
An Application Layer Covert Channel:

Information Hiding With Cha�ng

Nick Estrada

moander@mit.edu

Nick Feamster

feamster@mit.edu

Michael Freedman

mfreed@mit.edu

December 9, 1999

1 Introduction

The purpose of our project was the implementation of an application-layer covert channel, with guaranteed con�-

dentiality via cha�ng. A covert channel is a means of passing information between two parties in such a manner

that the existence of the communication channel itself is not obvious to the casual observer.

Additionally, the implementation of a covert channel is enhanced through encryptionless security { through clever

uses of steganography in the covert channel itself, even if an observer is aware that a covert channel exists, he will

not be able to recover the information which is being sent across the channel. The proposed covert channel achieves

privacy through cha�ng and winnowing, an alternative to encryption which instead pads useful (\wheat") bits with

garbage (\cha�") bits, such that only the intended receiver will be able to determine which bits are wheat and which

are cha�.

The goal of this project was to create a practical covert channel, such that even an active, capable administrator

or observer would �nd it very di�cult or be very unlikely to detect the channel. Even after detecting the channel

and possibly recovering the data, the administrator should still be unable to understand the transmitted message.

A covert channel can be described as a type of communication channel operating such that it can be utilized to

somehow violate system security policy. A covert channel is not part of the actual computer system design; rather,

the channel serves as a means of transmitting a stream of bits from the sender to receiver in such a way that the

very existence of a communication channel cannot be veri�ed without full knowledge of the channel details. [7]

Covert channels have a number of applications. Information can be transmitted secretly in a number of ways.

Common ideas include through process table information, over networks (local and wide), through �les.

Covert channels are often implemented at the transport layer. In the case of TCP/IP, it is fairly trivial to develop

applications such as those described below. [11]

� Bypassing packet �lters, network sni�ers, and \dirty word" search engines.

� Encapsulating encrypted or non-encrypted information within otherwise normal packets of information for

secret transmission through networks that prohibit such activity (\TCP/IP Steganography").

� Concealing locations of transmitted data by \bouncing" forged packets with encapsulated information o�

innocuous internet sites.

Despite the fact that there are many possible ways to implement covert channels, the program described in this

paper implements a covert channel at the application layer, one level above the TCP layer. This design choice was

due to the fact that the Apache server code lent itself most easily to application-layer modi�cations.

This implementation manipulates the HTTP header information to initiate the covert channel and HTML tags

to transmit bits across the channel itself. Data can be hidden just about anywhere; the most important point is that

the actions or modi�cations which represent the transmission of bits should not seem unusual to the casual observer.

Other means of implementing covert channels often involve ICMP packets, routing control information, and UDP

datagrams. These topics will not be covered in this paper, although the methods contained herein can be easily

adopted to exploit these areas.

1

2 System Description

The covert channel is designed to operate across a network using a TCP connection and the HTTP protocol; the

design employs a client-server model to establish the covert channel across which bits are sent.

2.1 Channel Client

The client requests cha�ed bits from the server in such a manner that this request looks like nothing more than a

normal HTTP request. However, the server's knowledge of the previously agreed upon protocol allows it to realize

that the client is requesting cha�ed packets. Given the fact that HTTP GET requests exhibit a fair amount of

variance from request to request, the client should conceivably be able to make slight modi�cations to its request

such that the server would know that the request was \special", but that casual observation of the client's request

would not raise suspicion.

Speci�cally, the proposed design calls for modi�cations to the User-Agent header �eld in the HTTP request

header. By modifying the User-Agent slightly to a special user agent which appears to be a normal user agent, for

example \Mozilla/4.61C-CCL-MCD" instead of \Mozilla/4.61C-CCK-MCD", the server can detect that the client

is in fact not a Netscape client, but rather a hacked client which is to become the receiving end of the covert channel.

The modi�cation to the HTTP header is signi�cant enough so that the server can detect the cha�ng client, but

subtle enough so that a system administrator or other curious party would not become suspicious.

2.2 Channel Server

The server for the covert channel is the sender of the hidden message, which is to be embedded within the HTML

�le itself in an unobtrusive fashion. Speci�cally, the proposed design hides bits in the most unobtrusive aspect of

a HTML �le: whitespace. Based on whether the server wishes to transmit a stream of ones or zeroes, it can �nd

the next occurrence of a particular tag (i.e., <P> or <HR>, and pad the �le with whitespaces between the tag ending

character, \>", and the penultimate character.

Speci�cally, our channel implements spaces after \P" as representing a a string of ones, and spaces after an \R"

in a tag as representing a string of zeros, although this could conceivably be expanded to more general cases, such

as padding di�erent sets of tags for each string of bits, or even perhaps runtime determination of which tags should

be used based on the prominence of various tags in the HTML �le itself.

2.3 Protocol Speci�cs

Given the basic interactions between the client and server previously described, it is important that the design itself

speci�es an agreement, or protocol, between the client and the server. This implementation assumes the existence

of the following agreement:

1. The HTML �les which the server sends to the client will ordinarily contain no spaces between the tag ending

character and the penultimate character. As such, the client will be guaranteed that when spaces do exist

in this location, these spaces represent the covert transmission of bits rather than simply an anomaly in the

HTML �le itself.

2. The client will indicate to the server that it wishes to receive bits of the covert message by changing the

User-Agent �eld to \Mozilla/4.61C-CCL-MCD", a variant on an actual user agent, but speci�c to this cha�ng

client.

3. The bits will always be transmitted in order in the �le itself. That is, a string of bits will be represented as

whitespace padding after the previously padded tag in the HTML �le, regardless of whether this message was

1's or 0's.

4. If the server is not able to return the entire covert message in a particular HTML �le (an extremely likely

occurrence), the server will send the following bits of the �le upon the next request for client cha�ng.

5. The server will designate whether a given packet is wheat (valid) or cha� (invalid) by digesting a bu�er which

contains data from the HTML �le with either a valid or invalid HMAC, respectively. Only the receiving client

2

w88_trident.txt

index.html

11100....

Server

National Laboratory<BR[2 spaces]>
<P[3 spaces]>Welcome to Los Alamos

User-Agent: something special!
GET index.html

Client

����
����
����

����
����
����

��������

���
���
���
���
���

���
���
���
���
���

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 1: Client-Server Covert Channel Protocol

has the key which the server used to sign the �le; thus, only the client will be able to distinguish wheat from

cha�.

Given such an agreement, the server is now capable of sending covert messages to the client through HTML

pages. The following steps employ the agreements described above to transmit bits of a message covertly:

1. Client sends server a forged HTTP request header, \Mozilla/4.61C-CCL-MCD", signifying amessage request.

2. The server determines whether the HTML �le to be sent should be �lled with wheat bits or cha� bits. This is

done using a threshold and a uniformly distributed random variable.

3. If the server is to send cha�, the predetermined tags representing strings of ones and zeros are padded with a

random number of spaces. Additionally, whether to pad with ones or zeroes �rst is random.

4. If the server is to send wheat, the �le which is to be cha�ed is opened and is converted into a string of ones and

zeroes. The HTML �le is padded accordingly with whitespace, as described above, and returned to the client.

System design calls for the client to be able to request a number of di�erent �les to be sent through the covert

channel, although the present implementation has not yet added this feature.

Figure 1 provides an example of the protocol described above. In this case, the client �rst sends a message to

the server with a GET index.html request, including the all-important modi�cation of the User-Agent �eld. Given

this, the server knows that it is to send data covertly in the HTML page which it returns to this client. (In the case

of multiple clients, it might also be necessary to have a client identi�er tag. In this project, we deal solely with a

single covert client.) In the �gure, the server is serving index.html padded with wheat bits. As such, it looks at

w88 trident.txt, and �rst sees a string of three 1's. Thus, it looks for the �rst occurrence of P> (or p>) which it has

not already encountered, and inserts three whitespace characters in between these characters. The server next sees

two 1's, and pads the next occurrence of R> with two spaces. Similar behavior ensues throughout communication of

the hidden message, until the �le is completely transmitted.

3 Design Choices

The most important criteria for a covert channel is that the channel not be detectable to a casual observer. The

extent to which a channel is \covert" can vary: a channel might be undetectable by naive perusal, or might be more

robust and extremely di�cult to detect without prior knowledge of its existence.

3.1 Use of httpd Daemon

The communications between the sender and receiver generate network tra�c. To lessen suspicion of these com-

munications, the system utilizes a high-tra�c network service, such that the existence of a connection between the

sender and the receiver will not raise suspicion of the presence of foul play.

The httpd process serves web pages, typically HTML �les which often contain tags which reference other objects,

such as images and links to be served. HTTP is a high tra�c protocol by nature; as such, connection requests

3

often repeat as users surf through web pages, and normal requests come from a wide variety of hosts. Also, if an

httpd daemon is running on a system behind a �rewall, the served pages could potentially be transmitted across the

�rewall.

Therefore, we have chosen to use HTTP as a means for creating a covert channel for the following reasons:

� High Tra�c: The httpd daemon is designed to handle a large amount of tra�c; the e�ectiveness of the

proposed covert channel relies on the existence of high tra�c because it assumes that the slight anomalies in

the client request header and padded HTML �les will go unnoticed by system administrators observing the

operation of the server.

{ Repeated Requests: HTTP requests commonly occur in bursts. Often when a client is sur�ng a site, it will

hit the same page repeatedly in a relatively short amount of time. High tra�c (essentially, noise) masks

the request patterns of the client; thus, it will be very di�cult for an observer to detect unusual activity

on the part of the client.

{ Diversity of Hosts: A typical web server receives hits from all around the world; because the model for

the world wide web is inherently a public model, it could be considered a perfectly normal operation for a

Russian citizen to be browsing a site in the United States. If such activity isn't inherently suspicious (and

it shouldn't be), then the possibility de�nitely exists in this instance for the creation of a covert channel.

� Firewall Portal: While a user may not be able to access data behind a �rewall, he may be able to reach

the proxy, which serves as a portal in the �rewall. Since these servers have access to information on both

sides of the �rewall, it is conceivable that installing a modi�ed httpd daemon could create a potential path for

information through the �rewall.

� Application Protocols: HTTP is one of the few application level protocols which often has access to both

sides of a �rewall. Clever implementation of a covert channel can allow the client to simulate telnet (or other)

access for the client in the covert channel through a clever bit-passing scheme.

3.2 Use of Cha�ng and Winnowing

Techniques of cha�ng and winnowing have been used to achieve con�dentiality across the covert channel. System

administrators or network sni�ers are unlikely to detect a channel due to the high volume of network tra�c involved

with web servers. To ensure that a sni�er will not be able to recover the covertly transmitted bits, even with prior

knowledge of their existence, we have incorporated plain view techniques of data hiding.

3.2.1 Basic Cha�ng and Winnowing

Cha�ng and winnowing are novel techniques to maintain privacy and nondisclosure of information without encryp-

tion. The technique was proposed by Ronald Rivest as an alternative to encryption that would not be limited by

export regulations and fall into the same debate of key recovery for governmental and law enforcement agencies. [8]

A system based on winnowing begins by separating a message into discrete packets. The sender authenticates

each packet with his secret key. A message authentication code (HMAC), based on a cryptographic hash function, is

appended to each information packet. [5] Finally, the sender ensures that a receiver can recombine packet contents

in a correct order by adding a sequence number to each packet. These valid packets are referred to as \wheat". This

technique achieves con�dentiality by adding invalid packets, or \cha�", marked with the same sequence numbers as

wheat packets. These invalid packets include a message to be discarded and an invalid HMAC signature.

The sender and the receiver share a secret key, agreed upon through some previous key establishment protocol.

Upon receiving the packets, the receiver checks each packet's HMAC and \winnows" the packets. Winnowing is

the process of separating wheat (signal) from cha� (noise). For this protocol, winnowing refers to ignoring cha�

and keeping only the wheat. The message is reconstructed by linking together the wheat packets according to their

sequence numbers.

To explain how the system works, let us consider the set of packets shown in Figure 2. If we assume that the

HMAC of the second packet for each sequence number is valid, the winnowed message reads: Hi Roger, This �nal

project was very fun. -Nick.

4

(1,Professor Rivest-,532105) (1,0,351216)

(1,Hi Roger,,465231) (1,1,895634)

(2,The last problem set,782290) (2,0,452412)

(2,This �nal project,793122) (2,1,534981)

(3,was very time consuming.,891231) (3,0,639723)

(3,was very fun.,344287) (3,1,905344)

(4,-Mike,553419) (4,0,321329)

(4,-Nick,312265) (4,1,978823)

Figure 2: Cha�ng and Winnowing

Cha�ng and winnowing provide con�dentiality of information, even though the information itself remains in plain

view. Cryptanalysts may reconstruct messages by exhaustively searching the combinations of message fragments.

Given 20 sequences of 4 packets per sequence (1 wheat, 3 cha�), there exist 420 possible combinations of the

packets, which is on the order of 1012. However, if each packet contains several words, the di�culty in cracking the

transmitted message greatly decreases. Therefore, it is desirable to increase the granularity of the message to prevent

an eavesdropper from �guring out a message from context.

The con�dentiality of information a�orded by this technique is based on the di�culty of determining wheat

packets from cha� packets. As shown in Figure 2, single bits of information can be hidden in each packet, as opposed

to words or sentence fragments, to increase the di�culty of plain text attack. Therefore, less information per packet

improves the e�ectiveness of cha�ng, yet decreases the throughput of the channel.

3.2.2 More E�cient Cha�ng: All-or-Nothing

One extension to cha�ng is an application known as the \all-or-nothing" transform, also known as a \package

transform". [10] Such a scheme would make it impossible for Bob to see the entire message which Alice is sending

until he receives all of the smaller components from Alice. Until Bob has received enough of these packets, the wheat

packets which he receives from Alice look like random noise. Once Bob has received all of the packets from Alice,

however, he is able to recover the message.

3.2.3 Cha�ng over Networks

Cha�ng can theoretically be implemented on any layer of the protocol stack, although sending HMACs across the

physical or link layer could potentially be very tedious. The most feasible alternatives are sending cha� through the

network, transport, or application layer.

End-to-End Argument One particularly important disadvantage of cha�ng at the network layer is that this layer

does not guarantee a reliable transmission of packets. Thus, the possibility exists for an important wheat packet to

be dropped at the network layer; this is an undesirable characteristic. The transport layer guarantees transmission of

all packets, but does not address out-of-order packet reception. Since packets come out of order, sequence numbers

are required for each segment of data, such that the valid data can be assembled in order. Fortunately, this reordering

is taken care of at the application layer. As such, it could be considered most practical in many cases to implement

cha�ng at the application layer, because of the end-to-end argument.

4 Implementation

The following sections describe the implementation of the covert channel application. Speci�cally, the modi�ed

function calls within Apache are discussed, as well as the implementation of independent functions which enable

cha�ng and the establishment of the covert channel itself.

5

4.1 Server Implementation

The covert channel described in Section 2 was implemented through adaptation of open source software. Speci�cally,

the server for the covert channel is a derivative of Apache 1.3.9, which was hacked according to the previously

described speci�cations. [2] The implementation of the server does not inherently require Apache source code. A

trivial server could have been, and in fact was, developed to return HTML �les with padded bits.

Apache was chosen as the base for the covert channel server so as to provide the general appearance of a fully

functional web server. By tailoring the Apache source code as needed to perform covert channel actions, it was

possible to create a server which functioned exactly like the standard distribution of Apache, except under special

circumstances (i.e., speci�c User-Agent �eld values).

4.1.1 Apache Modi�cations

Most of the modi�cations to the Apache source code itself occurred in one particular �le, http protocol.c, where

functions which send the bu�ered HTML �le back to the client. Speci�cally, our server used the provided function

ap table get() to get the string associated with the user agent of the client. If the string of the user agent matched

that of the \special" covert client user agent, the server invoked a modi�ed version of ap send mmap(), which made

the function calls to the underlying functions responsible for actually modifying the bu�er in the speci�ed manner

of adding whitespace and appending an HMAC to the header.

Speci�cally, the function hide covert message() is called on the bu�er mm, which contains the data corresponding

to the requested HTML �le. hide covert message() and its underlying support functions were implemented entirely

independently of Apache, and are described in Section 4.1.2.

4.1.2 Independent Support Functions

The hide covert message() is the high-level function which performs both the insertion of whitespace and the

addition of either a valid or invalid HMAC. Essentially, this function performs the following operations:

1. Copies the bu�er containing the HTML bu�er to a new scratch bu�er.

2. Determines whether a packet is to be wheat or cha� by calling is wheat packet() (based on srand()).

3. Adds an appropriate HMAC to the header, depending on whether the �le will contain wheat or cha�.

4. Calls either hide chaff data() or hide file data(), depending on the whether the �le will contain wheat

or cha�. These functions call lower level functions which actually add the appropriate number of spaces to the

HTML �le in the correct locations.

5. Returns the modi�ed (note, also larger) bu�er back to the Apache code and reassigns the modi�ed bu�er to

the address of the old bu�er.

This sequence of events essentially describes how the operation of adding whitespace to a particular HTML �le

is performed. The bulk of this functionality is contained in htmlconv.c.

4.2 Client Implementation

The base for the client was a much simpler block of code because it did not have to appear and behave like a

legitimate mainstream client like Netscape (although such a feature could be a future development; see Section 5).

Other than basic network functionality provided by the socket library, the only other operations which the client was

required to support was the decoding of the cha�ed HTML data.

That is, given an HTML �le with whitespace-padded tags and an HMAC in the header, the client must determine:

1. if the hidden data which the server returned is valid, and

2. the characters to which the hidden data correspond.

The network functionality is based largely on a TCP-based client example by David Mazieres, and includes

additional functionality to perform whitespace parsing and HMAC comparison. [6] Whitespace parsing is performed

in htmlrev.c. Additionally, the implemented design provides functionality for conversion to and from ASCII �les.

6

Table 1: Source Code Location

Directory Description

/mit/mfreed/S6.857/code code for performing basic MD5 functionality [9]

/mit/mfreed/S6.857/apache-1.3.9/src root Apache directory

/mit/mfreed/S6.857/apache-1.3.9/src/main location of modi�ed �les

/mit/feamster/S6.857/project/code root of independent source code

/mit/feamster/S6.857/project/code/io HTML padding, unpadding, ascii to bit functions, etc. (the meat)

/mit/feamster/S6.857/project/code/cha� location of the covert channel client source

/mit/feamster/S6.857/project/code/network/client support code for the covert client

/mit/feamster/S6.857/project/code/network/server simple TCP server

/mit/feamster/S6.857/project/code/examples some code from which our code is derived

4.3 gzip Compression and uuencode

Because the bandwidth of the existing covert covert channel is fairly low as it stands, it is a good idea to �rst compress

the �le which consists of the hidden message. Once the client reconstructs the message which the server sends, it

must the reconstruct the original message and subsequently perform decompression of the compressed data, thus

allowing for recovery of the initial hidden message. By compressing the �le before sending, the channel's bandwidth

has e�ectively increased. Of course, the message's resilience to error is decreased as a result of the compression, but

this e�ect is of less concern since the current design does not have an error correction functionality.

4.4 Source Code Availability

Source code for the modi�ed Apache code is located at /mit/mfreed/S6.857/apache-1.3.9/src. Source code for

the functionality independent of Apache is located at /mit/feamster/S6.857/project/code. HMAC-related source

is located at /mit/mfreed/S6.857/code. Table 4.4 describes the contents of each directory and the functionality of

the �les contained within.

Table 4.4 shows the location of all of the source code used to develop the covert channel client/server system.

Some of the network code was inspired by a number of sources, particularly synk4.c and a paper by David Mazieres.

[6]

5 Future Development

Our client-server model of an application-layer covert channel is a proof of concept implementation. The modi�ed

server sends information embedded in web pages to a client which requests the cha�ed data, such that only a client

who knows the HMAC key will be able to perform winnowing. The following areas remain for further development.

5.1 Randomness

The system relies on randomness for several aspects of its functionality. The decision to send a wheat or cha� packet

the number of number of whitespaces in each tag in cha� packets, and whether to cha� with one or zero �rst, are all

determined at random.

The actual randomness of these processes depends on the randomness of the UNIX srand() function. The rand

function (seeded by srand) is only pseudo-random. Since system time is often used as a seed value, and served web

pages are already timestamped, an attempt to recreate the sequence of random numbers produced and thus sequence

of wheat versus cha� packets can be made and will likely be successful.

Randomness can be improved by adding functionality that is more unrelated to the packet and its timestamps.

System performance, hardware thermal noise, and user input such as keystroke speed in a manner similar to PGP

key generation provide a greater degree of randomness. [4]

7

5.2 Covering Tracks

The Apache web server keeps a log of pages sent, stored in access log, the speci�ed access log �le. Normal logs

re
ect the extra whitespace padding of sent wheat and cha� pages. For example, given a default Apache index.html

�le size of 1622, the following logged entries might appear very suspicious to network administrators. Notice the last

�eld for each entry of the log �le, the size of the bu�er which was sent.

127.0.0.1 - - [07/Dec/1999:03:38:40 -0500] "GET /index.html HTTP/1.0" 200 1644

127.0.0.1 - - [07/Dec/1999:03:45:27 -0500] "GET /index.html HTTP/1.0" 200 1652

127.0.0.1 - - [07/Dec/1999:05:34:53 -0500] "GET /index.html HTTP/1.0" 200 1647

127.0.0.1 - - [07/Dec/1999:07:28:07 -0500] "GET /index.html HTTP/1.0" 200 1643

127.0.0.1 - - [07/Dec/1999:08:50:40 -0500] "GET /index.html HTTP/1.0" 200 1657

In order to cover the covert channel's tracks, the size written to logs should correspond to the actual HTML �le on

the server, as opposed to the length of the padded bu�er transmitted. The vast majority of HTTP requests come

from normal clients receiving normal HTML �les. Such transmissions obviously require no modi�cations of access

logs.

5.3 Runtime Options: Secrecy versus Bandwidth

Covert channels are generally low-bandwidth means of transmitting information. The greater the signal-to-noise

ratio of covert data, the more di�cult it becomes to hide the information. Cha�ng, on the other hand, relies on a

high-bandwidth channel where most information (cha�) can be winnowed from the valid wheat. Secrecy of the data

in transmission can be increased by sending out more cha�, and the secrecy of the channel itself can be increased by

sending less data through it. However, both of these are schemes lower bandwidth, which is undesirable. There is

an inherent tradeo� between secrecy and bandwidth, where the speci�c amount of secrecy or bandwidth may vary

depending on the �le being sent, as well as its source and destination hosts.

The choice of entire wheat or cha� pages on the application layer (i.e., signing the entire web page in the HTTP

transport headers), stems from this problem. HMAC digests are 16 bytes long. In order to encode HMACs in

whitespace, the �le would look very suspicious: 128 bits of HMAC whitespace compared to several bits of message

whitespace. Additionally, encoding the HMAC itself results in greatly reduced bandwidth, because most of the

bandwidth of the covert channel is consumed by the HMAC.

A desirable addition to the server would be the ability to adapt to varying secrecy requirements. This implies

runtime determination of a speci�c client's requirements from either an explicit client list or from various levels

of secrecy which could be speci�ed in the client request header. For clients requiring more covert transmission of

information, a lower-bandwidth covert channel should be employed.

The use of explicit P> and R> tags should be modi�able at runtime to utilize the distribution of tags on the served

web page. Because a bitstream is essentially strings of 1's and strings of 0's, then, knowledge of whether the last

stream of bits was ones or zeros indicates the content of the current stream. As a result, a client could ask the server

to pad every tag in a HTML page; this requires an agreement on what the value of the �rst transmitted bit in each

HTML �le will be.

5.4 Receiver-Unaware Covert Channels

The network client used to formulate forged HTTP requests has a simple command line interface. Its purpose is

to act as a recipient on a covert channel, as opposed to serving as a fully functional web browser (although it is a

functional HTML client).

A mainstream client such as Netscape or Lynx could be altered to create a receiver-unaware covert channel. The

modi�ed browser could conceivably transmit requests similar to the currently-implemented client. The server would

then reply with HTML pages with hidden cha� or wheat bits. While browsers ignore whitespace when displaying

interpreted HTML pages, users may still view the document source. Since additional whitespace appended to

HTML tags is generally rather suspect, the modi�ed client should be able to remove these spaces before displaying

the document source to the user or writing the �le into the cache.

A mainstream client could then be used to establish a covert channel unbeknownst to the user of the browser.

The trusted distribution of a hacked client to users is a separate problem, but this condition may be exploited so

8

that requests originate from the unaware receiver's IP address, increasing the variety of the hosts (possibly with his

permissions or certi�cates). Therefore, security analysts would have a greater di�culty in determining from where

covert requests originate.

6 Discussion and Application

The following sections describe various applications of the covert channel described in this paper. Because our goal

was primarily to construct a simple covert channel, the opportunity exists for further elaborations. For instance, the

creation of a covert telnet client, the handling of multiple clients, and the use of more elaborate steganography, such

as hiding information in audio and video �les, could be performed.

6.1 Covert telnet Access

Currently, the client requests are generic requests for a pre-speci�ed �le, which the server returns through the covert

channel. By easily modifying client requests to include extra information, the client could conceivably issue system

commands such as ls, rm, cat, and grep to the server. Upon receiving such a request, the server performs these

actions and returns the result of such a system call through the covert channel.

A web server also provides a portal through a network �rewall, allowing one to simulate command line access

even when a �rewall is in place; thus, even if telnet or ftp access is not permitted through a �rewall, an HTTP-based

covert channel could bypass other restrictions.

The httpd web daemon is often run with root access on the server host. Given such access and the ability

to install the modi�ed daemon in its place, the server can perform any system commands on the root level. Even

without root access to �les, web servers may perform both malicious active and information-compromising passive

activities.

6.2 Classical Steganography

Steganography is the art of hiding information in a way such that an adversary cannot detect the presence or

contents of the hidden information. The proof of concept implementation only establishes a covert channel by

hiding information directly in the HTML pages served. However, the presence of such a channel through a web

server is extendable to many other methods of information hiding. Examples of steganographic techniques are the

digital watermarking of images in low-order bits or other means, or �ngerprinting �les with serial-numbers and extra

information. The security of steganography lies in the realm of information hiding, steganography communication

intelligence revolves around the interception and direction-�nding of such information. [12]

The implemented client-server model suggests alternative methods to cha�ng. Files included in web pages {

images, sound �les, applets, etc. { contain numerous avenues for the covert transmission of information. [3] The

server may incorporate these classical steganographic techniques to hide more information, reaping the bene�ts of

information transmitted in various encoded formats, thus making hidden information harder to detect than whites-

pace padding or similar ASCII plain-text modi�cations.

7 Conclusion

In a matter of weeks, an application-layer covert channel was implemented in C based on a traditional client/server

model using Apache httpd as the base distribution for the modi�ed web server. Although many improvements remain

with respect to the implementation, the program written successfully demonstrates a concept: covert channels can

be successfully implemented in the context of HTTP by taking advantage of the idiosyncrasies of the HTTP client

request header and by exploiting seemingly insigni�cant whitespace in certain positions in the retrieved �le.

In particular, some of the most di�cult code to develop was not that which was provided the Apache server

functionality, but rather the code which manipulated the bu�ers which passed the HTML data about in char*

bu�ers. Inexplicable errors emerged during one heap allocation: the insert data() function would operate properly

within the debugger and while running test suite code, but when the same function was called with the same

arguments from Apache, the function ceased to function properly. When a particular bu�er in the function was

9

changed from heap allocation to stack allocation, the problem disappeared. Needless to say, this was a hack, but a

quick �x.

The use of cha�ng provides a means to achieve con�dentiality without encryption. Governmental export laws

might not be applicable. If the technique gains widespread use, the government's position might notably change. But

more importantly, cha�ng is a demonstration that legal restrictions of secrecy may always be subject to loopholes.

A key lesson to take away from this paper is that covert channels can exist almost anywhere { the requirement for

a covert channel is not that the data itself be hidden, but rather that the existence of the channel is not be evident

to an external observer.

10

A HTTP Sample Client Request Queries

Valid HTTP Query by Netscape 4.61

Received 288 bytes, data [GET / HTTP/1.0c

Connection: Keep-Alive

User-Agent: Mozilla/4.61C-CCK-MCD [en] (X11; U; SunOS 5.6 sun4u)

Host: localhost:6001

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */*

Accept-Encoding: gzip

Accept-Language: en

Accept-Charset: iso-8859-1,*,utf-8

HTTP Query by Client Simulating Netscape 4.61 to initiate covert channel

Received 288 bytes, data [GET / HTTP/1.0

Connection: Keep-Alive

User-Agent: Mozilla/4.61C-CCL-MCD [en] (X11; U; SunOS 5.6 sun4u)

Host: localhost:6001

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */*

Accept-Encoding: gzip

Accept-Language: en

Accept-Charset: iso-8859-1,*,utf-8

Valid HTTP Query by Netscape 3.01

Received 182 bytes, data [GET / HTTP/1.0

Connection: Keep-Alive

User-Agent: Mozilla/3.01 (X11; U; SunOS 5.6 sun4u)

Host: localhost:6001

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*

Valid HTTP Query by MS Internet Explorer 5.0

Received 341 bytes, data [GET / HTTP/1.1

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,

application/vnd.ms-powerpoint, application/vnd.ms-excel,

application/msword, */*

Accept-Language: en-us

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 5.0; Windows 98; DigExt)

Host: w20-575-109.mit.edu:6001

Connection: Keep-Alive

Valid HTTP Query by Lynx

Received 591 bytes, data [GET / HTTP/1.0

Host: localhost:6001

Accept: x-world/x-vrml, text/ksign, application/pdf, application/x-dvi, applicaion/postscript,

audio/*, audio/x-pn-realaudio, video/*, video/mpeg, text/html, ext/plain, text/sgml, text/

x-sgml, application/x-x509-ca-cert, application/x-x59-user-cert, application/x-wais-source,

application/html, video/mpeg, image/jpe, image/x-tiff, image/x-rgb, image/x-png,

image/x-xbitmap, image/x-xbm, image/gf, application/postscript, */* ;q=0.001

Accept-Encoding: gzip, compress

Accept-Language: en

Negotiate: trans

User-Agent: Lynx/2.7.1 libwww-FM/2.14

11

B Sample Execution of Covert Channel

B.1 Data Received by Client

Below is an excerpt from the HTML �le which the client receives from the covert channel server:

...

<P>

If you can see this page, then the people who own this domain have just

installed the Apache Web server

software successfully. They now have to add content to this directory

and replace this placeholder page, or else point the server at their real

content.

</P>

<HR >

<BLOCKQUOTE>

If you are seeing this page instead of the site you expected, please

contact the administrator of the site involved.

(Try sending mail to <SAMP ><Webmaster@domain></SAMP>.)

Although this site is

running the Apache software it almost certainly has no other connection

to the Apache Group, so please do not send mail about this site or its

contents to the Apache authors. If you do, your message will be

<BIG>ignored</BIG>.

</BLOCKQUOTE>

<HR >

<P >

The Apache

<A

HREF="manual/index.html"

>documentation

has been included with this distribution.

</P>

<P>

The Webmaster of this site is free to use the image below on

an Apache-powered Web server. Thanks for using Apache!

</P>

...

----- Ints -----

Filename: covert_data.txt, size [7]

0110001

----- Done -----

Received 1906 bytes total

12

B.2 Apache Error Log

Below is a section of the Apache error log �le corresponding to the transmission of the wheat data in the previous

section. We have added additional information for debugging purposes.

HMAC Digest; [23R2)=]

bits sent: 7, offset: 0

Buffer:<! 23R2)=>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">

<HTML>

<HEAD>

<TITLE>Test Page for Apache Installation on Web Site</TITLE>

</HEAD>

<!-- Background white, links blue (unvisited), navy (visited), red (active) -->

<BODY

BGCOLOR="#FFFFFF"

TEXT="#000000"

LINK="#0000FF"

VLINK="#000080"

ALINK="#FF0000"

>

<H1 ALIGN="CENTER">

It Worked! The Apache Web Server is Installed on this Web Site!

</H1>

<P>

If you can see this page, then the people who own this domain have just

installed the Apache Web server

software successfully. They now have to add content to this directory

and replace this placeholder page, or else point the server at their real

content.

</P>

<HR >

<BLOCKQUOTE>

If you are seeing this page instead of the site you expected, please

contact the administrator of the site involved.

(Try sending mail to <SAMP ><Webmaster@domain></SAMP>.)

Although this site is

running the Apache software it almost certainly has no other connection

to the Apache Group, so please do not send mail about this site or its

contents to the Apache authors. If you do, your message will be

<BIG>ignored</BIG>.

</BLOCKQUOTE>

<HR >

<P >

The Apache

<A

HREF="manual/index.html"

>documentation

has been included with this distribution.

</P>

<P>

The Webmaster of this site is free to use the image below on

an Apache-powered Web server. Thanks for using Apache!

</P>

<DIV ALIGN="CENTER">

13

</DIV>

</BODY>

</HTML>

bappl1b~h

Buffer Size: 1660

File to Hide: /usr/local/apache/htdocs/chaff.txt

Offset (Total Bits): 7

Bits Sent: 7

Wheat: 1

[Wed Dec 8 05:28:57 1999] [error] [client 127.0.0.1] Info: After hiding: Content-Length [1622]

14

References

[1] Ross Anderson's Home Page

http://www.cl.cam.ac.uk/users/rja14/

[2] Apache web server open-source distribution.

http://www.apache.org/dist/apache.1.3.9.tar.gz

[3] W. Bender, D. Gruhl, N. Mormoto, and A. Lu. \Techniques for Data Hiding."

http://www.research.ibm.com/journal/sj/mit/sectiona/bender.html

[4] D. Eastlake, S. Crocker, and J. Schiller. \Randomness Recommendations for Security." RFC 1750.

http://www.ietf.org/rfc/rfc1750.txt

[5] H. Krawczyk, M. Bellare, and R. Canetti. \HMAC: Keyed-Hashing for Message Authentication." RFC 2104.

http://www.faqs.org/rfcs/rfc2104.html

[6] Mazieres, David. Using TCP Through Sockets.

ftp://cag.lcs.mit.edu/pub/dm/source/net/net.ps.gz

[7] National Computer Security Center. A Guide to Understanding Covert Channel Analysis of Trusted Systems.

November 1993.

http://www.fas.org/irp/nsa/rainbow/tg030.htm

[8] Rivest, Ronald. \Cha�ng and Winnowing: Con�dentiality without Encryption."

http://theory.lcs.mit.edu/~rivest/chaffing.txt

[9] Rivest, Ronald. \The MD5 Message-Digest Algorithm." RFC 1321.

http://www.faqs.org/rfcs/rfc1321.html

[10] Rivest, Ronald. \All-or-Nothing Encryption and the Package Transform." Proceedings of the 1997 Fast

Software Encryption Conference. (Springer, 1997).

[11] Rowland, Craig. \Covert Channels in the TCP/IP Protocol Suite."

http://www.firstmonday.dk/issues/issue2 5/rowland/

[12] Steganography and Digital Watermarking.

http://www.jjtc.com/Steganography/

15

