytes, but it is large enough to allow us
to have low probability of error when identifying
a “magic” number, and high bandwidth considering
that 12 bytes have been transmitted by every en-
crypted packet; that is, for every keystroke in a telnet-
type session.

For testing purposes, the 12-byte hidden mes-
sage is an arbitrary message generated pseudo-
randomly; in actual use, this would be 12 octets of
stego content. The “magic” number is calculated
based on the message using a trapdoor one-way func-
tion (a special type of one-way function which uses
a secret informationy in f(x) [25]). Thus, computing
the “magic” number involves performing a series of
bitwise operations in the message using a secret key.
Finally, both the “magic” number and the message
are encrypted and added at the beginning of the SSH
payload.

Figure 9 shows a sample output of the PT when
embedding messages.

Figure 9: Sample Output of the Packet Transmogri-
fier when Embedding Information in SSH Traffic

Because the SSH payload is 16 bytes larger af-
ter embedding, the total length of the IP packet is also
increased in the same amount of bytes. On the other
hand, when extracting the IP total length is decreased.



The implementation of this case of in-transit
protocol steganography can be used in many scenar-
ios since there are no assumptions about the commu-
nicating parties. It allows us to take advantage of any
arbitrary SSH traffic as long as the packet transmogri-
fier is placed somewhere along that communication
path.

4.3 Discussion

The implemented approaches, although sim-
ple, represent a proof-of-concept of the idea of
application-layer protocol steganography. A stego-
message is embedded into a packet without alter-
ing the semantics established by the protocol stan-
dard. Moreover, the modified packet looks “normal”
to simple traffic monitoring, although depending on
the point of observation a difference on packet length
can be noticed for the second approach. In spite of
that, several issues need to be discussed and some
other requires further exploration.

When generating a MAC-like message, the first
issue of concern is the impossibility of verifying that
the actual payload of the message was correctly trans-
mitted, as a consequence of replacement of the MAC.
Information about the error rates in transmission of
SSH packets will be useful for better understanding
the validity of this approach. However, augmenting a
short MAC could be another way of the same idea of
using the MAC to embed secret information. Since
the SSH specification indicates that the length of the
MAC can be between 12 and 20 octets, depending on
the algorithm, it would be possible to select an algo-
rithm with a short MAC and pad the stego-message to
it. For example, if thehmac-md5-96 algorithm [33],
which computes a MAC of 12-octet length, is used,
we can add 8 octets of secret information to each
packet, bringing the pseudo-MAC up to the 20-octet
limit. Of course, for this approach to work, the agents
A and B must agree in advance on what algorithm to
use, but that is very simple to achieve through the
authentication mechanism. Moreover, when they are
not planning to communicate secretly, agent A and
agent B can choose to use thehmac-sha1 algorithm,
which computes a MAC of length 20, so the total
length of their average SSH packet does not raise sus-
picion.

If robustness is defined as the impossibility of
removing the stego-message without destroying the
cover message [14], the embedding of a MAC-like
message is robust. An active adversary cannot recom-
pute the MAC without knowledge of the encrypted
payload of the packet, the keys, and the algorithms

used. Therefore, any change on the MAC will be
taken at the receiving end as a signal of existence
of a middleman in the communication stream. SSH
will issue a warning and the session will be inter-
rupted. Furthermore, if the attacker modifies one of
the MAC-like stego-messages, it will be easy to de-
tect because of the encryption and compression. If
the hidden message is not meaningful to agent B, a
warning and action similar to the case of a corrupted
MAC can be taken. In the same order of ideas, adding
an additional encrypted content to the packet is robust
because recomputing the MAC involves the knowl-
edge of the actual payload. In consequence, due to
the behavior of the protocol, an active adversary can-
not attack the stegosystem without being noticed and
also disrupting legitimate SSH traffic. In this particu-
lar case, the minimal requisite fidelity pointed out by
Fisk et al. [11] (degree of signal fidelity that is both
acceptable to end users and destructive to cover com-
munications) does not apply since the MAC cannot
be corrupted to be acceptable.

There is some controversy in the field about
what is the better way of defining a perfectly se-
cure steganography system, as reported by Moskow-
itsz et. al [18] and Katzenbeisser and Petitcolas [15].
However, information theory and the ideas of security
taken from cryptography are today considered as the
“right” approach to secure steganography. Most of
the information-theoretical definitions [6, 2, 16, 34]
and some game-theoretical definitions [9] of secure
stegosystems assume prior knowledge of the distribu-
tions of the covers in order to quantify the informa-
tion a passive adversary can gather from observing
the communication channel. Our assumption made
in the implementation, regarding the uniformity of
the distribution of both cover and stego-messages, re-
quires more detailed study. That study would involve
estimation of the probabilistic model of the cover as
well as the stego, and performing statistical tests to
prove the randomness of the hidden message. It is not
enough to say that the approach is secure based on se-
mantic preservation; information-theoretical analysis
must be done.

5 Future Work

To this point, we are in the process of gath-
ering data to estimate the distribution model of the
covers and the stego-messages. The purpose of that
is to determine whether or not a passive adversary
with knowledge of the distributions and computa-
tional power to compare them is able to prove the
existence of a hidden message.



In addition to that, we are incorporating the
packet transmogrifier into a Linux-based router
to demonstrate the efficacy of in-transit protocol
steganography. One important issue related to that
is the selection of a proper location to place the trans-
mogrifier. A good location will minimize its detec-
tion as well as the detection of modified packets, such
as in cases where the packet length has been changed.

The embedding functions that the PT will carry
are of a great deal of interest. We are investigat-
ing several approaches, depending on the protocol.
For example, it seems plausible to use mimic func-
tions [28, 29] to tailor the distributions of text content,
resulting from browsing queries, in regular HTTP
traffic; we can also embed data in HTTP cookies,
DNS traffic, MIME data, etc.

Furthermore, we are looking into ways of max-
imizing the bandwidth of the secret communication.
Towards that issue, we are searching for algorithms
of the formm = f(p), wherep is the packet given as
input to the transmogrifier, andm is the hidden mes-
sage. In other words, rather than embedding a secret
message, we search for an extraction algorithm that
would producem if given p, and embed a represen-
tation of that algorithm within the packet. While this
is an impractically hard problem if we are forced to
find an embedding (really, the corresponding extrac-
tion) for a complete, arbitrary message into an arbi-
trary packet in the general case, we can reduce the
complexity of the problem in three ways:

1. having a small family of extraction functions
from which we choose, and only embed enough
information to distinguish which member of the
family should be used for that packet,

2. not requiring that we extract data from every
packet, and

3. not requiring that we extract the full message
from a single packet.

By relaxing the third condition sufficiently, we
can all but guarantee that we can extract at least
one octet from almost any packet. Because a prime
consideration in the effectiveness of the transmogri-
fier is its per-packet latency, we are first considering
simple extractions. When we have obtained perfor-
mance measurements, we will devise more complex
and diverse algorithms and analyze the overall effec-
tiveness of the approach. There is a natural tension
between the achievable bandwidth and the ease of
finding an embedding (richer embeddings, yielding

higher bandwidth, will be harder to find, and there-
fore increase the latency of the packets, which ad-
versely affects network performance).

The most direct approach to embed the choice
of algorithm is to assign each algorithm from the fam-
ily an index code and to embed that code. Given the
small number of algorithms we envision, this is a triv-
ial amount of information (which could be carried in
the MAC of an SSH packet, or embedded in a cookie
within an HTTP request).

6 Conclusion

In this paper, we have described semantics-
preserving application-layer protocol steganography,
and have presented methods for embedding secret
messages in application-layer protocols. We have de-
veloped the notions of strong and weak semantics
preservation. Our approach has several advantages
over prior work:

• Because of its applicability to a wide range of
protocols, we can embed messages in the vast
majority of network traffic on the Internet.

• The use of non-source stego (en route embed-
dings and extractions) increases the available
bandwidth and complicates traffic analysis be-
cause of the ability to choose traffic from a vari-
ety of senders and receivers.

• Semantics preservation dramatically increases
the security of our steganography.

As a proof-of-concept, we implemented an
end-to-end protocol steganography approach in the
SSH2 protocol as well as one with agents as mid-
dlemen. The software may be obtained from the au-
thors. In the near future, we will expand our fam-
ily of embedders/extractors to include HTTP, and will
complete implementation of the Packet Transmogri-
fier. This will allow us to perform on-the-fly message
embedding and extraction while a packet is en route.
We will also perform further analysis on the distribu-
tions of our covers and stego-messages.

References

[1] R. Anderson, editor.Information Hiding: Proceed-
ings of the First International Workshop, Cambridge,
U.K., May 30-June 01, 1996. Springer.

[2] R. J. Anderson and F. A. Petitcolas. On the limits
of steganography.IEEE Journal of Selected Areas in
Communications, 16(4):474–481, May 1998.

[3] D. Aucsmit, editor. Information Hiding: Proceed-
ings of the Second International Workshop, Portland,
Oregon, U.S.A., April 14-17, 1998. Springer.



[4] D. J. Barrett and R. Silverman.SSH, The Secure
Shell: The Definitive Guide. O’Reilly, 2001.

[5] L. Bowyer. Firewall bypass via protocol steganog-
raphy. Network Penetration, 2002. Retrieved
on January 05, 2003 from the World Wide Web:
http://www.networkpenetration.com/protocolsteg.html.

[6] C. Cachin. An information-theoretic model for
steganography. In D. Aucsmith, editor,Informa-
tion Hiding: Proceedings of the Second International
Workshop, pages 306–318, Portland, Oregon, U.S.A.,
April 14-17, 1998. Springer.

[7] S. J. Chapin and S. Ostermann. Information hiding
through semantics-preserving application-layer pro-
tocol steganography. Technical report, Center for
Systems Assurance, Syracuse University, October
2002.

[8] T. Dunigan. Internet steganography. Technical report,
Oak Ridge National Laboratory (Contract No. DE-
AC05-96OR22464), Oak Ridge, Tennessee, October
1998. [ORNL/TM-limited distribution].

[9] J. M. Ettinger. Steganalysis and game equilibria. In
D. Aucsmith, editor,Information Hiding: Proceed-
ings of the Second International Workshop, pages
319–328, Portland, Oregon, U.S.A., April 14-17,
1998. Springer.

[10] N. Feamster, M. Balazinska, G. Harfst, H. Balakr-
ishnan, and D. Karger. Infranet: Circumventing
web censorship and surveillance. InProceedings of
the 11th USENIX Security Symposium, pages 247–
262, San Francisco, California, U.S.A., August 05-
19, 2002. The USENIX Association.

[11] G. Fisk, M. Fisk, C. Papadopoulos, and J. Neil. Elim-
inating steganography in Internet traffic with active
wardens. In J. Oostveen, editor,Information Hid-
ing: Preproceedings of the Fifth International Work-
shop, pages 29–46, Noordwijkerhout, The Nether-
lands, October 7-9, 2002. Springer.

[12] T. Handel and M. Sandford. Hiding data in the OSI
network model. In R. Anderson, editor,Information
Hiding: Proceedings of the First International Work-
shop, pages 23–38, Cambridge, U.K., May 30-June
01, 1996. Springer.

[13] Ka0ticSH. Diggin em walls (part 3) - ad-
vanced/other techniques for bypassing firewalls.
New Order, April 11, 2002. Retrieved on
August 28, 2002 from the World Wide Web:
http://neworder.box.sk/newsread.php?newsid=3957.

[14] S. Katzenbeisser and F. A. Petitcolas.Information
Hiding: Techniques for Steganography and Digital
Watermarking. Artech House, Norwood, MA, 2000.

[15] S. Katzenbeisser and F. A. Petitcolas. Defining secu-
rity in steganographic systems. InElectronic Imag-
ing, Photonics West, SPIE, volume 4675 ofSecurity
and Watermarking of Multimedia Contents IV, pages
50–56, 2002.

[16] T. Mittelholzer. An information-theoretic approach
to steganography and watermarking. In A. Pfitzmann,
editor,Information Hiding: Proceedings of the Third
International Workshop, pages 1–16, Dresden, Ger-
many, September 29-October 01, 1999. Springer.

[17] I. S. Moskowitz, editor. Information Hiding: Pro-
ceedings of the Fourth International Workshop, Pitts-
burg, PA, U.S.A., April 25-27, 2001. Springer.

[18] I. S. Moskowitz, G. E. Longdon, and LiWuChang. A
new paradigm hidden in steganography. InProceed-
ings of the New Security Paradigm Workshop 2000,
pages 41–50, Cork, Ireland, September 19-21, 2000.
n.

[19] J. Oostveen, editor.Information Hiding: Preproceed-
ings of the Fifth International Workshop, Noordwijk-
erhout, The Netherlands, October 7-9, 2002.

[20] A. Pfitzmann, editor.Information Hiding: Proceed-
ings of the Third International Workshop, Dresden,
Germany, September 29-October 01, 1999. Springer.

[21] B. Pfitzmann. Information hiding terminology. In
R. Anderson, editor,Information Hiding: Proceed-
ings of the First International Workshop, pages 347–
349, Cambridge, U.K., May 30-June 01, 1996.
Springer.

[22] N. Provos. Defending against statistical steganalysis.
In Proceedings of the 10th USENIX Security Sympo-
sium, pages 323–335, Washington, DC, U.S.A., Au-
gust 13-17, 2001. The USENIX Association.

[23] route@infonexus.com and alham-
bra@infornexus.com. Article 6. Phrack
Magazine, 49, August 1996. Retrieved on
August 27, 2002 from the World Wide Web:
http://www.phrack.com/phrack/49/P49-06.

[24] C. H. Rowland. Covert channels in the
TCP/IP protocol suite. Psionics Technolo-
gies, November 14, 1996. Retrieved on
August 23, 2002 from the World Wide Web:
http://www.psionic.com/papers/whitep03.html.

[25] B. Schneider.Applied Cryptography. John Wiley &
Sons, Inc, 1996.

[26] G. J. Simmons. The prisoners’ problem and the sub-
liminal channel. InProceedings of CRYPTO ’83,
pages 51–67. Plenum Press, 1984.

[27] B. Watterson. Something Under the Bed is Drool-
ing. Andrews and McMeel, pp. 101–104, Kansas
City, MO, 1988.

[28] P. Wayner. Mimic functions. Cryptologia,
XVI(3):193–214, July 1992.

[29] P. Wayner. Disappearing Cryptography - Infor-
mation Hiding: Steganography and Watermarking.
Morgan Kaufmann Publishers, San Francisco, CA,
2nd edition, 2002.

[30] T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne, and
S. Lehtinen. SSH authentication protocol. Working
Group Internet-Draft, September 20, 2002. Expires:
March 21, 2002. Retrieved on October 26, 2002 from
the World Wide Web: http://www.ietf.org/internet-
drafts/draft-ietf-secsh-userauth-16.txt.

[31] T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne, and
S. Lehtinen. SSH connection protocol. Working
Group Internet-Draft, September 20, 2002. Expires:
March 21, 2002. Retrieved on October 26, 2002 from
the World Wide Web: http://www.ietf.org/internet-
drafts/draft-ietf-secsh-connect-16.txt.



[32] T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne, and
S. Lehtinen. SSH protocol architecture. Working
Group Internet-Draft, September 20, 2002. Expires:
March 21, 2002. Retrieved on October 26, 2002 from
the World Wide Web: http://www.ietf.org/internet-
drafts/draft-ietf-secsh-architecture-13.txt.

[33] T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne, and
S. Lehtinen. SSH transport layer protocol. Working
Group Internet-Draft, September 20, 2002. Expires:
March 21, 2002. Retrieved on October 26, 2002 from
the World Wide Web: http://www.ietf.org/internet-
drafts/draft-ietf-secsh-transport-15.txt.

[34] J. Zöllner, H. Federrath, H. Klimant, A. Pfitzmann,
R. Piotraschke, A. Westfeld, G. Wicke, and G. Wolf.
Modeling the security of steganographic systems. In
D. Aucsmith, editor,Information Hiding: Proceed-
ings of the Second International Workshop, pages
344–354, Portland, Oregon, U.S.A., April 14-17,
1998. Springer.


