

Zbigniew Kwecka
Matric No. 03008457
BSc (HONS) Networked Computing

Supervisor:
Prof. William Buchanan

Second Marker:
Dr. Neil Urquhart

Application Layer Covert Channel
Analysis and Detection

CO42019 Honour Project

UNDERGRADUATE PROJECT DISSERTATION

Submitted in partial fulfilment of the requirements of
Napier University for the degree of

Bachelor of Science with Honours in Networked Computing

Z. Kwecka, BSc (Hons) Network Computing, 2006 2

Authorship declaration

I, Zbigniew Kwecka, confirm that this dissertation and the work presented in it are
my own achievement.

1. Where I have consulted the published work of others this is always clearly

attributed.
2. Where I have quoted from the work of others the source is always given. With

the exception of such quotations this dissertation is entirely my own work.
3. I have acknowledged all main sources of help.
4. If my research follows on from previous work or is part of a larger collaborative

research project I have made clear exactly what was done by others and what I
have contributed myself.

5. I have read and understand the penalties associated with plagiarism.

Signed

Name: Zbigniew Kwecka
Matric No.: 03008457

Z. Kwecka, BSc (Hons) Network Computing, 2006 3

Abstract

The specification of Internet protocol stack was developed to be as universal as
possible, providing various optional features to the network programmers.
Consequently the existent implementations of this specification use different methods
to implement the same functionality. This created situation where optional fields and
variables are often transmitted only to be ignored or discarded at the receiving end. It
is considered that transmission of these fields significantly reduces the bandwidth
available to data transfers, however the redesign of the network protocols from
various reasons is considered impossible at the present time, and this downfall of
Internet protocol stack is silently accepted. Since the optional fields discussed are of
no real value anymore, they are often left unmonitored. This in turn allows for
implementation of covert channels.

Techniques of information hiding in covert channels have been known some time
now. By definition it involves hiding information in the medium, which is not usually
used for any form of information transfer. For an instance the purpose of the envelope
in the standard mail communication is to enclose the message and provide space for
addressing. However, even if the messages were under strict surveillance, information
hidden under the stamp on the envelope could go unnoticed to the examiner. This is
how covert channels operate. They use resources often perceived as safe, and unable
to carry data, to hide covert payload.

This dissertation investigated Internet protocol stack and identified Application Layer
as the level most vulnerable to covert channel operations. Out of the commonly used
protocols, SMTP, DNS and HTTP have been recognized as those, which may carry
hidden payload in and out secure perimeters. Thus, HTTP, the protocol which is often
wrongly perceived as text based information transfer protocol, due to its innocently
sounding name was further investigated. Since there is no tool available on the market
for HTTP monitoring, a set of test tools have been developed in this project using C#
programming language, which is starting to become a new networking industry
standard for application deployment. The analysis of the current trends in covert
channel detection and the statistic collected on the current implementations of the
protocol lead to design and implementation of suitable HTTP covert channel detection
system. The system is capable of detecting most of the covert channel
implementations, which do not mimic the operation of HTTP browser driven by a
user. However, the experiments also proved that for a successful system to operate it
must fully understand HTTP protocol, recognise signatures of different HTTP
implementations and be capable of anomaly analysis.

Z. Kwecka, BSc (Hons) Network Computing, 2006 4

Contents
Authorship declaration ...2
Abstract...3
Contents ..4
List of figures and tables ...6
Acknowledgments ..7
1 Introduction..8

1.1 Project Overview ..8
1.2 Background ..8
1.3 Covert Channels Terminology...9
1.4 Project Aims and Objectives..10
1.5 Thesis Structure ..11

2 Theory...12
2.1 Introduction ..12
2.2 Covert Channels Definition ...12
2.3 Potential Users of Covert Channels..13
2.4 TCP/IP Model...14

2.4.1 Network Layer ...14
2.4.2 Internet Layer ..14
2.4.3 Transport Layer ...14
2.4.4 Application Layer ..15

2.5 Examples of Application Layer Covert Channels ...15
2.5.1 HTTP ..15
2.5.2 DNS ..16

2.6 Conclusions ..17
3 Literature Review ..18

3.1 Introduction ..18
3.2 Covert Channel Classification ...18

3.2.1 Storage and Timing Channels...18
3.2.2 Noisy and Noiseless Channels..19
3.2.3 Aggregated and Not-aggregated Channels ..19

3.3 Application Layer Covert Scenarios ..19
3.3.1 Reordering...21
3.3.2 Case Modification..21
3.3.3 Use of Optional Fields and Flags..21
3.3.4 Adding a New Field ...22
3.3.5 Using Linear White Spacing Characters..22
3.3.6 Modifying Server Object ..22

3.4 HTTP Protocol..23
3.4.1 HTTP Syntax and Covert Channels ..23
3.4.2 General syntax ...24

3.5 Detection ..27
3.6 Conclusions ..28

4 Design ...29
4.1 Introduction ..29
4.2 Evaluation Environment..29
4.3 Covert Channels Detection System..29
4.4 Experiment Design..31

4.4.1 Experiment 1 – Implementation Specific Data Gathering ..31
4.4.2 Experiment 2 – Request Information Filtering ..31
4.4.3 Experiment 3 – Headers Modification ..32
4.4.4 Experiment 4 – Browser Signature Recognition..33
4.4.5 Experiment 5 – Covert Channel Detection ..33
4.4.6 Experiment 6 – Analysing Prototype’s Load on Test Network34
4.4.7 Experiment 7 – Code Mobility Check...34

4.5 Conclusion..34

Z. Kwecka, BSc (Hons) Network Computing, 2006 5

5 Implementation ..36
5.1 Introduction ..36
5.2 Testing Network ...36
5.3 Foundation Software ...37

5.3.1 HTTP Analysers ..37
5.3.2 HTTP Proxies ..39
5.3.3 Web browsers ..40

5.4 Experimental Applications ..40
5.4.1 HTTP Dumper ...40
5.4.2 OffLine HTTP Analyser...41
5.4.3 Filtering Proxy...41
5.4.4 Data Hiding Proxy ...42
5.4.5 Browser Caller ...43
5.4.6 Browser Timer...45

5.5 Covert Channel Detection System Prototype..45
5.6 Conclusions ..46

6 Experiment Data Analysis..47
6.1 Introduction ..47
6.2 Experiments..47

6.2.1 Experiment 1 – Implementation Specific Data Gathering ..47
6.2.2 Experiment 2 – Request Information Filtering ..49
6.2.3 Experiment 3 – Headers Modification ..50
6.2.4 Experiment 4 – Browser Signature Recognition..51
6.2.5 Experiment 5 – Covert Channel Detection ..52
6.2.6 Experiment 6 – Analysing Prototype’s Load on the Test Network...............................53
6.2.7 Experiment 7 – Code Mobility Check...54

6.3 Conclusions ..55
7 Discussion, Conclusions and Further Work..56

7.1 Introduction ..56
7.2 Discussion & Prototype Evaluation ...56
7.3 Test Inadequacies..58
7.4 Conclusions ..58
7.5 Further Work ..60

8 References..61
9 Appendices ...63

Appendix 1 - Experiment 2 Results ...63
Appendix 2 – Experiment 3 Results...65
Appendix 3 - HTTP Protocol...67
Appendix 3 – Project Presentation...74
Appendix 4 - Inline Filtering Agent - Code Listing..79
Appendix 5 - HTTP Analyser Foundation - Code Listing...93
Appendix 6 – Browser Timer - Code Listing ...104
Appendix 7 – Browser Caller - Code Listing ...108
Appendix 8 – Data Hiding Proxy - Code Listing..114
Appendix 10 - HTTP Dumper - Code Listing ..121
Appendix 11 – Experimant 1 - Code Listing..130
Appendix 12 – Experiment 2 & 3 - Code Listing ...137

Z. Kwecka, BSc (Hons) Network Computing, 2006 6

List of figures and tables

Figure 1-1 Communicating parties A and B, with eavesdropper E 8
Figure 2-1 Anatomy of misuse (Summers, 1996) 11
Figure 2-2 TCP/IP to OSI Model Mapping 12
Figure 3-1 HTTP Header’s Reordering (Kwecka, 2006) 19
Figure 3-2 HTTP Header Name Case Modification (Kwecka, 2006) 19
Figure 3-3 Use of Optional Header Values (Kwecka, 2006) 20
Figure 3-4 Use of Unrecognised Header (Kwecka, 2006) 20
Figure 4-1 Firewall Protected Intranet 26
Figure 4-2 Detection and Filtering Network Setup 27
Figure 5-1 Test Network Topology 32
Figure 5-2 HTTP Analyser Foundation 34
Figure 5-3 HTTP Proxy Foundation 35
Figure 5-4 Web browser Foundation 36
Figure 5-5 HTTP Dumper GUI 36
Figure 5-6 OffLine HTTP Analyser 37
Figure 5-7 Filtering Proxy 37
Figure 5-8 Data Hiding Proxy 38
Figure 5-9 Data Hiding Scenario 38
Figure 5-10 Browser Caller 39
Figure 5-11 Browser Timer 40
Figure 6-1 HTTP Headers Usage Statistics 41
Figure 6-2 Browsers’ Signatures 42
Figure 6-3 Responses to Requests with ‘Host’ Header Filtered Out 43
Figure 6-4 Threat Detection 46
Figure 6-5 Median Time Taken to Perform a Full Download 47

Z. Kwecka, BSc (Hons) Network Computing, 2006 7

Acknowledgments

I would like to thank Professor William Buchanan, for his guidance and support
throughout this project. In addition, I would like to thank Dr Neil Urquhart for being
part of the marking process.

Z. Kwecka, BSc (Hons) Network Computing, 2006 8

1 Introduction

1.1 Project Overview
The foundation of the current most popular data channel, the Internet, is made of
protocols, which allow a considerable amount of “freedom” to their designers. Each
of those protocols was defined based on a number of vendor specific
implementations, in order to provide common procedures for cross vendor
communication. Thus, every millisecond there is thousands of bits of optional and
redundant information being exchanged between computers from around the World.
Those bits may be employed by intruders, criminals, and possibly even terrorists in
various types of malicious activity, since they are usually treated as irrelevant and
ignored by the security systems. There are very high chances of those bits being used
by perpetrators to implement covert channels, which are a form of secret
communication medium. This poses a large risk to public and private information
confinement.

The overall aim of this Honours project is to investigate data hiding in the Application
Layer of Internet protocol suite and the main focus is on the detection of covert
communication. Therefore, research into technology and knowledge required to build
a successful covert channel detector and limiter were conducted. This included
literature review of recent research publications dealing with covert channels, white
papers and RFCs of specific technologies. In addition a prototype of Covert Channel
Detection System (CCDS) was designed and implemented in order to evaluate data
gathered. The intentions were to establish whether detection and elimination of the
covert channels is possible, and where the further work should be conducted in order
to achieve those goals.

1.2 Background
The foundations of Internet were built in accordance to 7-layer Open System
Interconnection (OSI) model, suggested by the International Standard Organisation
(ISO). Each of the layers provides well-defined services to the layer directly above
and exchanges data or control information with corresponding layer on remote
machine. It is also capable of employing services from the layer directly below. For
well-defined services to operate, protocol stacks were designed to be as universal as
possible, and are defined in a way which is called “open”. Most implementations have
an open-ended list of protocols that they are capable of providing services to. For
example, the Layer 3 IP protocol carries an 8-bit protocol type field, thus allowing it
to transfer 255 different Layer 4 protocols, of which only 138 are defined, 115 are
free for further development, and 2 are left for testing and experimental purposes.

IP is the most widely employed protocol for computer networking and we can clearly
state that its versatility greatly contributed to this. However, the flexibility of Internet
communication protocols, which allowed for the dream of simple data sharing, has a
trade off, which is security. Optional protocols’ fields and variables which are
transmitted only to be ignored or discarded at the receiving end, pose a large threat for
information confinement. Thus, organizations which permit any form of
communication of their employees, or computer systems, with the outside world,
consequently consent for an arbitrary data leakage from their networks. Of course the

Z. Kwecka, BSc (Hons) Network Computing, 2006 9

companies try to protect themselves from Internet threats in various ways, such as
with firewalls, proxies, and so on, but most of them focus only on direct information
transfers, and neglecting the possibility of transferring data by other means. A
statefull firewall, often considered as sufficient protection by network administrators,
acts like a locked gateway, allowing packets on selected Layer 4 ports to leave and the
return packets to enter the secure perimeter. Thus only connections which originated
from within the network can proceed. Unfortunately, not all of these devices are
perfect and methods for their deception exist, but what is even more important is that
most of the time a message originating from within a network is allowed onto the
Internet. Thus, this kind of protection is not enough to ensure confidentiality of
corporate and private data. Some organisations may say that they trust all the users of
their network, and there is no need to filter data leaving the network. But most of
them neglect the fact that the users of the network are not only human operators, but
also automated software and hardware. Furthermore not all of these automated
systems are legitimate, and some of them are malicious agent installed by hackers, or
accidentally downloaded by legitimate system users.

The numbers of existing implementations of malicious agents are large and grow
every day, so to protect against data leakage and dangerous software many
organizations implement Proxy servers and intrusion detection systems (IDS). Proxy
servers are protocol specific tools that act almost as transceivers1, where they check
and, if required, modify data transfers between two environments, where the IDSs
constantly monitor the network traffic, examining data content, statistic and any other
information useful in detection of malicious operations. These precautions give higher
level of protection, however, most of them examine only legitimate data channels,
that in the data payload and the transaction headers, while the legitimate data channels
are not the only way that information may leave secure perimeter. B. W. Lampson in
his document “A Note on the Confinement Problem” (Lampson, 1973) was first to
formally suggest possibility of creating computer communication channels by
employing methods originally not intended for any form of communication. He called
them covert channels and considered them to be one of the greatest threats to
confinement of information.

1.3 Covert Channels Terminology
The term covert channel describes a secret communication technique employed by
two or more parties allowed to exchange information, while they assume the data
channel in use is under surveillance. Thus, they modify the content of the genuine low
security message or the envelope used to carry this message, so that eavesdropper
cannot read from the secret channel.

Figure 1-1 Communicating parties A and B, with eavesdropper E

1 device capable of both transmitting and receiving, often used to allow connections between two
different technologies, devices or transmission mediums;

ALICE BOB

EVE

Z. Kwecka, BSc (Hons) Network Computing, 2006 10

Traditionally all the documents relating to data hiding and cryptography, since Ron
Rivest’s article presenting RSA cryptosystem in 1978, sender is not being called
person A but is named Alice, and the receiver is called Bob instead of person B
(Rivest, 1978). This scheme is used in this report, to make the discussions easier to
follow, for the convenience of the reader. Thus, eavesdropper system in this scheme is
also called Eve (Figure 1-1).

In covert channel scenarios Alice is often considered to be an inmate of a high
security prison. It is assumed that she knows an escape plan from a prison where Bob
is spending his sentence. Alice is trying to send the escape plan to Bob, however Eve,
the governor checks their communication very precisely, thus they employ covert
channel know to them to sent the secret messages. Figure 1-2 illustrates basic method
of information hiding employing plain text message as a carrier (first letters of the
words in the message combined together form: LetTheMissionBegin).

Let everyone tango.
This has Edward’s

mind in some simple inquiry of nothing,
before everyone gets into Nirvana.

Figure 1-2 Cover Channel (Buchanan, 2006)

1.4 Project Aims and Objectives
This project began with intend of analysing possible counter measures to Application
Layer covert channels technologies. Therefore following aims were specified:

(a) Research possible carriers of covert information at Application Layer of
Internet protocol suite.

(b) Prototype suitable CCDS.
(c) Evaluate the prototype and suggest a framework for identifying detection

systems’ sensitivity, to various types of covert traffic, as well as capability of
introducing noise into the suspected channels.

In order to accomplish these aims, following objectives were also defined:

(a) Investigate current research of covert channels and technologies available for
their detection and limitation.

(b) Choose a programming language suitable for prototyping of CCDS.
(c) Define testing environment for the prototype’s evaluation.
(d) Propose further research areas.

Z. Kwecka, BSc (Hons) Network Computing, 2006 11

1.5 Thesis Structure

Chapter 1 Introduction. This chapter provides the overview of the work performed

for the needs of this Honours Project Dissertation

Chapter 2 Theory. Some of the underlying theory of Internet protocol stack and
precise definitions of the term covert channel are given in this chapter.

Chapter 3 Literature Review. This chapter provides the background of the current
research conducted in the field of covert channels. Also suggestion of the
suitable methods of covert chapter detection and prototype evaluation are
provided.

Chapter 4 Design. This chapter provides high level overview of proposed
prototype.

Chapter 5 Implementation. The detail behind the implementation of experiments
and prototyped system are unrelieved in this chapter.

Chapter 6 Experiment Data Analysis. The results form the experiments performed
are presented in this chapter, together with early evaluation of the
findings.

Chapter 7 Discussion, Conclusions and Further Work. This chapter summarises
the work performed for this dissertation, presents the findings and
suggest further work required in this field.

Chapter 8 References

Chapter 9 Appendixes

Z. Kwecka, BSc (Hons) Network Computing, 2006 12

2 Theory

2.1 Introduction
This chapter will provide some background to the technologies discussed in the
report. Thus, a precise, up-to-date definition of covert channels will be provided here,
however, in depth discussion of their classification and implementation will follow in
Chapter 3. This section will also analyse the anatomy of misuse, in order to identify
possible usage and users of the data hiding techniques.

The TCP/IP model will be discussed as a framework on which Internet protocol stack
is actually based. This should explain why this project has focused on Application
Layer protocols, at the same time, neglecting that implementation of covert channels
is possible in any of the four layers of the TCP/IP model. Finally, two examples of
how Application Layer data hiding techniques may be implemented will given.

2.2 Covert Channels Definition
Since Lampson’s first discussion on computer-based covert channels (Lampson,
1973), technology has moved forward, constantly tightening security, and thus forcing
data hiding techniques to transform. Hence, current sources vary in their precise
definitions of the term covert channel. Some simply describe it as communication
channel used to transmit information employing a method not originally intended for
this kind of transmission (Lampson, 1973; Wikipedia, 2005), where others classify it
under a transfer of information which violates security policy of the transfer system
(Tsai, 1990; Gligor, 1993; PCMAG.COM, 2005). Furthermore, the term
steganography describes hiding data in a different ways and is often incorrectly
applied in regard to covert channels. Thus, to clarify the focus of this document, two
most comprehensive definitions, will be combined together.

 “Communication channel that can be exploited … to transfer
information in a manner that violates the system’s security policy”

(NCSC, 1985)

Given a nondiscretionary (e.g., mandatory) security policy model M
and its interpretation I(M) in an operating system, any potential
communication between two subjects I(Sh) and I(Si) of I(M) is covert if
and only if any communication between the corresponding subjects Sh
and Si of the model M is illegal in M.

(Tsai, 1990)

The National Computing Security Center’s (NCSC) definition, although very similar
to Tsai’s does not emphasizes the fact that the security policy must be implemented
and nondiscretionary for the covert channels to exist. Sadly Tsai’s definition while
very precise and complete is highly complex. Thus, for purpose of this document, the
following definition, is used when considering covert channels:

Z. Kwecka, BSc (Hons) Network Computing, 2006 13

Communication channel that can be exploited … to transfer information
in a manner that violates the system’s nondiscretionary (e.g.,
mandatory) security policy.

2.3 Potential Users of Covert Channels
To understand who, would be interested in utilizing covert channel technologies, and
why they would like to use them, the definition of this term (Section 2.2) must be
interpret. Thus, it should be noted that according to this, the main aim in exploitation
of covert channels is violation of a specific security policy. Therefore we can classify
and threat these technologies as misuse tools and according to anatomy of misuse
there is a suitably motivated perpetrator behind any kind of threat (Figure 2-1).

MOTIVATION

ATTACK
PLANNING MODE MISSION

TARGET

DAMAGE

INTELLIGENCE
GATHERINGCOLLATIONEVALUATION

PERPETRATOR

Figure 2-1 Anatomy of misuse (Summers, 1996)
For a misuse to occur there must be a perpetrator with some motivation.

Perpetrators can be classified depending on their motives or location in respect to the
secure system. Thus categorising, based on motives, there are three groups (Summers,
1996):

(a) Individuals driven by personal feelings, as disaffection or revenge.
(b) Hackers motivated by curiosity, politics and culture or simply by greed.
(c) Spies working for intelligence or commercial market.

Furthermore, according to Washington Post (Coll, 2005) now over four years after the
September 11th, al. Qaeda has migrated from space to cyberspace and they will
certainly use any technology they can to succeed in their battle. Therefore we think
terrorist should be considered as another group with specific intention of misuse,
especially since implementations of cover channels offer great secret communication
tool.

Individual intruders can be either insiders or outsiders depending on their relation to
NCAS. So that employees, contractors, customers or their families would be
considered as insiders, and anybody who does not fit in one of those groups is treated
as an outsider.

Z. Kwecka, BSc (Hons) Network Computing, 2006 14

2.4 TCP/IP Model
As described in Section 2.1 ISO recommends the 7-layer OSI model for development
of transmission protocols. Each of these layers provides well-defined services to the
layer directly above and exchanges data or control information with corresponding
layer on remote machine utilizing services of the layer directly below. In practice only
few protocols were developed strictly adhering to OSI’s model, while the existing
Internet protocols can be easily mapped onto less complex 4-layer TCP/IP model.
Figure 2-2 illustrates mapping between those two different multi-layered approaches
to computer networking. It is possible to hide data in any layer of the Internet protocol
stack, however, each layer provides different characteristics for possible covert
channels. Remaining part of this Section will briefly describe operations and discuss
possible information hiding scenarios for each layer in TCP/IP model.

Network

Transport

Application

Internet

TCP/IP OSI

Figure 2-2 TCP/IP to OSI Model Mapping (Kwecka, 2006)

2.4.1 Network Layer
The Network Layer in TCP/IP model deals with functions described in Physical and
Data Link Layers of the OSI model. Thus it deals with “getting data across one
particular link or medium” including “physical characteristics of transmission”
equipment (Odom, 2001, pp. 77). Consequently the major task of the protocols
operating on this layer is to transfer packets between any two subsequent internet
layer capable devices on the end-to-end connection.

2.4.2 Internet Layer
Internet layer is responsible for end-to-end packets delivery and it is equivalent to OSI
network layer. Thus it defines logical network addressing and deals with all the
operations required for packets to reach the remote host. These operations include but
are not limited to routing, fragmenting and queuing of the PDUs - protocol data units
(Odom, 2001).

2.4.3 Transport Layer
Transport layer provides for end-to-end transparent transfer of application layer data.
Due to this feature it is often perceived to be a basic form of middleware for
distributed applications. Thus if error recovery, flow control and similar functionality
is required, transport layer will provide for it.

Z. Kwecka, BSc (Hons) Network Computing, 2006 15

2.4.4 Application Layer
The top level of TCP/IP model is called application layer, since it is usually provided
by specific software application rather than an operating system. Consequently it is
the equivalent to three subsequent layers in OSI structure: session, presentation and
application. Thus it is responsible for maintaining end-to-end communication
sessions, representation of data being transmitted as well as application specific user
interface (Odom, 2001).

Any part of data exchange between user and transport layer is considered to be
performed at application layer. Thus, since messages produced on this level employ
transport layer technologies for the purpose of end-to-end data delivery, and high-
level data streams are usually not being altered by security applications, covert
channels hidden in these messages have the widest range possible. Therefore a covert
data send by Alice is almost guaranteed to reach Bob unaltered. For networks which
use Proxy or SOCKS servers to protect themselves the syntax of messages transferred
may get changed (Fielding, et al, 1999), however application layer control fields or
data should not be altered in any significant way, thus allowing for noiseless covert
channels. However, the list of advantages of application layer data hiding doesn’t end
here, since the lower layers of TCP/IP model are provided by operating system rather
than user application it is virtually impossible or extremely hard to modify PDU of
these layers by an unprivileged user. Therefore some easy steps, such as disallowing
user access to kernel and employing host authentication for local networks, may
significantly reduce risks to information confinement created by these layers. These
threats have been know for some time now and most of the network access control
systems (NACS) are prepared to defeat them (Dyatlov, et al, 2003). On the other hand
the Application Layer is different, in most cases users are allowed by the operating
system security policy to execute their own applications and to create outgoing
connections through NACS. While some NACS use Proxy or SOCKS servers, any
application which generates messages of protocols allowed through these security
devices and is executed by (or on behalf of) an authenticated and authorized user
would be able to transmit data outside secure perimeter.

2.5 Examples of Application Layer Covert Channels
Section 2.4 identified Application Layer as the only layer in the TCP/IP model where
covert channels may be allowed to pass through well built NACS. Therefore, two
examples how such hiding techniques could be implemented in this Layer will follow,
to illustrate the problem.

2.5.1 HTTP
HTTP is a request-response protocol employing MIME-like syntax for control
information, and more precise description will follow in the Literature Review
Section. However in depth knowledge of this protocol is not required to appreciate
following example. Thus, a typical request for a website on the rood directory (/) of
the host with www.napier.ac.uk DNS name, produced by a Mozilla based web
browser on demand of a user, would be sent across TCP connection encoded as an
ASCII string, with following syntax:

GET / HTTP/1.1
Host: www.napier.ac.uk
Connection: close
User-Agent: Mozilla/5.0 (WinNT)

Z. Kwecka, BSc (Hons) Network Computing, 2006 16

HTTP transactions are usually transparent to the human operators, and under normal
circumstances they would be unable to see above request generated on their demand
by a web browser, however, good covert channel implementation may stay unexposed
even after a visual examination. In this particular data hiding example, the technique
exploit the fact that HTTP treats any amount of consequent linear white space
characters (optional line feed, spaces and tabs) in the same way as a single space
character (Fielding, et al, 1999). Therefore, it is possible to encode information using
these nonprintable characters, since if received by the HTTP eavesdropper they would
be normally discarded. The following text exposes spaces [SP], tabs [HT] and line
feeds [CRLF] in the request given above:

GET[SP]/[SP]HTTP/1.1[CRLF]
Host:[SP]www.napier.ac.uk[SP][HT][SP][SP][HT][SP][SP][SP][CRLF]
Connection:[SP]close[SP][HT][HT][SP][HT][SP][SP][HT][CRLF]
User-Agent:[SP]Mozilla/5.0[SP](WinNT)[CRLF]

This message would be treated by a standard web server as valid and error free,
however paying attention to the abnormal amount of white space at the end of lines 2
and 3 a suspicion may be raised as to the purpose of those nonprintable characters in
this particular request. In this particular scenario Alice is using tabs [HT] to represent
binary ones and spaces [SP] to hide binary zeros in a covert message sent to Bob.
They both know, that 8-bit encoded into the second and third lines of the request
represent different ASCII characters and together they are part of the hidden message
(covert payload). Thus the first character would have hex value of 0x48 (01001000)
and the value of the second one would be 0x69 (01101001), together in human
readable form they spell word “Hi”.

In this example HTTP transaction data (later called HTTP envelope) would be
considered as a carrier and the characters encoded into white spacing a payload. This
is one of the ways, in which hiding information in HTTP may be achieved.

2.5.2 DNS
This example use of Application Layer covert channel employs UDP as a Transport
Layer protocol. Once again the full understanding, how the Domain Name System
(DNS) works is not necessary to appreciate the syntax of the covert channel
implementation proposed. The basic operation of DNS is to provide name to IP
address resolution in a similar manner that phone directory provides telephone
number of given institutions or individuals. Most of DNS servers keep permanently
only a small number of name-to-address mappings, but are capable of providing any
IP address via recursive-lookup on demand from the client. The mappings obtained in
this way are usually kept in the cache of the server, for some time before they time-
out. Nonrecursive-lookups are also possible, and these forbid the server from relaying
the request, thus, a mapping will only be returned if the server is the originator of the
mapping or has it in its cache.

Let assume that Alice wants to send ASCII encoded information to Bob. They have
previously agreed eight names of very unpopular websites or services2:

0 – www.boring-web.com

2 the names of the websites chosen at random, let assume they all have IP mappings in the global DNS

Z. Kwecka, BSc (Hons) Network Computing, 2006 17

1 – www.e-zb.com
2 – www.unpopular.co.uk
3 – …
4 – …
5 – …
6 – …
7 – www.notfunnyjokes.net

They have also decided upon the storage of their covert messages, a particular DNS
server which allows and caches recursive-lookups (most servers do). Thus, making a
recursive-lookup to this server against an existing DNS name will result in server
responding with an IP address and storing the mapping in the server’s cache.
However, if a nonrecursive-lookup is made server will only provide the mapping if a
specific entry exists in its local database or cache.

Thus, Alice is capable of mapping ASCII characters, one at the time, onto the carrier,
the cache of the DNS server chosen. Consequently for any bit of the ASCII character
set to one, Alice will make an appropriate recursive-lookup to the server, for instance
a lookup of www.e-zb.com if the second highest bit is one in the particular ASCII
character being sent. Then Bob can perform nonrecursive-lookups of all eight
addresses and by means of determining which mappings are in the cache of the server,
determine the ASCII character sent by Alice. To send another character they need to
wait till the entries will time-out in the server’s cache (Kaminsky, 2004).

2.6 Conclusions
This section has provided the definition of the term covert channel in the scope of this
report as a communication channel that can be exploited … to transfer information in
a manner that violates the system’s nondiscretionary (e.g., mandatory) security policy.
This helped in identification of potential users of this data hiding technology, as
suitably motivated perpetrators. Thus, individuals, hackers, spies and terrorist
reasoning on their own motives or working on behalf of somebody else, may want to
reach for covert channels to achieve certain goals. It is, therefore, of most importance
that suitable detection and prevention measures are developed.

Application Layer of the TCP/IP model was identified, as a protocol most likely to be
employed as a carrier of the current covert channels implementations. This was
largely due to the fact that implementations in lower layers would most likely be
stopped by NACS’s Proxy servers before the payload reaches the target. However,
another reason the Application Layer covert channels were chosen as the subject of
investigation in this project is that their implementation is relatively easy, and does
not require kernel level access to the operation system.

Z. Kwecka, BSc (Hons) Network Computing, 2006 18

3 Literature Review

3.1 Introduction
The aim of this project is to analyse possibilities of employing application layer data
hiding and to suggest possible ways of securing networks from this kind of activity.
Prototype prevention and detection systems will be designed and implemented to
evaluate the findings of the research. Thus, it was decided that the range of the
research should be limited to the protocols most commonly allowed to pass trough
firewalls of large organizations. The literature review that follows tries to answer
these research questions while focusing mainly on the information contained in recent
research publications dealing with covert channels, white papers and RFCs of specific
technologies (HTTP, SMTP, etc). The usual use for covert channels, however, is to
violate system security policy. Therefore the biggest, but unofficial research in this
area is conducted underground, by hackers around the world. Their ideas should not
be underestimated, as they are usually the first to employ new covert channel
solutions. Fortunately for the society some of them do it only to prove that such a
violation is possible and share the knowledge with the World. Thus, some of the
BlackHat3 documents were considered to be valuable sources of information and will
also be discussed in this section.

3.2 Covert Channel Classification
There are various ways of the covert channels’ classification, however, most do not
apply to the theory of the data hiding, but to its specific implementations (Gligor,
1993). In this document we will consider three different classification schemes
described below.

3.2.1 Storage and Timing Channels
The NCSC suggested following distinction between storage and timing channels:

Covert Storage Channel - A covert channel that involves the direct or
indirect writing of a storage location by one process and the direct or
indirect reading of the storage location by another process. Covert
storage channels typically involve a finite resource (e.g., sectors on a
disk) that is shared by two subjects at different security levels.
Covert Timing Channel - A covert channel in which one process
signals information to another by modulating its own use of system
resources (e.g., CPU time) in such a way that this manipulation affects
the real response time observed by the second process.

(NCSC, 1985)

We consider that in above definitions, and similar descriptions found, the distinction
between storage and timing channels depends largely on the interpretation of the
terms storage location and system resources, since any storage location is usually a
part of certain system’s resources. Thus, in one of the covert channels
implementations investigated, the inventor suggests engaging DNS servers in

3organisation dealing with Internet security, which gathers leading corporate professionals, government
experts, and members of the underground hacking community.

Z. Kwecka, BSc (Hons) Network Computing, 2006 19

exchange of hidden information (Kaminsky, 2004). In this scenario a local cache of
DNS server known to both sender and receiver would be frequently modified by the
sender and queried by the receiver using standard DNS requests. Thus we could
classify this scenario as either storage or timing, based on our view as to the local
DNS cache, namely: is it a storage location, or a system resource. Therefore above
definitions although valid were on behalf of NCSC further clarified by Gligor:

A channel is a storage channel when the synchronization or data
transfers between senders and receivers use storage variables, whereas a
channel is a timing channel when the synchronization or data transfers
between senders and receivers include the use of a common time
reference (e.g., a clock).

(Gligor, 1993)

Furthermore Gligor notices that above classification is more design and
implementation specific, rather than based on data hiding theory employed. Thus any
timing channel may be transformed into a storage channel by keeping timing
information in a locally stored variable, and, vice-versa, a storage channel may be
altered to form a timing channel by starting to observe relative timing of events.

3.2.2 Noisy and Noiseless Channels
Covert channels scenarios can be also divided into noisy and noiseless. The noiseless
channels employ a resource which is exclusive to sender and receiver. Thus allowing
for their uninterrupted communication, with no error correction or detection required.
Whilst noisy contains these channels which utilise a resource shared among many
different processes, where distinguishing between data from a sender and operations
of other users (the noise) would be required. Consequently, the receiver needs to
implement some form of error detection, with an error correction or sender
notification system. (Gligor, 1993) Therefore HTTP based covert channel example
specified in Section 2.5.1 is noiseless, since it stores hidden payload inside an object
originating from a sender and transmitted directly to the receiver, this assuming a
direct HTTP client-server connection. Whilst DNS example from Section 2.5.2 is
noisy, because the DNS cache can be accessed and modified by virtually any system
connected to the Internet.

3.2.3 Aggregated and Not-aggregated Channels
In any kind of communication the capability of a channel to transmit certain amount
of data over given time (the bandwidth) is important. Thus, covert channel’s theory
defines capacity (Lampson, 1973) which is the amount of payload that may be
transmitted per unit of carrier. Consideration of this leads information hiding
designers to use multiple carrier objects to increase the bandwidth of covert channels,
of small carrying capacity. Thus, covert channels may utilize several storage
locations, or system resources, at any point in time to transfer data, either in serial or
parallel manner. Those are considered to be aggregated, and the ones which use only
a single carrier object are called non-aggregated.

3.3 Application Layer Covert Scenarios
Things as simple as last accessed timestamp on a networked file (Loepere, 1989), or
the pure fact that a DNS server has, or has not, got an entry in its local cache

Z. Kwecka, BSc (Hons) Network Computing, 2006 20

(Kaminsky, 2004) can become engaged in secret exchange of information. The
examples of Application Layer covert channels were provided in Section 2.5, thus
following discussion on the subject will concentrate on underlying theory of data
hiding at this Layer.

A key focus was to select possible carries for Application Layer covert channels.
There are theories that a covert channel, which can transmit only a small payload per
amount of carrier or unit of time, can do no harm. However, Lampson demented
these theories with an example of expert agent secretly monitoring a military
communication system. Such a system could employ a covert channel capable of
transmitting one bit per day to alert the enemy about specific circumstances, like
planned invasion (Lampson, 1973). The cold war is over now, however, still there are
applications were even a very slow covert channel may be of considerable risk. Thus,
if an expert system is capable of monitoring a network and detecting conditions which
render this network’s IDS useless even for a short period of time, it could inform the
potential perpetrator, that now is the time to perform secret attack.

DNS is a classic example of a good carrier for covert channels and various malware,
since because of its small carrying capabilities it hardly ever gets any focus in security
planning. Thus, when this Honours project was starting, DNS was commonly
perceived as harmless address enquiry protocol, however, after recent DDoS attacks
using the DNS servers as reflectors, this perception is slowly beginning to change
(Kawamoto, 2006). Moreover, the small PDUs of the DNS, has not stopped members
of BlackHat community using global DNS to tunnel live voice data and the innovator,
Kaminsky, suggested that still much greater bandwidths can be reached by splitting
the load over thousands of DNS servers (Kaminsky, 2004).

Among all the different Application Layer protocols, only three were chosen capable
to carry hidden information in and out of zones commonly perceived as secured:

(a) DNS (Kaminsky, 2004; Forte, 2005)
(b) HTTP (Borders, 2004)
(c) SMTP (de Vivo, 1998)

This is largely due to the fact that modern institutions cannot function without access
to HTTP and SMTP, for business purposes, while, these protocols would not work
sufficiently without the DNS providing name to address translation. All free protocols
are ones of the oldest around, thus, include many functions which are rarely used
currently. Thus, studying the appropriate RFCs, DNS (Mockapetris, 1987; Elz, 1997),
HTTP (Fielding, 1999) and SMTP (Postel, 1982; Klensin, 2001), suggestion of de
Vivo that Internet security was traded for easiness of sharing (de Vivo, 1998), proved
to be correct. Above RFCs suggest syntax and wording of some basic commands and
headers, but make no real attempt to limit the scope of their specifications, thus
allowing for the future expansion of optional features in the protocols, and, therefore,
security gaps, as well.

Generally there were five different methods of implementing covert channels within
application layer header found, their description follows.

Z. Kwecka, BSc (Hons) Network Computing, 2006 21

3.3.1 Reordering
Reordering is illustrated in Figure 3-1. The order of the headers in the HTTP envelope
is negligible, and differs from implementation-to-implementation. Modification of the
headers order could then be used to encode a covert payload (Dyatlov, 2003).

Figure 3-1 HTTP Header’s Reordering (Kwecka, 2006)

3.3.2 Case Modification
For easiness of usage the protocols are often case insensitive. Thus, modification of
the case of a header name, would be ignored by a standard HTTP application, or
mailing agent (Dyatlov, 2003). Thus, it could be used, as suggested in Figure 3-2 to
encode bits of ASCII code into lower-case (binary ones) and capital (binary zero)
letters.

Figure 3-2 HTTP Header Name Case Modification (Kwecka, 2006)

3.3.3 Use of Optional Fields and Flags
The Internet protocols have many unused, or rarely used, fields that could be
employed in the transmission of data (Dyatlov, 2003). For instance Accept header
transmitted from a client to a web server inside HTTP envelope, may precisely define
file types accepted in the response, or may provide wildcard (*/*) to show they will

Z. Kwecka, BSc (Hons) Network Computing, 2006 22

allow any file type in the response. Thus, this feature may be, once again, used to
encode data. The example in Figure 3-3 shows a possible covert channel
implementation, where a wildcard in the value of the accept header is treated as
binary zero, and a specific file type provided as binary one.

Figure 3-3 Use of Optional Header Values (Kwecka, 2006)

3.3.4 Adding a New Field
As it was stated before, there is no real limitation to the specifications and the new
tags could be added to Application Layer envelope (Dyatlov, 2003). Additionally
some applications are configured to ignore any unrecognised headers and treat request
and responses in a way they would be treated if the problematic header was not there
(Fielding, et al, 1999). Thus, scenario from Figure 3-4 could be implementer, where a
covert payload is exchanged in a plain text inside HTTP envelope. However, this
would be undetectable to Eve if standard HTTP software was used to eavesdrop.

Figure 3-4 Use of Unrecognised Header (Kwecka, 2006)

3.3.5 Using Linear White Spacing Characters
For a web browser there is no difference if there is one or more spaces between HTTP
header values, similarly linear white spacing is ignored in SMTP (Dyatlov, 2003).
Please refer to Section 2.5.1 for example of linear white spacing header modification.

3.3.6 Modifying Server Object
In this scenario Alice and Bob could use a previously agreed server object to exchange
information. Thus using more objects or altering the frequency of probing could
increase the bandwidth (Kaminsky, 2004).

Z. Kwecka, BSc (Hons) Network Computing, 2006 23

3.4 HTTP Protocol
Following description of HTTP protocol is a part of larger document, written by the
author of this dissertation, which highlights the possibilities of implementing covert
channels in this Application Layer protocol. The full content is of this document is
attached to this dissertation in Appendix 4.
The application layer protocol called HTTP is often perceived as very basic protocol
for distribution of World Wide Web pages. We could say that even its name
Hypertext Transfer Protocol is very suggestive and implies that the purpose of this
protocol is to transfer hypertext, where hypertext is defined as textual data “linked”
across many documents or locations. It makes no wonder then, that some network
administrators do not consider HTTP as a threat or think that as long as only outgoing
established connections are permitted and every machine in the network uses some
kind of firewall and antivirus software, they network is secure. However the true face
of the protocol is different. The most recent specification of HTTP is RFC 2616 and
the purpose of the protocol is described as follows:

The Hypertext Transfer Protocol (HTTP) is an application-level
protocol for distributed, collaborative, hypermedia information
systems. HTTP has been in use by the World-Wide Web global
information initiative since 1990. The first version of HTTP, referred
to as HTTP/0.9, was a simple protocol for raw data transfer across the
Internet. HTTP/1.0, as defined by RFC 1945, improved the protocol by
allowing messages to be in the format of MIME-like messages,
containing metainformation about the data transferred and modifiers
on the request/response semantics. (Fielding, et al, 1999, pp. 7)

HTTP is now well established protocol and the current version is 1.1, however the
idea of the protocol stayed the same. Through employing a simple human readable
(MIME-like) syntax and allowing transfer of virtually any kind of data, HTTP
become a preferred protocol in development of “on-line” applications. Furthermore
the fact that a large group of network administrators allowed almost any outgoing
connections of HTTP either directly or through proxies contributed strongly to this
trend. Nowadays almost any software application, which requires communication
over the Internet, employs HTTP or has a build in functionality allowing its
application layer protocol to be tunnelled in HTTP. Example of the first kind could be
antivirus software that uses HTTP for downloading signatures of the newest threats
from the central server, or an update agent for an application like internet messenger.
The implementations of the remote method invocation or remote procedure call are,
thus, common examples of the second kind of the applications.

HTTP was identified as one of three protocols, which can be employed to create
covert channels for sending data in and out of networks commonly considered to be
secure. Thus the following section will identify, where RFC 2616 as the document
which defines the current version of HTTP in use, gives hackers an open field for
hiding data.

3.4.1 HTTP Syntax and Covert Channels
RFC 2616 was created to clear up some hard to understand statements from the
previous documentations of HTTP (namely 1.0 and 0.9) and to introduce few optional

Z. Kwecka, BSc (Hons) Network Computing, 2006 24

features of HTTP/1.0 as standard in the new protocol HTTP/1.1. In the time when this
specification was written the biggest concern of the creators was interoperability
between all the applications using the new standard and a backward compatibility to
the already existing implementations, which conformed to previous RFCs. Some
security concerns were raised, regarding leakage of personal information, attacks
based on path names and DNS spoofing, however threats of covert channels’
implementation was overlooked. Following interpretation of a RFC 2616, describes
operation of HTTP and highlights areas where transfer of data in a covert manner is
possible.

3.4.2 General syntax
The basic units of HTTP communication are messages, made up of a structured
sequence of octets and transmitted via a transport layer virtual circuit (connection).
There are two types of messages allowed: requests and responses. Both use generic
message format. This consists of a start-line, zero or more header-fields (headers), an
empty line and optional message body:

generic-message = start-line ; a Request-line or a Status-line
 *(message-header CRLF) ; one or more header
 CRLF ; compulsory empty line
 [message-body] ; optional application layer data

Start-line is made of either a Request-line in a request message or a Status-line in a
response message. CRLF is the only end-of-line marker allowed for all HTTP
protocol elements except the entity-body. It stands for carriage return (CR) and line
feed (LF). This is a good practice, there is only one standard allowed, which makes
protocol implementation easier, and prevents information hiding. There are few
different types of message-headers: general-header, request-header, response-header
and entity-header. All of them are built using the same syntax. Each header consists of
a case-insensitive field name followed by a colon and an optional field value.

message-header = field-name “:” [field-value]

Case-insensitivity.
Field-names are case-insensitive, thus they are ideal carrier for hiding bits (payload).
Both clients and the servers will interpret a field-name in the same way no matter the
case of the letters. The coincidence is that capital letters in the ASCII code differ from
the lower case letters only by a value of the 3rd bit. Thus binary form of letter R is
01010010 and the one of letter r is 01110010. Then a mask of 0xDF can be employed
to extract or encode a payload in ASCII characters. Lower case letters would decode
as 1’s, where capital letters would decode as 0’s. An example follows to illustrate how
covert payload maybe hidden in a typical HTTP header given below:

Connection: keep-alive

This header can be modified to carry the bit pattern of 0111001011 and would look as
follows:

ConnECtIon: keep-alive

Consequently above encoding method can be employed to transfer as many bits of
payload as the total number of letters in field-names in any particular message. A

Z. Kwecka, BSc (Hons) Network Computing, 2006 25

visual inspection of the HTTP envelope would reveal this covert channel, however as
it is unusual for anybody to examine HTTP message header and HTTP clients and
servers would ignore casing, this kind of covert channel could be successfully
deployed.

Linear white spacing.
Another reason for concern is the fact that according to RFC 2616 the field-content
(the data part of field-value) can be preceded and followed by an optional linear white
spacing (LWS). LWS can be made up from a non-compulsory CRLF and one or more
space (SP) or horizontal tab (HT) character.

LWS = [CRLF] 1*(SP|HT)

Header values may be folded onto multiple lines using CRLF as long as the new line
starts with a space or horizontal tab. Thus, all linear white space in a header may be
replaced with a single SP before processing or forwarding the message downstream.
This allows for a text decoration in the HTTP messages and has no real meaning in
processing of the requests and responses. However it creates room for bidirectional
covert channels. In a case where there is no HTTP Proxy between communicating
sites, or linear white spaces are left unaltered by a Proxy, it is possible to encode
information using SP and HT characters. An example illustrates how linear white
space characters may be employed to transfer covert payload in the following header:

“Connection: keep-alive”

Header name Connection followed by a colon “:”, a space SP and the value keep-
alive:

“Connection” “:” SP “keep-alive”

Let assume that 1’s are encoded as HTs and 0’s as SPs. Now if the single SP would be
replaced with a combination of HTs and SPs, the meaning of the HTTP header would
not change, but a binary stream could be hidden in the header. Thus a byte of
information which in binary form is 01011100 could be encoded in one of the
following ways:

“Connection” “:” SP HT SP HT HT HT SP SP “keep-alive”

“Connection” “:” SP “keep-alive” SP HT SP HT HT HT SP SP

“Connection” “:” SP “keep-alive” CRLF
SP HT SP HT HT HT SP SP

There is virtually no limit to a number of bits per message that can be sent using this
method, apart of the size limits set for different kinds of requests and responses. If bits
encoded in this way are placed in front of a header value a visual examination of the
HTTP message would be enough to reveal the disguise, however if they follow the
field-value contents or a CRLF only examination of the message bytes would expose
the covert channel.

Order of headers.
Above technique is not the last reason why HTTP messages are such s good carrier
for covert channels. The generic-message syntax does not specify the order in which

Z. Kwecka, BSc (Hons) Network Computing, 2006 26

the headers should occur in the massages. Although it suggests that it is good practice
to include general-header fields first, followed by request or response specific headers
and incorporate entity-header fields as last ones, the order in which header-fields (of
differing names) are received is insignificant. Thus if both sides wishing to use covert
channel agree that specific order of header-fields is significant they would be capable
of transmitting 1bit per two headers of any message. This in turn could be hard to
detect, since in the previous scenarios the RFC allowed for creation of the hidden
channel, but most of the current HTTP applications used standard semantics (i.e. only
one SP before a field-value, ended by a CRLF and all the field-names using title
casing) it was possible to spot a potential covert communication quit easy. However
here the headers’ order vary from implementation to implementation. Thus, for
example in a basic covert channel groups of two consequent headers ordered
alphabetically could stand for 1’s and reverse ordered pairs could decode as 0’s.
Example:

Connection: keep-alive ;would decode as 1
Host: www.napier.ac.uk

Host: www.napier.ac.uk ;would decode as 0
Connection: keep-alive

Uniform Resource Identifiers.
All HTTP request and some response (i.e. for relocation purposes) messages consists
of uniform resource identifiers (URIs), used to identify a resource on the network.
There are two different forms allowed, absolute and relative. Thus a presence of one
or the other can be an arbitrary 0 or 1, and if absolute URI is used it should follow
syntax:

Absolute URI = “http:” //” host [“:” port] [absolute_path [“?” query]]

Where http: is the scheme name, host is a DNS name of a node hosting the resource,
optionally followed by a port number and/or absolute path to the resource. RFC 2616
suggest that clients and servers should:

- interpret an empty or not given port as a default port 80
- treat host name and scheme name in a case-insensitive manner
- interpret an empty absolute path as a path of “/” (document root)
- most characters can be represented in their ““%” HEX HEX” (“%” +

hexadecimal value of the ASCII code) encoding
The first statement implies that http://abc.com/, http://abc.com:/ and
http://abc.com:80 have the same meaning in HTTP. Therefore as previously shown
optional form of data which is interpret in the same way by client and server software,
can be used to hide covert payload. For instance if a port number is present in a
message this can decode as one and when it is omitted it could decode as zero.
Allowing for case-insensitive parts of URIs creates similar possibilities as it did in
field-names. Furthermore statements with empty absolute paths are treated in a same
way as they would request document root (“/”), and again could be used to cipher
data. Example:

http://abc.com ;could decode as 0
http://abc.com/ ;could decode as 1, both mean the same to HTTP applications

Z. Kwecka, BSc (Hons) Network Computing, 2006 27

Also any URI ASCII characters which can be send in alternative formats, as a ASCII
code, or a ““%” HEX HEX “, could be employed in creating a covert channel. Thus,
the following URIs all point to the same resource:

http://abc.com/~smith
http://abc.com/%7Esmith
http://abc.com/%7esmith

Following a question mark (“?”) a query can be add to the URI. This is a common
way to transmit data from html forms to the servers. In many cases additional
information not required by the server is ignored and individuals can be tempted to
use it as a cover channel (Dyatlov, et al. 2003). Although development of an
automated system to uncover this type of activity can prove to be a complex task, the
channel may be identified by simple visual examination of an address bar in a
browser.

3.5 Detection
Typical systems of detection can be divided into three different categories (Castro,
2003):

(a) Protocol-based Detection checks the network transactions for the compliance
to the appropriate specification of communication protocol being used. Thus,
is capable of detection of abnormalities and variations to standards. Figure 3-5
illustrates this method of detection.

Figure 3-5 Protocol-based Detection (Kwecka, 2006)

(b) Signature-based Detection is using database of signatures against packet

contents. There are two different types of signatures used in this method, one
type focuses on detection of signatures of known covert channels scenarios,
where the second one checks that the packet was originated by genuine
software using a particular protocol implementation and that the packet was
not modified since. Figure 306 illustrates this concept.

Z. Kwecka, BSc (Hons) Network Computing, 2006 28

Figure 3-6 Protocol-based Detection (Kwecka, 2006)

(c) Behaviour-based Detection employs methods of creating profiles of the entire

network user. Thus, if any user suddenly changes it usual habits, or behaviour
of the user becomes suspicious, an alarm is raised.

These various ways of detection of covert channels may be characterised based on
the sensitivity and cost (processing) required for their execution. Thus, protocol-
based detection systems are usually very simple to implement, and they do not
require high processing power, however they can detect only a badly written
implementations of covert channels. Signature-based detection is slightly more
sensitive and will raise an alarm whenever signature of the specific protocol
implementation does not match an entry in a base of allowed message originators.
Consequently, the level of processing is usually higher than this of protocol-based
detection, but still moderate. The behaviour-based approach to the detection of
malicious packets seems to the most sensitive and very efficient, however, still not
100% precise and prone to false positives. Additionally it is characterised by a
high processing requirements.

3.6 Conclusions
This chapter has identified three Application Layer protocols: DNS, HTTP and SMTP
as the ones, which may be employed to carry a covert payload. Also methods of
creating covert channels were noted. Thus, an important conclusion about the
requirements for covert channel implementation may be drawn, since all form of
covert channels need some optional fields, values or behaviours to operate. It can be
assumed then, that by limiting a number of optional functions of a given protocol,
possibility of implementing a covert channel in this protocol is also reduced.

Finally, the chapter discussed ways of detecting covert channel implementation and
identified three different methods, each of different characteristic. Protocol, signature
and behaviour based detection is possible, however the first one will detect only the
badly constructed threats and the last one is capable of detection of virtually any
covert channel. The greater the sensitivity of the detection method, the greater is the
processing requirement. Thus, the design of the Covert Channel Detection System
prototype described in Chapter 4, focused on implementing all three detection
methods, as various levels of protection in a configuration, which should not affect
the monitored network.

Z. Kwecka, BSc (Hons) Network Computing, 2006 29

4 Design

4.1 Introduction
This chapter describes how the findings of the Literature Review (Chapter 3) were
used to design the prototype of the Covert Channel Detection System. Thus, the
typical environment for operation of such a system was defined as well as ways to
evaluate the prototype.

4.2 Evaluation Environment
The project aims and literature review have helped us to define the most likely
scenarios of usage for Application Layer Covert Channel Detections and Filtering
system. We perceive covert channels together with protocol tunneling as a large threat
to information security. Therefore, in this project we decided to focus on detecting
and filtering possible covert channels traffic outgoing from secure perimeters (i.e.
intranets of various organizations), as to protect against arbitrary information leakage.
The literature review has identified that most networks are protected by state-full rule
based firewalls, with Proxy servers being implemented sporadically.

INTERNET

FIREWALL

INTRANET
Figure 4-1 Firewall Protected Intranet

The literature review has also shown that a state-full firewall is incapable of providing
a reasonable level of protection from threats where connections originate inside the
secure perimeter. More precisely, most configurations of state-full firewalls permit
any connections that originated from the protected intranet as long as the protocols
used are permitted by the Security Policy. Thus, there is no option to provide fine
grain filtering. Certainly some organizations use Proxy servers, or even services
provided by specialist content filtering companies, such as Bloxx4. However their
focus once again is concentrated on protection from outside threats. Thus, if the
perpetrator was an “insider”, or a hacker, who managed to trick somebody inside
secure perimeter to run malicious software, the company would not be able to block
the breach in security taking place, if it would exploit policy permitted Internet
protocols. Thus our test network will reassemble basic model of institutional network
(intranet) connected to the Interned via state-full firewall (Figure 4.1 illustrates this
setup). Consequently the next sections of the design process will focus on the design
of detection and filtering tools that if located in similar network could help to prevent
information leakage exploiting protocol tunnelling and covert channels.

4.3 Covert Channels Detection System
The literature review has identified three different ways of covert channels detection:

4 www.bloxx.com

Z. Kwecka, BSc (Hons) Network Computing, 2006 30

- protocol-based
- signature-based
- behavior-based

The protocol-based detection is the least costly of those three, unfortunately it is able
to detect only very poorly crafted threats. At the same time behavior-based methods
have proven track of being hard to mislead, but they processing overhead is the
greatest. Thus, it is assumed that all free methods must be applied to traffic in various
ways, as to produce optimal covert channel detection system. One of the literature
review conclusions suggested that well build Proxy server, would be capable of
limiting basic, and therefore most common examples of covert channels operating in
TCP/IP layer 4 and all of the lower layer implementations as a standard function.
Thus, if an organization was to protect itself from covert channels, deployment of
filtering Proxy servers would be the first and most important step in this process.

PROXY

GATEWAY

SCANER
Figure 4-2 Detection and Filtering Network Setup

The way Proxy servers operate, they need to be placed inline with the connections.
Thus, they must perform very well as not to create bottle necks in the communication
infrastructure. Therefore, level of processing performed by Proxy servers is limited
and much lower than that required by behavior-based detection. Consequently we
have decided to implement behavior-based detection not as a part of the filtering
Proxy, but as a standalone network traffic scanner (Sniffer Detection Agent). Thus the
Proxy based agent (Inline Filtering Agent) will be required to perform the protocol
and signature based detection.

The IFA will implement following classes/objects:

• Proxy.cs – the GUI of the agent
• Listener.cs – object listening for the connections from the clients
• Client.cs – handler of the requests made by the user
• Buffer.cs – class used as an interface between GUI and asynchronous

functional classes

SDA should consist of following classes/objects:

• WinPcap .NET wrapper – class interfacing between .NET common
interface language and C++ code of winpcap.dll

• HTTPAnalyser.cs – the GUI of the application, implementing the logic
operations as well

• PacketCollection.cs – object providing storage for packets within
separate TCP connections

• ConnectionCollection.cs – object keeping track of various connections
heard and ordering them into PacketCollections

Z. Kwecka, BSc (Hons) Network Computing, 2006 31

4.4 Experiment Design
Experiments are the crucial part of this project. As it was mentioned previously the
HTTP protocol specification, which we are going to investigate, allows for large
variation between the actual implementations. Thus, we will try to identify the
differences of those implementations. Hopefully the findings will allow us to create
base of Web browsers’ signatures, i.e. kind of fingerprint that could be used to
precisely identify the User-Agent originating the request. Later we shell experiment
with reducing a number of information sent during the requests, so to provide data to
the analysis of which fields seems to be disused now. After the analysis of the first set
of experimental results an implementation of filtering Proxy and covert channel
scanner, will be proposed. Eventually a prototype of covert channel detection and
filtering software should be implemented. Thus, in order to test this software some
basic covert channel scenarios will be designed and later implemented.

4.4.1 Experiment 1 – Implementation Specific Data Gathering
In this experiment our objective is to collect HTTP requests generated by various
Web browsers. We have identified four different Web browsers as the most popular at
the present time:

- Internet Explorer
- Firefox
- Opera
- Netscape

These are the browsers web design companies consider when developing websites5,
since they represent “99.9% of the Web browsers” currently in use. Thus we will need
to install all these browsers on a single machine connected to the Internet and use
them to access the same set of websites, while creating HTTP traffic dumps on this
machine. Ideally the test procedure should be automated and exclude the human
factor, to ensure the test conditions for each browser are the same. To do that a piece
of software which would allow for timed process execution and termination should be
developed. Also another piece of software should be available to collect traffic
dumps. After the data gathering phase the packet dumps, which are in binary form,
will need to be analyzed, thus third piece of software will be required for this
experiment. This software will iterate trough packet dumps and extract necessary
information.

The software required for this experiment:

- Browser Caller. An application triggering Web browsers to request websites
from predefined list.

- HTTP Dumper. Piece of software employing WinPCap to collect binary
dumps of packets from HTTP conversations. Ideally only the packets
containing the HTTP protocol envelope should be saved.

- OffLine HTTP Analyser. The purpose of this application would be data
mining from the binary packet dumps in order to collect experiment results.

4.4.2 Experiment 2 – Request Information Filtering
At this stage we assume that Experiment 1 will result in defining a typical set of
HTTP headers used by the most common implementations of HTTP client software,
i.e. popular Web browsers. The objective of this experiment is to analyse the World

5 information sourced from the directors of Edinburgh based Efero company (www.efero.com)

Z. Kwecka, BSc (Hons) Network Computing, 2006 32

Wide Web browsers’ and servers’ implementations regard their usage of HTTP
protocol, since literature review findings suggested that a great number of information
sent within HTTP conversations is not actually used by either of sides. Thus, once
again a piece of software will need to trigger various Web browsers (same set as in
Experiment 1) to request websites from predefined list. However, in this experiment
we should locate a Proxy server inline with the requests and filter parts of HTTP
envelope so that WWW servers receive reduced set of information from the request.
Then the servers’ responses should be analysed and compared to the responses
received after sending complete client requests. Thus, similarly to Experiment 1 the
HTTP conversations will be saved in binary dump format and then analysed offline
by another piece of software. Ideally the process of collecting the data from modified
requests should be simultaneous to the traffic dumps from the unmodified requests, so
that the outside factors should not compromise the data collected and the final results.

The software required for this experiment:

- Browser Caller. An application triggering Web browsers to request websites
from predefined list.

- Filtering Proxy. Forward Proxy server, which placed inline with the request,
would be able to modify the client-server HTTP flow.

- HTTP Dumper. Piece of software employing WinPCap to collect binary
dumps of packets from HTTP conversations. Ideally only the packets
containing the HTTP protocol envelope should be saved.

- OffLine HTTP Analyser. The purpose of this application would be data
mining from the binary packet dumps in order to collect experiment results.

4.4.3 Experiment 3 – Headers Modification
Previously, based on findings of Dyatlov and Kaminsky, as well as our analysis of
HTTP specification (RFC 2616), we have identified few different techniques, which
could be employed to create covert channels in HTTP. They, generally, fall into
following categories:

- headers’ reordering
- headers’ and values’ case changing
- usage of optional headers, values or flags
- injection of an undefined header
- usage of various linear spacing characters
- server object modification

Since there is a number of different client and server HTTP software implementations
currently used and all of them differ from each other, the purpose of this experiment
will be to analyse the practical use of the techniques suggested. The techniques will
be analysed in terms of the level of the processing required, noisiness of the channel,
and level of discreetness (i.e. if any given techniques generates errors in either client
or server software it should not be considered a very good base for covert channel
implementation). To get a similar cross section of the implementations available, as in
the previous experiments, the BrowserCaller application with the same set of targets
will be used to generate genuine requests. Then a specially modified forward Proxy
server will be used to modify the request with covert channel simulation. Once again
HTTPMessageDump and OffLineHTTPAnalyser will be used to collect the results.

Z. Kwecka, BSc (Hons) Network Computing, 2006 33

Summarising, the software required for this experiment consist of:
- Browser Caller. An application triggering Web browsers to request websites

from predefined list.
- Data Hiding Proxy. Forward Proxy server, which placed inline with the

request, would be able to modify the client-server HTTP flow by applying
suggested covert channel techniques.

- HTTP Dumper. Piece of software employing WinPCap to collect binary
dumps of packets from HTTP conversations. Ideally only the packets
containing the HTTP protocol envelope should be saved.

- OffLine HTTP Analyser. The purpose of this application would be data
mining from the binary packet dumps in order to collect experiment results.

Findings of the Experiments 1 - 3 together with the literature review suggestions will
be used to prototype Sniffer Detection and Inline Filtering Agents. Thus, in order to
evaluate the project, following experiments will help to collect data required.

4.4.4 Experiment 4 – Browser Signature Recognition
Results from Experiment 1 are expected to provide signatures of the various WWW
browsers. In this experiment we will test the capabilities of the Inline Filtering Agent
(IFA) to recognise those signatures, i.e. identify client software. However, clients that
conform to HTTP specification (Fielding, et al, 1999) should provide a form of
identification in a value of User-Agent header, thus, during this experiment we shell
not use this value for the recognition purposes. Thus, to prove that application
identification is possible even when the User-Agent header is obfuscated, or when
malicious software is trying to hide its identity by providing header value associated
with genuine software. Therefore, in this experiment user will use various browsers,
while they connect to the internet through IFA. The IFA task will be to recognise the
signature of the client software and for the purpose of data gathering the Proxy will
generate a text file where the outcome of signature matching against User-Agent
header value will be stored.
The extra software required for this experiment will be the Inline Filtering Agent of
the prototyped system.

4.4.5 Experiment 5 – Covert Channel Detection
In this experiment Sniffer Detection and Inline Filtering Agents prototypes will be
employed to detect covert channels in the traffic generated by Browser Caller and
Data Hiding Proxy. Thus, the results will illustrate the system’s success of detection.
All HTTP data hiding techniques previously identified will be tested, one at a time as
well as few combined together to form aggregated covert channel scenario.

The software required for this experiment:

- Sniffer Detection Agent
- Inline Filtering Agent
- Browser Caller
- Data Hiding Proxy

Z. Kwecka, BSc (Hons) Network Computing, 2006 34

4.4.6 Experiment 6 – Analysing Prototype’s Load on Test
Network

Another important parameter of the proposed solution to covert channels’ detection is
its load on the system it is going to be implemented in. Thus, this experiment will
measure the time difference in accessing a predefined set of websites when the
prototype Proxy filtering agent is inline with the traffic and when the websites are
accessed directly. For the purpose of this experiment there is a need of designing an
application, which could measure the time taken for a full page download. Thus,
ideally, this application would communicate with the HTTP client software, or
incorporate HTTP client software itself.

The software required for this experiment:

- Inline Filtering Agent
- Browser Timer – An application capable of either generating HTTP requests

itself or triggering requests using standard WWW browsers, which could
measure the time taken for a full website download.

4.4.7 Experiment 7 – Code Mobility Check
The C# .NET was chosen for the prototype’s development language and one of the
reasons behind this choice was the mobility of the code. Thus, applications developed
should be capable of optimal operation on any Windows based platform, with
WinPCap installed. Hence, in this experiment components, of the prototype will be
tested on variety of hosts running different operating systems. This should help to
evaluate the programming language chosen. Consequently the experiment will require
heterogonous test network.

4.5 Conclusion
This chapter gave a high level view of the components necessary for development of
the Covert Channel Detection System prototype. We have suggested that the system
should consist of unless two different types of software agents:

- Inline Filtering Agent (IFA)
- Sniffer Detection Agent (SDA)

The reason behind the suggestion that different types of detection applications are
necessary is the load on the system. We consider behaviour-based detection systems
as very resource consuming and therefore as unsuitable to be employed in the same
machine as real time covert channel filtering agent. Also this chapter have suggested
how the prototype evaluation may be performed in practice, by designing an overview
of various experiments. Thus, following applications will be required to test the final
system and produce results:

- Browser Caller
- HTTP Dumper
- OffLine HTTP Analyser
- Filtering Proxy
- Data Hiding Proxy
- Browser Timer

Looking at the list of the software development required for this project, we can
distinguish 3 different families of applications, i.e. HTTP Analysers, HTTP Proxies
and HTTP Traffic Generators. Thus, at we hope that implementation of generic
foundations for those applications will be possible, so that particular implementations

Z. Kwecka, BSc (Hons) Network Computing, 2006 35

would require only a limited amount of work. However, these considerations will be
tested for feasibility during the implementation phase described in the next chapter.
The next chapter will also provide detailed specification of the test network and
software used to develop and test the prototype.

Z. Kwecka, BSc (Hons) Network Computing, 2006 36

5 Implementation

5.1 Introduction
Development of networking application is closely bond to the programming language
chosen to implement the product. After a quick research of the tools available on the
market, a decision was made to use Microsoft .NET and C#. This platform, designed
by Microsoft, speeds up development by freeing the programmer from low-level
issues (memory management and etc.) and provides standards Windows controls that
can be used in .NET applications. Microsoft .NET becomes more and more popular in
networking professionals’ community.

5.2 Testing Network
The test network was implemented in a way to reassemble a basic scenario of
institutional intranet. Thus, a Cisco router is employed as a border gateway. This
router provides network address translation (NAT), dynamic host allocation (DHCP)
and state-full firewall services to the intranet. Consequently host machines and servers
connect to a Cisco Catalyst 2950 switch attached to the intranet port of the router
(Fa0/1). The router’s other FastEthernet interface (Fa0/0), is connected to Internet
Service Provider (ISP). Since the design phase proposed experiments requiring code
mobility testing, the test network is not homogenous. Thus, variety of hosts running
different Windows based operating systems is connected to the test network (Figure
5-1).

ISP

Cisco
Router

Host 2
Windows 2000 Server

Service Pack 3

Host 1
Windows XP

Professional SP 2

Host 4
Windows XP

Home Edition SP 2

Cisco
Catalyst
Switch

Host 3
Windows XP

Starter Edition SP 2

Fa0/0Fa0/1

Figure 5-1 Test Network Topology

To provide for the requirements of experiments based on comparison of HTTP
responses to modified and unmodified requests, Host 3 is connected to the Cisco
switch via two identical links. Thus, two separate Proxy servers can run on this
machine at the same time, each with its own listening interface (more details will
follow with experiments implementation description). The specification of the test
network components can be found in Table 5-1.

Z. Kwecka, BSc (Hons) Network Computing, 2006 37

Name Specification
Host 1 OS: Windows XP Professional SP 2

IP Address/Mask: 192.168.1.2/24
CPU: AMD Athlon XP 1800
RAM: 480MB

Host 2 OS: Windows 2000 Server SP 3
IP Address/Mask: 192.168.1.20/24
CPU: Intel Pentium II
RAM: 256MB

Host 3 OS: Windows XP Starter Edition SP 2
IP Address/Mask: 192.168.1.7/24
 192.168.1.8/24
CPU: Intel Pentium MMX
RAM: 64MB

Host 4 OS: Windows XP Home Edition SP 2
IP Address/Mask: 192.168.1.3/24
CPU: AMD Athlon XP 2800
RAM: 768MB

Table 5-1 Component Specification

5.3 Foundation Software
In the design section we have identified that the software required for this project
(prototype and experiments) falls into three categories:

- HTTP Analysers,
- HTTP Proxies,
- HTTP Traffic Generators.

Thus, this implementation began with producing of foundation software, base
applications easily adaptable to particular tasks, in order to speed up the development.

5.3.1 HTTP Analysers
The Sniffer Detection Agent of the prototype is the major piece of software, which
falls into this category together with application, required for the experiments, such as
HTTP Dumper and OffLine HTTP Analyser. They all have one thing in common, as
they must understand raw network traffic, since they may be required to perform
promiscuous mode network traffic monitoring or production of traffic dumps.
Promiscuous mode operations on the various kinds of networking adapters, can be
performed using standard functions of Unix based operating systems, however in
Microsoft Windows environment this functionality is not provided by default. Basic
Windows functionality allows for accessing the network only via genuine protocol
stack. Therefore, Windows Packet Capture Library (WinPcap) currently treated as
industry standard in low-level operations on networking adapters was used during
HTTP Analysers base implementation. This gave us capability to (WinPcap Team,
2005):

- capture raw packets, both the ones destined to the machine where it's running
and the ones exchanged by other hosts (on shared media)

- filter the packets according to user-specified rules before dispatching them to
the application

- produce traffic dumps in libpcap format

Z. Kwecka, BSc (Hons) Network Computing, 2006 38

- transmit raw packets to the network
- gather statistical information on the network traffic

However, our software employs only the first three functions listed above. Since the
prototype was build using C# programming language and WinPcap should be driven
by C++, and interface between those two was required. We have tried two different
wrappers allowing simplified usage of WinPcap in .NET framework:

- PacketX, commercial ActiveX control6
- SharpPcap, freely available network traffic capture library7

WinPcap and SharpPcap are an open source packages and their licenses permit
redistribution and usage free of charge, however PacketX is a commercial product.
Thus, the copyright owners, BeeSync Technologies, were contacted and kindly
granted the licence permitting use of PacketX free of charge for duration of this
project. After building simple test applications using both wrappers, they both
performed to similar level. However, taking into consideration the usability we have
decided that SharpPcap designed by Tamir Gel was better for the project. While
PacketX done exactly that what we expected, allowed link level reading from a
network interface, it produced a downfall in mobility of the code, since it requires
installation. On the other hand SharpPcap provides functionality as long as the
application has an access to the code library. Additionally, the later one provided
high-level information on the data captured, while PacketX produced only raw bytes.
Thus code that was necessary to calculate the value of acknowledgment field, when
using PacketX:

long ack;
int flags_byte = 27 + 4*(Convert.ToInt16(oPacket.DataArray.GetValue(14))& 0x0F);
ack = Convert.ToInt16(oPacket.DataArray.GetValue(flags_byte-5));
ack = ack*256 + Convert.ToInt16(oPacket.DataArray.GetValue(flags_byte-4));
ack = ack*256 + Convert.ToInt16(oPacket.DataArray.GetValue(flags_byte-3));
ack = ack*256 + Convert.ToInt16(oPacket.DataArray.GetValue(flags_byte-2));

Could be implemented using SharpPcap in the following way:

long ack = oPacket.AcknowledgmentNumber;

Figure 5-2 HTTP Analyser Foundation

6 Autor: BeeSync Technologies; Website: http://www.beesync.com/packetx/index.html
7 Autor: Tamir Gal; Website: http://www.tamirgal.com/home/dev.aspx?Item=SharpPcap

Z. Kwecka, BSc (Hons) Network Computing, 2006 39

The final solution developed is capable of capturing HTTP traffic, as well as writing
and reading tcpdump format. To allow for HTTP connection monitoring the HTTP
Analyser Foundation (illustrated in Figure 5-2), splits the traffic based on combination
of client IP, client port, server IP and server port. This at the beginning proved to be
problematic, since nested ArrayList were chosen to store raw packets. Microsoft
guarantees that ArrayLists are thread-safe for read and write operations, however only
way to search an ArrayList is to iterate through it, and here was the problem. The
program produced errors, when there was a write to an ArrayList under iteration. This
problem was solved by using synchronised wrappers for ArrayLists used. Then, for
the purpose of HTTP conversation monitoring the application was programmed to
“understand” basic TCP and HTTP parameters. Thus, logic of the implementation
treats following packets as interesting:

- First packet from client to server after 3XX or zero in length response from the
server.

- Packet with TCP sequence number equal to the acknowledgment number from
the last client’s request.

Additionally some extra logic was added into the application, following testing. Those
improvements included adding a tick box which allows work in promiscuous mode
with some Intel based adapters, which proved to inverse logic to that used in most of
the adapters. Also some extra filtering capabilities were added, to allow directional
visualisation.

5.3.2 HTTP Proxies
In the design section we have identified that development of HTTP Proxy foundation
could create a base for implementation of the prototype’s Inline Filtering Agent, as
well as applications required for experiments (Filtering Proxy, Data Hiding Proxy).
Thus, we have performed an investigation with an objective to find genuine open
source Proxy server that could be adjusted to our needs. This resulted in identification
of a Mentalis.org Proxy8, open source software, with a licence permitting
redistribution and modification. While, the original software was a console
application, which could perform functions of HTTP, FTP and SOCKS Proxy servers,
we have employed only the classes responsible for HTTP operation, i.e. client,
HTTPclient, listener and HTTPlistener, out of the original design. Consequently
graphic user interface was produced, to control the application. The final HTTP Proxy
Foundation (illustrated in Figure 5-3) is using asynchronous system calls. Therefore,
an interfacing is needed between the GUI and the functional classes. At first it was
troublesome, since the GUI instantiated other classes, and therefore, had a full control
over them, but the instances of the functional classes could not communicate back to
it. This was solved by the implementation of ConsoleBuffer class, with a number of
static variables. Static variables are the same among different instances of the same
class, thus different components of HTTP Proxy Foundation implementation use it to
communicate between each other.

8 Autor: KPD-Team; Website: http://www.mentalis.org/soft/projects/Proxy/

Z. Kwecka, BSc (Hons) Network Computing, 2006 40

Figure 5-3 HTTP Proxy Foundation

5.3.3 Web browsers
For the purpose of gathering data necessary to produce the prototype and its
evaluation, we were required to develop automatic traffic generation software, i.e.
Browser Caller and Browser Timer, as identified in the design. Both of these
applications have one thing in common, they require to read predefined list of
websites and trigger an action associated with the addresses.

Figure 5-4 Web browser Foundation

Therefore, only a timer, a stream reader and a couple of buttons were required to
produce this base class. The stream reader is implemented in a way it requires
“sites.txt” file in the working directory of the application. This file contains a list of
website addresses, one per line. We have manually specified 10 first addresses in this
list, where the rest comes from the 2002 Webaward winners list provided by Web
Marketing Association9. The full list consists of 900 addresses and can be find on the
CD attached to this report.

5.4 Experimental Applications
The design section has identified six different pieces of software required to produce
the prototype and to test it. Thus, the description of their implementation follows

5.4.1 HTTP Dumper
The HTTP Dumper was implemented to produce tcpdumps of the packets containing
only the interesting traffic. Here by the term interesting traffic we mean packets with
HTTP envelope. Thus, this application is based on HTTP Analyser Foundation, its
GUI is slightly modified (see Figure 5-5 for illustration), but generally the new logic
implemented is compulsory filtering out of the data only packets.

9 Webaward’s Official Website: http://www.webaward.org

Z. Kwecka, BSc (Hons) Network Computing, 2006 41

Figure 5-5 HTTP Dumper GUI

5.4.2 OffLine HTTP Analyser
This software was implemented in order to handle tcpdump files and produce output
in a text format (this will be analysed in next section of this report). Once again the
HTTP Analyser Foundation is employed. This time, however, the live capture
function is disabled, and the only input possible is from tcpdumps produced with
HTTP Dumper. Thus, the logic of the application was designed to process each and
every packet read. Since, the output is written to text files, rather than a database,
depending on the particular usage the format of the file will vary. Please see Figure 5-
6 for illustration of OffLine HTTP Analyser GUI.

Figure 5-6 OffLine HTTP Analyser

5.4.3 Filtering Proxy
The Filtering Proxy uses the foundation provided by the HTTP Proxy. This enables it
to perform functions of a standard HTTP forward Proxy server. For the purpose of the
experiments is incorporates logic to filter out and append HTTP request headers. This
logic is controlled by a simple GUI as illustrated in Figure 5-7, where the control
information is passed to the asynchronous HTTPClient classes using the
ConsoleBuffer object with a number of additional static variables.

Z. Kwecka, BSc (Hons) Network Computing, 2006 42

Figure 5-7 Filtering Proxy

5.4.4 Data Hiding Proxy
The Data Hiding Agent was designed so it may perform functions of writing and
reading from the covert channel. Since we are experimenting with six different data
hiding methods, basic implementation of all of them is present. Thus, in order to
create traffic and write to covert channel a standard Web browser is used, with Proxy
settings pointing to the local loop back address (127.0.0.1) of the host. On the local
loop back address there is a modified implementation of HTTP Proxy, i.e. Data
Hiding Proxy (Figure 5-8), preset with the destination IP address and in the ‘Sender’
mode.

Figure 5-8 Data Hiding Proxy

Therefore, any request made from the browser will be modified with covert channel
information and forwarded to the recipient. Then, the recipient, a Data Hiding Proxy
set in ‘Receiver’ mode, will read the data from the covert channel (only when the
request came from the preset originator), and forward the request to the target. Thus,

Z. Kwecka, BSc (Hons) Network Computing, 2006 43

the response will follow the reverse path of the request and inbound covert channel
may also be implemented. Figure 5-9 illustrates the data flow in this operation.

Read data from covert channel .
Perform request to www.website.com

Recipient – Data Hiding Proxy

Respond with the content
of www.website.com

Request Target

GET www.website.com
Forward request to local proxy

Write data into covert channel .
Forward request to recipient

Generator
Web Browser

&
Data Hiding Proxy

Figure 5-9 Data Hiding Scenario

5.4.5 Browser Caller
This application is based on Web browser Foundation. Its purpose is to generate
HTTP traffic, depending on experiment, being of well defined conditions or random.
Thus, it is able to start various Web browsers (Internet Explorer, Firefox, Opera,
Netscape) and cause them to navigate to a website either sequentially or randomly
chosen from the ‘sites.txt’ described earlier. There is 900 website addresses in this
file, therefore, as not to overload the system, the application also needed to close
browsers opened, before opening a new one. This proved to be troublesome, for
Netscape and Opera browsers. While Internet Explore and Firefox disposed
themselves gracefully after kill command, Netscape and Opera, have got quality
agents build-in, and notified the user on the next start. This disabled downloading of
the requested pages, without user interference and stopped our automated Browser
Caller from operation. The problem have been solved with ‘CloseMainWindow’
signal being sent to the browsers, instead of ‘kill’ and a ‘wait signal’ delay awaiting
browsers to close.

Figure 5-10 Browser Caller

Z. Kwecka, BSc (Hons) Network Computing, 2006 44

Also, to accommodate for generating traffic through two different paths, as required
by the experiments, which test server responses to modified and unmodified requests,
the Browser Caller requests every page twice, modifying ‘hosts’ file10 with an
address of either forward Proxy or filtering Proxy between the requests. Therefore, the
browsers are configured to use Proxy server specified by a domain name
(‘www.filteringproxy.com’) rather than IP address. Then, the line of the hosts file
defining the ‘www.filteringproxy.com’ is modified with IP address of the Proxy to be
used.

Code required to modify a host file in the operating system and cause a web browser
to navigate to a given site follows:

try{
StreamWriter hostFile = null;
if(checkBox1.Checked == true)
{

 if(File.Exists("C:\\WINDOWS\\system32\\drivers\\etc\\hosts"))
 {
 hostFile = new StreamWriter("C:\\WINDOWS\\system32\\drivers\\etc\\hosts",false);
 }
 else
 {

 hostFile = new StreamWriter("C:\\WINNT\\system32\\drivers\\etc\\hosts",false);
 }
}
if(current < read)//&& sites[current] != Environment.NewLine)
{
 target = sites[current];
 if(secondExecution == false && checkBox1.Checked == true)
 {

 hostFile.WriteLine("127.0.0.1\tlocalhost");
 hostFile.WriteLine("192.168.1.7\twww.filteringproxy.com");
 hostFile.Close();
 secondExecution = true;
 }
 else if(secondExecution == true && checkBox1.Checked == true)
 {

 hostFile.WriteLine("127.0.0.1\tlocalhost");
 hostFile.WriteLine("192.168.1.8\twww.filteringproxy.com");
 hostFile.Close();
 current++;
 secondExecution = false;
 }
 else
 {

 current++;
 }
 ProcessStartInfo startInfo;
 if(rbIExplorer.Checked == true)
 {
 System.Diagnostics.Process[] p =System.Diagnostics.Process.GetProcesses();
 for(int i=0 ;i<p.Length;i++)
 {
 if (p[i].ProcessName.ToLower()=="iexplore")
 {
 p[i].CloseMainWindow();
 p[i].WaitForExit(60000);
 if(!p[i].HasExited)
 p[i].Kill();
 }
 }
}
}

10 %SystemRoot%\system32\drivers\etc\hosts

Z. Kwecka, BSc (Hons) Network Computing, 2006 45

5.4.6 Browser Timer
The design phase has identified that this piece of software will need to request various
websites and to check the time their full download takes in the environment when
Inline Filtering Agent is used to interface the requests and when the requests are
direct. Browser Timer (Figure 5-11) uses the Web browser Foundation as a base for
sourcing the website addresses and performing timed operation. However, in this
application we needed to know when the full download finished. Here, .NET
predefined components came in handy. The ‘AxSHDocVw.AxWebBrowser’ is a
component providing a framework for creating WWW browsers. Thus, we ware able,
in short time, to modify the Web browser Foundation to have full capabilities of
WWW browser. Therefore, the Browser Timer is a time driven WWW browser,
which reads addresses from the predefined text file (‘sites.txt’) at performs
downloads. The average time taken to download a set of pages is taken at the end of
the process. Since AxSHDocVw.AxWebBrowser’ component, inherits Proxy settings
from Internet Explorer settings, the only way to modify them is through windows
registry or Internet Explorer GUI.

Figure 5-11 Browser Timer

5.5 Covert Channel Detection System Prototype
Inline Filtering Agent
The implementation of the Inline Filtering Agent, a forward Proxy server capable of
detection of basic HTTP covert channel implementations has been developed based
on Filtering Proxy. Previously we were planning to use HTTP Proxy Foundation, to
prepare this part of the prototype, however, the implementation of the Filtering Proxy
added some vital improvements to this framework. Thus, the GUI of this application
is very similar to the one of Filtering Proxy. The Inline Filtering Agent has got basic
signatures of four previously specified browsers (Internet Explorer, Firefox, Opera
and Netscape) coded in. This way it is capable of recognizing the request produced by
those applications. In case a request will come from a different application, or they
will have any marks of being temped with, the IFA will raise an alarm. In this version
of the prototype, functionality of protocol-based detection will not be implemented,
since it would require the application to be more versatile that an advanced HTTP

Z. Kwecka, BSc (Hons) Network Computing, 2006 46

server. Here if the requests do not follow the major rules set by HTTP specification,
they will be ignored. However, this is a vital part of the detection process, which
could a large number of covert-channels’ implementations with minimal processing
required.

5.6 Conclusions
Due to the time restrictions of this project only the Inline Filtering Agent has been
implemented out of the original design of the prototype. However, implementation of
a filtering Proxy server was previously (Chapter 4) identified as the first and most
important step in protection against threats to information confinement posed by
covert channels. Additionally set of test software tools was successfully implemented,
and the experiments could proceed to collect data for analyse of the validity of the
proposed solution to problem.

Z. Kwecka, BSc (Hons) Network Computing, 2006 47

6 Experiment Data Analysis

6.1 Introduction
The experiments performed in the due course of this project are unique, since the
literature review (Chapter 3) did not identify similar experiments being conducted by
the various teams working on information confinement problem. This chapter will
discuss how the results were collected from the test network and identify the key
findings.

6.2 Experiments
This section describes the results of the seven different experiments, which were conducted for the
needs of this dissertation.

6.2.1 Experiment 1 – Implementation Specific Data Gathering
The aim of this experiment was to learn signatures of different HTTP clients. We
have limited a number of clients to four most common Web browsers (Internet
Explorer, Firefox, Opera and Netscape). In the experiment all four host machines
from the implemented test network were used. Thus, each host has had following
browsers installed:

- Internet Explorer version 6.0 SP 2
- Mozilla Firefox version 1.5.0.3
- Netscape version 8.1
- Opera version 8.53

No Proxy server was used during this experiment, since we were trying to establish
standard behavior of the browsers. Thus, Browser Caller was used to generate traffic,
and HTTP Dumper was used locally to save the traffic into tcpdump files. As the
result we have established syntax employed by the browsers to produce HTTP
requests. See Figure 6-1 for an illustration of percentage usage of various headers by
different browsers.

Z. Kwecka, BSc (Hons) Network Computing, 2006 48

Figure 6-1 HTTP Headers Usage Statistics

The headers in the Figure 6-1 are in the order they would normally appear in a request
made by a given browser. Thus, we the first dissimilarity is that explorer always uses
‘Accept’ as the first header, were Opera puts ‘User-Agent’ and both Firefox and
Netscape use ‘Host’. Furthermore, Firefox and Netscape use exactly the same order of
the headers, where Internet Explorer and Opera differs greatly. So then in order to
create signatures for each browser, we have analysed typical request produced (Figure
6-2). Once again Netscape and Firefox proved to be indistinguishable, however this
time we had an answer for it. Although, in the Netscape’s marketing website, there is
no notice about it being based on Mozilla (the engine behind the Firefox) as we could
suspect, the ‘About’ box provides greyed-out information it is actually based on
Firefox. Thus, there is no wonder the signature of those two browsers is the same.

Figure 6-2 Browsers’ Signatures

Thus, to distinguish those three types of Web browsers (since Netscape is actually an
implementation of Firefox), we can use three key factors:

- first header in the request
- linear spacing around coma separators
- casing used in values of case-insensitive headers

Z. Kwecka, BSc (Hons) Network Computing, 2006 49

6.2.2 Experiment 2 – Request Information Filtering
From the data collected in Experiment 1 we have identified HTTP headers used by
typical web browsers. The objective of this experiment was to identify, which of those
headers are not used anymore. Thus, we have set Browser Caller to use two different
proxies, one forwarding the headers without modification, and one capable of filtering
headers out of the requests. Both proxies were located on the same machine, Host 3
(see Figure 5-1), but listening on different network adapters/logical addresses. This
way, we were able to compare the fault rates of the requests with filtered out headers,
to a baseline produced in parallel. Thus, lowered the risk of faulty network
connections or overloaded servers affecting the results.

We have found that filtering out ‘User-Agent’ header produces a large number of
server side processing errors (code 500). Additionally, we have noticed that some
pages (especially Microsoft build websites) look different in agents other than Internet
Explorer and servers return different CSS sheets, when ‘User-Agent’ header value
differs from the one provided by Microsoft Explorer. Thus, it is advisable for this
header to be allowed to pass through Inline Filtering Agent, however the string
contained in the value should always be checked against database of allowed client
software. Another concern was raised when filtering out “Host” header. Although
most of the servers responded with no errors to this request, 5% of the responses were
of code 400 (Figure 6-3). This indicated “Bad Request” response from the server.
This usually happened for smaller websites, where the server software must
differentiate between different websites it hosts using “Host” header. Thus, we
consider this header, as one which should be under surveillance, but must be allowed
to pass through the filtering software. Apart of “User-Agent” and “Host” headers, we
have tried filtering out “Accept”, “Accept-Encoding” and “Accept-Language”
headers, however the results retuned showed that, these headers seems to be used
more sporadically. Since the response codes from the requests with these headers
filtered out match the ones where forward Proxy was used (see Appendix 1 for full set
of results from this experiment).

Internet Explorer- 'Host' Header

0%
10%
20%
30%
40%
50%
60%
70%
80%

200 206 301 302 304 400 404
RESPONSE CODE

%
 O

F
R

ES
PO

N
SE

S

Forw ard Proxy Filtering Proxy

Figure 6-3 Responses to Requests with ‘Host’ Header Filtered Out

This experiment has not tested responses to requests with cache control headers
filtered or modified. Since we consider that in highly secured environment cache

Z. Kwecka, BSc (Hons) Network Computing, 2006 50

control should not be employed, due to a nature of information send by client’s
software in requests using cache control. This is due to the fact, that some of this
information (sent in plain text) may give potential listener detailed data on software
used by the inside host.

We think current implementations of HTTP/1.1 protocol send a number of redundant
data in their messages. In this experiment only a number of request headers have been
put to test, however, out of five headers, three have been identified as not being
relevant anymore. Thus, we think an in depth study of data send be HTTP clients and
server responses is needed, to produce a new specification to this protocol based
around statistical data of current implementations.

6.2.3 Experiment 3 – Headers Modification
In previous sections of this report, we have identified six different techniques to hide
data inside HTTP transaction messages. However, these methods were identified as
theoretical and since Experiment 1 proved that there are many different
implementations of HTTP specification, the objective of this experiment was to test
the behaviour various servers, to suggested data hiding scenarios. The physical and
logical setup for this experiment was very similar to that of Experiment 2. Thus, Host
2 was generating two requests for each website in ‘sites’ file. The requests followed
two different paths, one with forward Proxy, where no modifications were performed,
and one with Data Hiding Proxy on the way, so that the request could be modified
accordingly to the requirements. Thus, we have tested five different data hiding
scenarios:
(a) Case Modification
From HTTP specification, we know that all header names are case-insensitive. Thus,
in this scenario, Data Hiding Proxy has been used to change header names’ casing,
from the usual title-case, to uppercase.
(b) Undefined Header
Client and server software, which conform to HTTP/1.1 standard must ignore
unrecognised headers, i.e. threat the transaction, as they would if the header was not
there. Therefore, to test this data hiding technique Data Hiding Proxy was configured
to add an extra header (‘Covert-Channel: A covert data’) to every request passing through it.
(c) Linear Spacing Modification
This scenario employed the fact that HTTP software should interpret consequent
linear spacing characters as a single white space. Thus combination of white spaces
and linear tabulators was appended to every header in requests passing through Data
Hiding Proxy.
(d) Optional Header
Optional header ‘Via’ with a value ‘A covert data’ was added to each request when
testing this scenario.
(e) Headers’ Reordering
In this test Data Hiding Proxy was used to change the order of two first headers in
each request, since software conform to HTTP/1.1 should ignore the order of the
headers of different name.
The only data hiding technique not tested in this experiment was the modification of
server object. This is due, to the fact that appropriate scenario would need to employ
standard unmodified HTTP requests, to access server object. Thus, since the
technique doesn’t involve modification of the request it cannot negatively affect
HTTP server software and would produce results identical to the baseline.

Z. Kwecka, BSc (Hons) Network Computing, 2006 51

The results from this experiment were used to analyse server responses to various data
hiding techniques and their graphical representation is attached to the report in
Appendix 2. Thus, out of five scenarios tested, the number of error response codes
returned in the Data Hiding Agent path, were different only for Linear Spacing
Modification scenario. The difference, however, was negligible (0.1%), so we
confider badly written scripts rather that server software to be the reason behind them.
Thus, the theoretical data hiding scenarios can be implemented in practice, without
affecting HTTP operations and countermeasures should be developed to stop such
implementations.

6.2.4 Experiment 4 – Browser Signature Recognition
Every web browser installed at test network hosts were configured with the IP address
of the Inline Filtering Agent (running on Host 3) for the purpose of this experiment.
Then we have tried browsing the Internet using various browsers (those previously
specified) on different machines simultaneously. The IFA passed this test matching
100% of the requests to their originators. Thus, we have added an early version of
Data Hiding Proxy inline with the request path, between the hosts and the Inline
Filtering Agent. The results were very surprising, as the filtering agent recognized
signature mismatch in every request. This was later identified as being caused by the
default behaviour of the proxies based on HTTP Proxy Foundation, since it uses
Dictionary Collection to store headers and rebuild requests, messages passing through
Data Hiding Proxy had their headers ordered alphabetically. This behaviour was
consequently modified so that Data Hiding Proxy produced exact copies of original
requests, when hiding techniques are not employed (this new version was use to
produce scenarios in Experiment 3). Then the test was repeated using the new version
of hiding software and this time once again the filtering agent has reported 100%
match of the requests’ signatures to the originators specified in ‘User-Agent’ field.
However, when the data hiding techniques were used the IFA did not report any
mismatches.

In this experiment we have proven that recognition of different HTTP client software
based on unique signature is possible. Thus, by analysis of the message syntax we are
able to check the value supplied in the ‘User-Agent’ header by the originator.
However the, data hiding techniques, were able to pass through filtering agent without
raising alerts and caused concerns to the definition of the signatures. We think the
fault was in the signatures being defined in a way do distinguish between different
browsers, i.e. identified browser specific aspects, however did not evaluate any
common factors in the requests. Thus, we think that in order to produce signatures,
that could be employed to detect data hiding techniques usage, a full syntax of the
message must be considered. For the set of browsers used following factors where
identified that should produce more precise signatures:

- usage of title-casing to produce header names
- single space between colon at the end of header name and header value
- no linear spacing characters at the end of value field
- set of headers used to produce requests

These factors were introduced to signature checking process of the Inline Filtering
Proxy version used in Experiment 5.

Z. Kwecka, BSc (Hons) Network Computing, 2006 52

6.2.5 Experiment 5 – Covert Channel Detection
Only the Proxy part of the designed prototype has been implemented in the course of
the project, thus the functionality of the system is limited to protocol and signature-
based detection. In this experiment Inline Filtering Agent was located inside the test
network and the hosts (previously specified Web browsers on the hosts) were
configured to use it. Various requests were then generated, automatically as well as by
human operators, most of them using browsers permitted to pass through the filtering
Proxy. This was to produce background noise and try to simulate a load of the
Filtering Agent. Later Data Hiding Proxy was used to imitate few data hiding
scenarios. During the experiment we were able to detect 100% of the data hiding
scenarios based on:

- HTTP header-name case modification
- linear white space injection at the beginning or the end of header-value
- modification of the headers’ order
- addition of uncommon or undefined header

In all the cases the IFA has properly identified the originators of the threats, by
providing remote-end socked information. This shown the advantage of using
detection and filtering agents in-line with the requests. Since a Proxy must process all
the traffic before forwarding it, there is no chance of overlooking any well defined
signature.

During the experiment we have also detected few applications of unknown signatures,
different than Data Hiding Proxy. Thus, with a help of HTTP Analyser Foundation
the alerts were further investigated (Figure 6-4). Finally following automated agents
of the test network, has been identified:

- Background Intelligent Transfer Service version 6.6 – Windows update agent
- MSN Messenger 7.0 – MSN configuration agent
- Gadu-Gadu Autoupdate – update agent of popular Polish communicator
- GG – advert download of the Internet communicator mentioned above
- Symantec Anti-virus Live Update agent

We were aware of the above software agents running in the test network, however,
none of them were explicitly configured to use the Inline Filtering Agent. Later, it has
been identified, that Internet Explorer Proxy settings are being inherited by those
applications.

Figure 6-4 Threat Detection

Z. Kwecka, BSc (Hons) Network Computing, 2006 53

We think that, considering security aspects, it is not an ideal solution, and Proxy
settings set in one application should not propagate onto another. It can be considered
as behaviour similar to password ‘hijacking’, and therefore should not be allowed by
the operating system.

The Sniffer Detection Agent has not been implemented, thus, automated detection of
more sophisticated covert channels was not possible. Therefore following methods of
covert channels’ implementation did not result in raising alerts:

- modification of the server object
- changing field-values of headers different than ‘User-Agent’ or ‘Connection’
- providing an allowed header twice in the same request

The first two, would require machine with high processing power and large physical
storage, capable of recording various characteristics of the traffic under observation.
This could be achieved, to some degree, by the Sniffer Detection Agent designed in
the project, however the third undetected scenario, falls into signature-based
detection, which should be performed by the Inline Filtering Agent. Thus, there is a
need to develop more precise signatures and better understanding of HTTP protocol in
the filtering agent.

Another objective of this experiment was to check the filtering behaviour of the IFA,
thus, during the tests HTTP Analyser Foundation was used to capture the data flow
between the Proxy and the Internet. The results showed that IFA successfully
obfuscated covert channels induced by header-name case changing, linear spacing (at
the beginning and the end of the header-value) as well as removed unrecognised and
rarely used headers. This was done with no extra cost, since the functionality of the
Proxy was implemented in a way all requests are first processed and then rebuilt and
it is actually faster to rebuild the request using standard message syntax, rather than
syntax it arrived with.

6.2.6 Experiment 6 – Analysing Prototype’s Load on the Test

Network
In this experiment we have tested how much the scanning process performed by the
Inline Filtering Proxy affects the hosts on the test network. Thus we have collected
statistical information on the time it takes Browser Timer testing software to
download the content of various websites.

Median Time Taken to Download

00.0
00.9
01.7
02.6
03.5
04.3
05.2
06.0

No P
rox

y

Hos
t 3

 - N
o l

oa
d

Hos
t 3

 - L
oa

d

Hos
t 1

 - N
o lo

ad

Hos
t 1

 - L
oad

CONFIGURATION

TI
M

E
(S

EC
)

Figure 6-5 Median Time Taken to Perform a Full Download

Z. Kwecka, BSc (Hons) Network Computing, 2006 54

This was performed using different Proxy configurations, with Host 2 set as
originator. These configurations were:

- no Proxy
- Proxy hosted on low processing power machine (Host 3) without load
- Proxy hosted on low processing power machine (Host 3) with load
- Proxy hosted on high processing power machine (Host 1) without load
- Proxy hosted on high processing power machine (Host 1) with load

Figure 6-4 illustrates the results, i.e. median time between the request and response.
We can see that the configuration where Inline Filtering Agent was running on the
heavily loaded machine with the lowest processing power in the test network (Host 3)
slowed down a typical operation by 1.7sec. Surprising result, however, is that of
Inline Filtering Agent being executed on Host 1 (high power PC) with no load. Here a
typical download operation took less time than in the scenario with no Proxy used.
Since browser on Host 2 was not allowed to keep cache, this fact could only be
explained, by slightly different network conditions. Thus, after short investigation we
have identified that the data in ‘no Proxy’ configuration were collected around
21:00GMT, where the ‘Host 1 – No load’ setup was tested at 22:30GMT and by that
time load of our ISP link to the Internet as well as load of target websites was slightly
smaller. Still, the test error introduced is small and we consider that the delay added
by the Inline Filtering Agent is negligible and would not affect the operation of a
production network, especially considering the fact that 100% HTTP/1.1 compliant
Proxy implementation would lower the number of internal and external TCP
connections opened. Thus, by the means of persistent connections, such a Proxy
would actually be able to speed up WWW transactions, with most popular (among the
user of the intranet) websites.

6.2.7 Experiment 7 – Code Mobility Check
During this experiment we have tried to execute the prototype on every host in the test
network, to check how mobile is the code produced. As described earlier each host, in
the test network runs slightly different operating system. The tests shown that Inline
Filtering Agent executes on all the operating systems used and it doesn’t require any
special libraries installed. At the same time, Sniffer Detection Agent was
implemented based on WinPcap library, which was installed on each host prior to
testing. Even so that the installation was successful on all four machines, during the
experiment Sniffer Detection Agent would not run on the Starter Edition and Home
Edition platforms. We have expected this, from Home Edition software which was not
designed to perform any low level operations, however bearing in mind that Microsoft
Windows Starter Edition is actually based on Windows Professional, the fact the
software didn’t operate on this platform was surprising. However, information found
on Microsoft website confirmed that, Starter Edition restrictions are not only
hardware restrictions (this platform will run only on low level computers with less
than 256MB of RAM and less than 80GB of disk space) but also some elements of the
Professional version were removed, to restrict platforms use in professional
environment. However the core of the problem has been identified as ‘npptools.dll’
missing from both systems. Thus, after coping this library from Host 1 running
Windows XP Professional onto Host 3 and 4 the problem has been fixed. Therefore,
we consider our prototype as operational on all major releases of Windows operating
systems, but the Sniffer Detection Agent prototype will require installation process to
make sure WinPcap and ‘npptools.dll’ are present.

Z. Kwecka, BSc (Hons) Network Computing, 2006 55

6.3 Conclusions
First set of experiments performed has proved that recognition of the connection
originator is possible, eve if the user agent field of the HTTP protocol is obfuscated.
Therefore signatures of four commonly used browsers were identified for the use in
the prototype. Then the set of information sent in a request for a certain web pages
was reduced, and from the response codes received the conclusions may be drown
that, a percentage of headers in HTTP standard is sent in the request but never used by
the receiving server in connection with typical requests. Thus, Accept, Accept-
Encoding and Accept-Language have been identified as headers, which in English
speaking environment, are redundant if using typical multifunction web browser.

The evaluation of the prototype has been performed and all the covert channel
scenarios, that the IFA was designed to detect, has raised an alert when executed.
Additionally five agents of various MS Windows based software were detected. Thus,
it has been established that some application hijack proxy setting of the Internet
Explorer.

Z. Kwecka, BSc (Hons) Network Computing, 2006 56

7 Discussion, Conclusions and Further Work

7.1 Introduction
The main aim of this dissertation was an investigation of covert channels in Internet
protocol stack. In the previous chapters the information collected shown that
implementation of this data hiding technique is possible, and will most likely take
place in the Application Layer of TCP/IP model. In addition a suitable prototype of
the detection system was proposed and evaluated. Thus this chapter discusses the
findings, provides conclusions and suggests further work that would need to be
undertaken in this field, to create virtually covert channel free environment.

7.2 Discussion & Prototype Evaluation
The main aim of this dissertation was to investigate covert channel technologies in
Internet protocol stack in the context of information confinement. Thus, Application
Layer has been identified as the most likely level of data hiding in TCP/IP networking
model. Previously there have been many successful approaches to building covert
channels in lower layers of the TCP/IP model (Buchanan & Llamas, 2004), however
currently their usage is limited and possible only in low security networks. The
modern network access control systems (NACSs) are capable of replacing TCP/IP
connection information of the traffic by the use of Proxies or suitably configured
NAT (network address translation) servers, thus they can render useless any covert
channel implementations, operating below Application Layer (Dyatlov & Castro,
2003). Therefore the technologies of data hiding in these lower layers may be
interesting from the point of view of suspect surveillance, where a person under
observation may use low security networking environment, such as internet cafe or
SOHO11 network. However, they may be perceived as ineffective when considering
information confinement problem of large institutions, with secure networks.

There is a strong tendency, in the recent years, of the information hiding experts to
turn their heads towards the relatively new subject of Application Layer Covert
Channels. Most of the papers in this field agree that for the successful detection
system to work, it should employ three different methods of detection, signature,
protocol and behaviour-based (Borders & Prakash, 2004; Castro, 2003; Dyatlov &
Castro, 2003). For this dissertation a system capable of performing this, was designed,
however, due to the time restrains only the protocol and signature-based detection
system was implemented and tested. The test results suggested that the system is
capable of successful detection of pre-programmed threat signatures and covert
channel implementations which do not comply with the HTTP protocol specification,
however detection of unknown implementations or timing channels was impossible.
Thus, although fast and precise (low level of false-positives) these two methods
proved to have some limitations, and behaviour-based detection should be considered
as a must, if the system is expected to detected new or more sophisticated threats.
Thus, the findings of this dissertation agree with the results of other researchers of the
field.

11 Small-Office-Home-Office

Z. Kwecka, BSc (Hons) Network Computing, 2006 57

Although current papers usually show the same opinion on the detection techniques
required, they vary in terms of traffic being under surveillance. Some sources suggest
that only the inbound traffic should be monitored, were others consider monitoring
traffic in both directions as necessary (Dyatlov & Castro, 2003). However, there was
only one current document found to advise observation of sole outbound traffic
(Borders & Prakash, 2004). Thus, the approach used in this project was chosen by
analysis of the anatomy of misuse, covert channels usage scenarios and the working
environment for the prototype of the detection system. The conclusions suggested that
in the environment where a stateful firewall is used to protect the intranet, any
potential perpetrator, insider or an outsider, would require to establish an outgoing
connection to either send covert data out of the secure perimeter or to perform a
covert attack. In addition Internet traffic statistic show, the upload from intranets is
usually considerably smaller than their download12. Thus, the suggestion of well built
system being capable of covert channel detection by monitoring only the small
percentage of the total traffic (the outbound traffic) were considered to be very
interesting. This also meant that the processing power of the system didn’t need to be
as high as in the solutions suggested by Dyatlov and Castro, thus limited the costs and
increased the theoretical sensitivity of behaviour-based monitoring module. Thus,
Borders and Prakash idea was confirmed by the foundations of misuse detection.

Various ways of installing a detection system in the targeted intranet environment
were considered. Currently there aren’t any tools on the market, which could work as
a covert channel detection system, and only a couple of prototypes have been found.
Dyatlov and Castro proposed a system, where one application (Snort) is collecting
tcpdumps of the interesting traffic and the other is iterating through the offline data to
find the covert channels. This method has an advantage of low cost on the network
resources, since it only listens and does not affect the traffic, however, its major
disadvantage is working on the offline data. In such a system reaction to ongoing
threat would not be possible, or late, thus the efficiency would be low. On the other
hand Web Tap, the prototype of the monitoring system designed by Borders and
Prakash, has used inline scanner (a Proxy server), and the results they achieved using
this method should be considered as one of the best in the current research in the field.
However, they results were based on providing proxy services to a relatively small
group of users (30) and the load on the network (the delay in request-reply chain
versus level of processing conducted) was already a factor. Thus, the prototype
described in this dissertation, which is targeted to provide detection services to
intranets, was designed with a network load in the mind. It was identified that the
protocol and signature-based detection, do not require high levels of processing, thus
may be located inline with the traffic, but the more sophisticated behaviour-based
monitoring consumes vast amounts of resources and should not run on any machine
inline with the traffic. Therefore the prototype spited the functionality of the system
into two agents. The results of the Experiment 6 has proven this to be the right choice,
since the web operations using even heavily loaded Inline Filtering Agent, with HTTP
Analyser Foundation (simulating the load of the Sniffer Detection Agent) listening on
the span port of the intranet switch, were delayed only by a 1.7sec (median value).
Thus, the successful large scale implementation of covert channel limiter software
could be based around this method.

12 which is proven by the popularity of asymmetric connections to ISPs

Z. Kwecka, BSc (Hons) Network Computing, 2006 58

7.3 Test Inadequacies
The vast majority of the experiments performed for the needs of this dissertation,
were performed using automated software developed especially for this project using
C# programming language of the .NET framework. Thus, due to time restrains and
the considerable amount of optional functions in HTTP specification, the test
environment was not fully HTTP compliant. This in turn could lead to some test
inadequacies.

In Experiment 1 the objective was to analyse the usage of HTTP headers in the
request messages. The HTTP Dumper software was used to produce tcpdumps of the
traffic to be analysed, packets containing HTTP protocol envelope. Thus, the software
was capable of recognising and storing the packets where the request and the response
information should start. However, the application did not check the packet content
and therefore was unable to detect HTTP messages which span across multiple TCP
packets. Thus, some sporadically used headers could be overlooked in the results of
this experiment. However, later tests proved the chances of HTTP envelope, of
automatically generated requests, being larger than the MTU (max transfer unit) of
the test environment, as lower than 1/1000. Thus, since in this experiment the focus
was on the most common headers, the ones overlooked would not affect the results.

The results form Experiments 2 and 3, which were used to analyse the amount of
flexibility in the current HTTP implementations, were based on the response codes
from the web servers. This has proven, that even with certain information inside
request messages modified, in most cases the web servers will provide the services to
the client. However, the differences between the levels of these services were not
considered. It has been noted, that some pages, especially those running distributed
services developed by Microsoft, provided success response codes (1xx, 2xx, 3xx) to
the clients with User-Agent field obfuscated or removed, but sent only basic versions
of layout files (such as css). Thus for the purpose of complete evaluation of the HTTP
implementations currently used a number of human operators would need to perform
the tests themselves or supervise the automated request system.

The automated generation of the requests using Browser Timer and Browser Caller
applications developed for the needs of this dissertation, was required in order to
collect a large base of the test data. Thus, the amount of data collected and
experiments conducted could be accomplished without the use of this software.
However, it limited the validity of the results to the GET HTTP requests, since only
this request method was used in various tests performed. The tests were based around
modification of the message syntax allowed by the generic message in HTTP
specification (Fielding, et al, 1999), thus they could also be performed on other
request methods, but the generation of the requests, would need to be performed by
human operators, or set of messages generated and recorded in advance to the tests,
could be replayed.

7.4 Conclusions
This dissertation looked at the problem of covert channels in communication systems,
from a different than usual approach. Most of the documents in the field focus on
threats incoming form the Internet, were the findings provided suggest the biggest
threat of covert channels usage is that of information confinement. Thus, data leaving

Z. Kwecka, BSc (Hons) Network Computing, 2006 59

the network should be perceived as that which can cause more damage. This
suggestion was first published by Borders and Prakash in their document describing
the operation of the Web Tap, covert channel detection software of their design. Thus,
the findings of this dissertation are the second to consider the above approach to
covert channel analysis.

The Hyper-Text Transfer Protocol (HTTP), one of the most popular Internet protocols
currently in use, was identified as the most likely carrier for the covert payload. This
conclusion was drown after defining Application Layer as the level of uninterrupted
covert channel operation, where channels are usually noiseless end-to-end. Thus,
Simple Mail Transfer Protocol (SMTP) and Domain Name System (DNS) have also
been considered, but due to the strict e-mail monitoring and logging, and the slow
movement to more secure DNS services, after the recent DDoS attacks, HTTP, the
protocol which provides open-ended Internet specification for raw data transfers, was
chosen the most likely choice of perpetrators.

Since, operation of HTTP is usually transparent to the end user and the fact that this
protocol, due to its usability an innocently sounding name suggesting text based
informational services, there are no tools on the market which would allow for
observation of this protocol. Thus, a set of test tools has been designed for the needs
of this dissertation, and they operation falls into three groups:

(a) traffic generators
(b) protocol manipulation
(c) link observation

The above tools have been implemented using C# programming language of .NET
framework. This allowed for high code mobility and interoperability. The
programming environment of Visual Studio, helped in rapid code development and
the tools produced proved to be of vital operability during various experiments.

The first set of experiments conducted proved the theory that recognition of unique
signatures of different HTTP client software implementation is possible, by the
analysis of request messages syntax and that HTTP clients are providing a lot of
information in their requests, which is often ignored or discarded on the receiving
end.

This knowledge has been used to produce a prototype of covert channel detection
system, once again using C# programming language. The prototype implemented
protocol and signature-based monitoring techniques and therefore was capable of
recognition of any software agent which was not allowed to transfer information using
HTTP in the system. There were no false-positives generated, since precise signatures
of the messages allowed to pass the proxy server were used. However the prototype
sensitivity proved to be low for the covert channels implementations mimicking
request of genuine HTTP clients. It is considered, that further precision of the
signatures used, could bring the sensitivity level up, however it would most likely
cause a larger consumption of the network resources by the system. Thus, it is
suggested that the signature base detection, which is performed inline with the
requests by the IFA (Inline Filtering Agent) should be limited to the general syntax of
the requests, and more precise signature matching, and behaviour-based detection

Z. Kwecka, BSc (Hons) Network Computing, 2006 60

should be conducted in parallel to the traffic flow (by the use of live network traffic
capture techniques).

The final conclusion is that implementation of covert channels in Application Layer
of the Internet protocol stack is possible, and may be performed without perpetrator’s
access to the kernel of the compromised machine. Thus, development of suitable
prevention and detection system is required. Such a system would need to employ
three different types of monitoring techniques:

(a) protocol-based
(b) signature-based
(c) behaviour-based

The first two may be successfully used inline with the traffic for the purpose of basic
covert channel detection. In addition the knowledge of the HTTP protocol may be
employed to obfuscate most of the possible carriers of the covert channel. This
functionality would need to be located inline with the traffic flow, but the processing
required would be limited to standard operations of HTTP proxy server. Thus,
outgoing requests would be first phrased and then rebuild using implementation
specific semantic for all optional functions defined in HTTP specification. These
precautions would limit in a great level the possibilities of information leakage from
NACS protected in this way. However some covert channels implementation, which
mimic operation of generic HTTP software or use timing techniques, would stay
intact and undetected using these methods. Thus, behaviour-based detection, which
works by analysis of traffic anomaly, needs to be implemented in the covert channel
detection system. In addition, due to the level of processing required this function
must be performed in parallel to the traffic.

7.5 Further Work
In this dissertation, most tests were performed using GET requests. This request
method, event that most popular, should not be considered a s sole method used by
the HTTP clients. In addition the responses from the servers were considered on the
basis of the response code, which did not guarantee that the pages downloaded were
those provided by the server, when the request obfuscation was not activated. Thus, in
order to supply more precise results human testers would be required to produce the
requests and observe the responses, or more sophisticated automation technique.

The suggestion should be made that the results obtained in this dissertation also show,
that elimination of the covert channels for institutional intranets is possible. In order
to do so development of secure HTTP client software, which does not allow input
different than that from a genuine user and authenticates each and every request made
to NACS, using hash signature of the request encrypted together with a random
number know only to the browser and NACS devices. This, solution would eliminated
in 100% automated covert channel implementations, and will place only a limited
amount of trust in the human operator.

Z. Kwecka, BSc (Hons) Network Computing, 2006 61

8 References

Bauer, M. 2003. New covert channels in HTTP: adding unwitting Web browsers to anonymity sets. In
Proceedings of the 2003 ACM Workshop on Privacy in the Electronic Society. New York: ACM
Press.

Borders, K., & Prakash, A. 2004. Web tap: detecting covert web traffic. In Proceedings of the 11th

ACM Conference on Computer and Communications Security. New York: ACM Press.

Buchanan, W. & Llamas, D. June 2004. Covert Channel Analysis and Detection with Reverse Proxy

Servers using Microsoft Windows. The 3rd European Conference on Information Warfare and
Security. University of London.

Buchanan, W. 2006, Unit 9 – Data Hiding, URL:

www.dcs.napier.ac.uk/~bill/asmn/unit04_forensic_computing.pdf [28 April 2006]

Castro, S. November 2003. Covert Channel and Tunneling Over the HTTP Protocol Detection, GW

Implementation Theoretical Design. URL: http://www.gray-
world.net/projects/papers/html/cctde.html [21 December 2005]

Coll, S. August 2005. Terrorists Turn to the Web as Base of Operations - Computer Crime Research

Center. URL: http://www.crime-research.org/articles/Terrorists_Turn/ [20 Novembr 2005]

de Vivo, M., de Vivo, G. O., & Isern, G. 1998. ACM SIGOPS Operating Systems Review, Internet

security attacks at the basic levels, 32/2, 4-15. New York: ACM Press.

Dyatlov, A., & Castro, S. June 2003. Exploitation of Data Streams Authorized by a Network Access

Control System for Arbitrary Data Transfers, Tunnelling and Covert Channels Over the HTTP
Protocol. URL: http://www.gray-world.net/projects/papers/covert_paper.txt [14 November 2005]

Elz, R., & Bush, R. July 1997. RFC2181, Clarifications to the DNS Specification. URL:

http://www.ietf.org/rfc/rfc2181.txt [20 November 2005]

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., & Berners-Lee, T. June 1999.

RFC2616, Hypertext Transfer Protocol - HTTP/1.1. URL:
http://www.w3.org/Protocols/rfc2616/rfc2616.html [16 November 2005]

Forte, D. V. November 2005. SecSyslog: an Approach to Secure Logging Based on Covert Channels.

URL: http://www.dti.unimi.it/~honeynet/honeynet.it/doc/SecSyslog.pdf [21 December 2005]

Gligor, V. D. November 1993, A Guide to understanding Covert Channel Analysis of Trusted Systems.

Technical Report NCSC-TG-030. Meade, Maryland: National Computer Security Centre.

Gligor, V. D. November 1993. A Guide to Understanding Covert Channel Analysis of Trusted

Systems. URL: http://www.radium.ncsc.mil/tpep/library/rainbow/NCSC-TG-030.html [12 November
2005]

Internet World Stats, December 2005. INTERNET USAGE STATISTICS, The Big Picture, World

Internet Users and Population Stats, URL: http://www.internetworldstats.com/stats.htm [28
February 2006]

JEM (Joint Experts Meeting). September 2000. Report to the Federal Communications Commission on

Surveillance of Packet-Mode Technologies URL:
http://www.tiaonline.org/policy/filings/JEM_Rpt_Final_092900.pdf [20 November 2005]

Kaminsky, D. December 2004. Black Ops of DNS. URL: http://www.doxpara.com/dns_bh [21

December 2005]

Z. Kwecka, BSc (Hons) Network Computing, 2006 62

Kawamoto, D. March 2006. DNS recursion leads to nastier DoS attacks. URL:
http://news.zdnet.co.uk/internet/security/0,39020375,39257938,00.htm [14 April 2006]

Klensin, J. April 2001. RFC 2821, Simple Mail Transfer Protocol. URL:

http://www.ietf.org/rfc/rfc2821.txt [20 November 2005]

Kwecka, Z. April 2006. Application Layer Covert Channels. BCS Symposium on Intelligence in

Security and Forensic Computing. URL: http://www.dcs.napier.ac.uk/~bill/bcs2006/zbig.pdf [14
April 2006]

Lampson, B. W. October 1973. A Note on the Confinement Problem, Communications of the ACM,

16/10, 613-615. New York: ACM Press.

Loepere, K. 1985. Resolving covert channels within a B2 class secure system. ACM SIGOPS

Operating Systems Review. 19/3, 9-28. New York: ACM Press.

Loepere, K. 1989. The covert channel limiter revisited. ACM SIGOPS Operating Systems Review. 23/2,

39-44. New York: ACM Press.

Microsoft, January 2006, Microsoft Windows XP Starter Edition Facts Sheet, URL:

http://www.microsoft.com/presspass/newsroom/winxp/08-10WinXPStarterFS.mspx [19 April 2006]

Mockapetris, P. November 1987. RFC1034, Domain Names - Concepts and Facilities. URL:

www.ietf.org/rfc/rfc1034.txt [20 November 2005]

NCSC (National Computer Security Center), December 1985, Department Of Defense Trusted

Computer System Evaluation Criteria. Meade, Maryland: National Computer Security Centre.

Odom, W. 2001. Cisco CCNA Exam #640-507 Certification Guide. Indianapolis: Cisco Press

PCMAG.COM. 12 November 2005. Definition: Covert Channel. URL: http://www.pcmag.com/

encyclopedia_term/0,2542,t=covert+channel&i=40417,00.asp [12 November 2005]

Postel, J. B. August 1982. RFC 821, Simple Mail Transfer Protocol. URL:

http://www.ietf.org/rfc/rfc0821.txt [20 November 2005]

Rivest, R. L., Shamir, A., & Adleman, L. 1978. A method for obtaining digital signatures and public-

key cryptosystems. Communications of the ACM. 21/2, 120-126. New York: ACM Press.

Rogers, R. 2004. Understanding Covert Channels of Communication. URL:

http://www.blackhat.com/presentations/bh-asia-04/bh-jp-04-rogers.ppt [16 December 2005]

Slater, D. 1987. A note on the Relationship Between Covert Channels and Application Verification,

SIGSAC Rev. 5/1 (Jan. 1987), 22. New York: ACM Press.

Summers, R. C. November 1996, Secure Computing: Threats and Safeguards, Columbus, Ohio:

McGraw-Hill Companies

Tsai, C. R., Gligor, V. D., & Chandersekaen, C. S. June 1990, Formal Method for the Identification of

Covert Storage Channels in Source Code, IEEE Transactions on Software Engineering, 16/6, 569-
580. Los Alamitos, CA: IEEE, Inc.

von Ahn, L., Hopper, N., & Langford, J. 2005. Covert two-party computation. Proceedings of the

Thirty-Seventh Annual ACM Symposium on theory of Computing (May 2005), 513-522. New York:
ACM Press.

Wikipedia. March 2005. Covert channel - Wikipedia, the free encyclopedia. URL:

http://en.wikipedia.org/wiki/Covert_channel [12 November 2005]

WinPcap Team, 2005, WinPcap 3.1 Documentation, URL:
http://www.winpcap.org/docs/docs31/html/main.html [28 February 2006]

Z. Kwecka, BSc (Hons) Network Computing, 2006 63

9 Appendices

Appendix 1 - Experiment 2 Results

Opera - 'User-Agent' Header

0%

5%

10%

15%

20%

25%

30%

200 301 302 304 404 500
RESPONSE CODE

%
 O

F
R

ES
PO

N
SE

S

Forw ard Proxy Filtering Proxy

Responses to Requests with ‘User-Agent’ Header Filtered Out
A large number of responses with code ‘500’ signify remote servers having

 problems in processing requests with ‘User-Agent’ header missing.

Internet Explorer- 'Host' Header

0%
10%
20%
30%
40%
50%
60%
70%
80%

200 206 301 302 304 400 404
RESPONSE CODE

%
 O

F
R

ES
PO

N
SE

S

Forw ard Proxy Filtering Proxy

Responses to Requests with ‘Host’ Header Filtered Out
The graph shows that most of the servers treat requests with ‘Host’

headers missing as valid, however a significant percent (5%)
replies with code ‘400’, Bad Request. Further investigation found
usually less significant websites responded with this error code.

Z. Kwecka, BSc (Hons) Network Computing, 2006 64

Internet Explorer - 'Accept' Header

0%

20%

40%

60%

80%

100%

200 301 302 304 400 404

RESPONSE CODE

%
 O

F
R

ES
PO

N
SE

S

Forw ard Proxy Filtering Proxy

Responses to Requests with ‘Accept’ Header Filtered Out
Responses to modified requests are very similar, to those from unmodified requests.

This suggests that ‘Accept’ header is virtually unused.

Internet Explorer - 'Accept-Encoding' Header

0%

20%

40%

60%

80%

100%

200 206 301 302 304 404
RESPONSE CODE

%
 O

F
R

ES
PO

N
SE

Forw ard Proxy Filtering Proxy

Responses to Requests with ‘Accept-Encoding’ Header Filtered Out
Numbers of error responses (‘404’) are similar for both proxies.
This suggests that ‘Accept-Encoding’ header is virtually unused.

Fitrefox - 'Accept-Language' Header

0%

20%

40%
60%

80%

100%

200 301 302 304 400 403 404
RESPONSE CODE

%
 O

F
R

ES
PO

N
SE

S

Forw ard Proxy Filtering Proxy

Responses to Requests with ‘Accept-Language’ Header Filtered Out
Numbers of error responses (‘404’) are similar for both proxies.
This suggests that ‘Accept-Language’ header is virtually unused.

Z. Kwecka, BSc (Hons) Network Computing, 2006 65

Appendix 2 – Experiment 3 Results

Case Modification

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

200 206 301 302 304 403 404
RESPONSE CODE

%
 O

F
R

ES
PO

NS
ES

Forward Proxy Data Hiding Proxy

Responses to Requests with Header Names Capitalised
Numbers of error responses (‘403’, ‘404’) are similar for both forward Proxy and Data Hiding Agent.

This suggests that case modification may be employed to produce covert channels in HTTP.

Usage of Undefined Header

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

200 302 301 404
RESPONSE CODE

%
 O

F
R

ES
P

O
N

SE
S

Forward Proxy Data Hiding Proxy

Responses to Requests with Custom (Undefined in HTTP) Header
Numbers of error responses (‘404’) are similar for both forward Proxy and Data Hiding Agent.

This suggests that case additional headers may be added to HTTP transactions, without affecting them,
thus also to produce covert channels in this application layer protocol.

Z. Kwecka, BSc (Hons) Network Computing, 2006 66

Linear Spacing Modification

0%
20%
40%
60%
80%

100%

200 206 301 302 304 400 403 404 500
RESPONSE CODE

%
 O

F
R

ES
PO

N
SE

S

Forw ard Proxy Data Hiding Proxy

Responses to Requests with Linear Spacing Modified
Numbers of ‘404’ error responses are similar for both forward Proxy and Data Hiding Agent.

A small percentage of modified requests, however, resulted in ‘400’, ‘403’ and ‘500’ type responses.
Thus, although this data hiding method is allowed by RFC 2616 some server software implementations

do not process them in required manner. However, covert channel implementation employing this
vulnerability of RFC 2616 is still possible, since the number of error responses in negligible.

Optional Header Added

0%
20%
40%
60%
80%

100%

200 301 302 303 304 403 404

RESPONSE CODE

%
 O

F
R

ES
PO

N
SE

S

Forw ard Proxy Data Hiding Proxy

Responses to Requests with Optional Header (‘Via’) Added
Numbers of error responses (‘403’, ‘404’) are negligible and similar for both forward Proxy and Data

Hiding Agent. This suggests that HTTP servers’ implementations comply with RFC 2616 specification,
by ignoring any unrecognised headers.

Headers' Reordering

0%
20%
40%
60%
80%

100%

200 206 301 302 303 304 400 403 404
RESPONSE CODE

%
 O

F
R

ES
PO

N
SE

S

Forw ard Proxy Data Hiding Proxy

Responses to Requests with Modified Headers’ Order
Numbers of ‘403’ and ‘404’ error responses are similar for both forward Proxy and Data Hiding Agent.

Thus, with only negligible number of code ‘400’ responses (less than 1%), we assume header
reordering may be used to produce covert channels implementations.

Z. Kwecka, BSc (Hons) Network Computing, 2006 67

Appendix 3 - HTTP Protocol

Definition, purpose and usage
The application layer protocol called HTTP is often perceived as very basic protocol
for distribution of World Wide Web pages. We could say that even its name
Hypertext Transfer Protocol is very suggestive and implies that the purpose of this
protocol is to transfer hypertext, where hypertext is defined as textual data “linked”
across many documents or locations. It makes no wonder then, that some network
administrators do not consider HTTP as a threat or think that as long as only outgoing
established connections are permitted and every machine in the network uses some
kind of firewall and antivirus software, they network is secure. However the true face
of the protocol is different. The most recent specification of HTTP is RFC 2616 and
the purpose of the protocol is described as follows:

The Hypertext Transfer Protocol (HTTP) is an application-level
protocol for distributed, collaborative, hypermedia information
systems. HTTP has been in use by the World-Wide Web global
information initiative since 1990. The first version of HTTP, referred
to as HTTP/0.9, was a simple protocol for raw data transfer across the
Internet. HTTP/1.0, as defined by RFC 1945, improved the protocol by
allowing messages to be in the format of MIME-like messages,
containing metainformation about the data transferred and modifiers
on the request/response semantics. (Fielding, et al, 1999, pp. 7)

HTTP is now well established protocol and the current version is 1.1, however the
idea of the protocol stayed the same. Through employing a simple human readable
(MIME-like) syntax and allowing transfer of virtually any kind of data, HTTP
become a preferred protocol in development of “on-line” applications. Furthermore
the fact that a large group of network administrators allowed almost any outgoing
connections of HTTP either directly or through proxies contributed strongly to this
trend. Nowadays almost any software application, which requires communication
over the Internet, employs HTTP or has a build in functionality allowing its
application layer protocol to be tunnelled in HTTP. Example of the first kind could be
antivirus software that uses HTTP for downloading signatures of the newest threats
from the central server, or an update agent for an application like internet messenger.
The implementations of the remote method invocation or remote procedure call are,
thus, common examples of the second kind of the applications.

HTTP was identified as one of three protocols, which can be employed to create
covert channels for sending data in and out of networks commonly considered to be
secure. Thus the following section will identify, where RFC 2616 as the document
which defines the current version of HTTP in use, gives hackers an open field for
hiding data.

HTTP Syntax and Covert Channels
RFC 2616 was created to clear up some hard to understand statements from the
previous documentations of HTTP (namely 1.0 and 0.9) and to introduce few optional
features of HTTP/1.0 as standard in the new protocol HTTP/1.1. In the time when this
specification was written the biggest concern of the creators was interoperability

Z. Kwecka, BSc (Hons) Network Computing, 2006 68

between all the applications using the new standard and a backward compatibility to
the already existing implementations, which conformed to previous RFCs. Some
security concerns were raised, regarding leakage of personal information, attacks
based on path names and DNS spoofing, however threats of covert channels’
implementation was overlooked. Following interpretation of a RFC 2616, describes
operation of HTTP and highlights areas where transfer of data in a covert manner is
possible.

General syntax
The basic units of HTTP communication are messages, made up of a structured
sequence of octets and transmitted via a transport layer virtual circuit (connection).
There are two types of messages allowed: requests and responses. Both use generic
message format. This consists of a start-line, zero or more header-fields (headers), an
empty line and optional message body:

generic-message = start-line ; a Request-line or a Status-line
 *(message-header CRLF) ; one or more header
 CRLF ; compulsory empty line
 [message-body] ; optional application layer data

Start-line is made of either a Request-line in a request message or a Status-line in a
response message. CRLF is the only end-of-line marker allowed for all HTTP
protocol elements except the entity-body. It stands for carriage return (CR) and line
feed (LF). This is a good practice, there is only one standard allowed, which makes
protocol implementation easier, and prevents information hiding. There are few
different types of message-headers: general-header, request-header, response-header
and entity-header. All of them are built using the same syntax. Each header consists of
a case-insensitive field name followed by a colon and an optional field value.

message-header = field-name “:” [field-value]

Case-insensitivity.
Field-names are case-insensitive, thus they are ideal carrier for hiding bits (payload).
Both clients and the servers will interpret a field-name in the same way no matter the
case of the letters. The coincidence is that capital letters in the ASCII code differ from
the lower case letters only by a value of the 3rd bit. Thus binary form of letter “R” is
01010010 and the one of letter “r” is 01110010. Then a mask of 0xDF can be
employed to extract or encode a payload in ASCII characters. Lower case letters
would decode as 1’s, where capital letters would decode as 0’s. An example follows
to illustrate how covert payload maybe hidden in a typical HTTP header given below:

Connection: keep-alive

This header can be modified to carry the bit pattern of 0111001011 and would look as
follows:

ConnECtIon: keep-alive

Consequently above encoding method can be employed to transfer as many bits of
payload as the total number of letters in field-names in any particular message. A
visual inspection of the HTTP envelope would reveal this covert channel, however as
it is unusual for anybody to examine HTTP message header and HTTP clients and

Z. Kwecka, BSc (Hons) Network Computing, 2006 69

servers would ignore casing, this kind of covert channel could be successfully
deployed.

Linear white spacing.
Another reason for concern is the fact that according to RFC 2616 the field-content
(the data part of field-value) can be preceded and followed by an optional linear white
spacing (LWS). LWS can be made up from a non-compulsory CRLF and one or more
space (SP) or horizontal tab (HT) character.

LWS = [CRLF] 1*(SP|HT)

Header values may be folded onto multiple lines using CRLF as long as the new line
starts with a space or horizontal tab. Thus, all linear white space in a header may be
replaced with a single SP before processing or forwarding the message downstream.
This allows for a text decoration in the HTTP messages and has no real meaning in
processing of the requests and responses. However it creates room for bidirectional
covert channels. In a case where there is no HTTP Proxy between communicating
sites, or linear white spaces are left unaltered by a Proxy, it is possible to encode
information using SP and HT characters. An example illustrates how linear white
space characters may be employed to transfer covert payload in the following header:

“Connection: keep-alive”

Header name “Connection” followed by a colon “:”, a space SP and the value “keep-
alive”:

“Connection” “:” SP “keep-alive”

Let assume that 1’s are encoded as HTs and 0’s as SPs. Now if the single SP would be
replaced with a combination of HTs and SPs, the meaning of the HTTP header would
not change, but a binary stream could be hidden in the header. Thus a byte of
information which in binary form is 01011100 could be encoded in one of the
following ways:

“Connection” “:” SP HT SP HT HT HT SP SP “keep-alive”

“Connection” “:” SP “keep-alive” SP HT SP HT HT HT SP SP

“Connection” “:” SP “keep-alive” CRLF
SP HT SP HT HT HT SP SP

There is virtually no limit to a number of bits per message that can be sent using this
method, apart of the size limits set for different kinds of requests and responses. If bits
encoded in this way are placed in front of a header value a visual examination of the
HTTP message would be enough to reveal the disguise, however if they follow the
field-value contents or a CRLF only examination of the message bytes would expose
the covert channel.

Order of headers.
Above technique is not the last reason why HTTP messages are such s good carrier
for covert channels. The generic-message syntax does not specify the order in which
the headers should occur in the massages. Although it suggests that it is “good
practice” to include general-header fields first, followed by request or response

Z. Kwecka, BSc (Hons) Network Computing, 2006 70

specific headers and incorporate entity-header fields as last ones, the order in which
header-fields (of differing names) are received is insignificant. Thus if both sides
wishing to use covert channel agree that specific order of header-fields is significant
they would be capable of transmitting 1bit per two headers of any message. This in
turn could be hard to detect, since in the previous scenarios the RFC allowed for
creation of the hidden channel, but most of the current HTTP applications used
standard semantics (i.e. only one SP before a field-value, ended by a CRLF and all the
field-names using title casing) it was possible to spot a potential covert
communication quit easy. However here the headers’ order vary from implementation
to implementation. Thus, for example in a basic covert channel groups of two
consequent headers ordered alphabetically could stand for 1’s and reverse ordered
pairs could decode as 0’s. Example:

Connection: keep-alive ;would decode as 1
Host: www.napier.ac.uk

Host: www.napier.ac.uk ;would decode as 0
Connection: keep-alive

Uniform Resource Identifiers.
All HTTP request and some response (i.e. for relocation purposes) messages consists
of uniform resource identifiers (URIs), used to identify a resource on the network.
There are two different forms allowed, absolute and relative. Thus a presence of one
or the other can be an arbitrary 0 or 1, and if absolute URI is used it should follow
syntax:

Absolute URI = “http:” “//” host [“:” port] [absolute_path [“?” query]]

Where ‘http:’ is the scheme name, ‘host’ is a DNS name of a node hosting the
resource, optionally followed by a port number and/or absolute path to the resource.
RFC 2616 suggest that clients and servers should:

- interpret an empty or not given port as a default port 80
- treat host name and scheme name in a case-insensitive manner
- interpret an empty absolute path as a path of “/” (document root)
- most characters can be represented in their ““%” HEX HEX” (“%” +

hexadecimal value of the ASCII code) encoding
The first statement implies that “http://abc.com/”, “http://abc.com:/” and
“http://abc.com:80” have the same meaning in HTTP. Therefore as previously shown
optional form of data which is interpret in the same way by client and server software,
can be used to hide covert payload. For instance if a port number is present in a
message this can decode as one and when it is omitted it could decode as zero.
Allowing for case-insensitive parts of URIs creates similar possibilities as it did in
field-names. Furthermore statements with empty absolute paths are treated in a same
way as they would request document root (“/”), and again could be used to cipher
data. Example:

http://abc.com ;could decode as 0
http://abc.com/ ;could decode as 1, both mean the same to HTTP applications

Also any URI ASCII characters which can be send in alternative formats, as a ASCII
code, or a ““%” HEX HEX “, could be employed in creating a covert channel. Thus,
the following URIs all point to the same resource:

Z. Kwecka, BSc (Hons) Network Computing, 2006 71

http://abc.com/~smith
http://abc.com/%7Esmith
http://abc.com/%7esmith

Following a question mark (“?”) a query can be add to the URI. This is a common
way to transmit data from html forms to the servers. In many cases additional
information not required by the server is ignored and individuals can be tempted to
use it as a cover channel (Dyatlov, et al. 2003). Although development of an
automated system to uncover this type of activity can prove to be a complex task, the
channel may be identified by simple visual examination of an address bar in a
browser.

This is not the end of the optional arrangements of the RFC under examination.
Another possibility to encode few bits per message is by alternative use of the three
possible formats of the date allowed. Fortunately this time the creators of the
specification stated that although on the receiving end all three formats should be
treated as valid, implementations MUST generate only the RFC 1123 format. Thanks
to this statement all HTTP/1.1 messages consisting of different date format than the
one specified in the relevant document can be considered as invalid, while any
packets with HTTP version different than 1.1 should be treated as highly suspicious
anyway.

Request message

In HTTP communications request messages are send from clients to servers in order
to request a services. The client must specify the method (service required), identify
resource and the protocol version it is willing to employ in the start-line of HTTP
request message. As described earlier, the start-line is followed by message-header
fields, compulsory empty line and optional message-body.

Request-Line = Method SP Request-URI SP HTTP-Version CRLF

From the above syntax the fact that “linear white spacing” hiding technique cannot be
employed in the Request-Line can be derived. Method and HTTP-version fields are
case-sensitive, but the Request-URI follows requirements described in URI section of
previous paragraph, so may be used as a covert channel. There are eight methods
specified by RFC 2616, but the document allows for extending this list with additional
custom methods as long as both sides can understand them. Following is a list of
methods identified by the document:

- OPTION
- GET
- HEAD
- POST
- PUT
- DELETE
- TRACE
- CONNECT

In theory it is possible to cipher a payload by alternating request methods or by
defining a new set of methods. For example any time a client sends GET request the
recipient could treat it as 0 and any time a HEAD method is received it should be
decoded as 1. When a new set of request methods is defined it is possible to transmit

Z. Kwecka, BSc (Hons) Network Computing, 2006 72

much more data than one bit per message. Communicating parties could agree that
any characters transmitted between name of the method (GET, POST or etc.) and the
space character (SP) are part of the covert payload. The remote party would, however,
need to remove those characters from HTTP stream before interpreting the message or
transmitting it downwards.

Request-Line with covert channel = Method
 [ASCII encoded payload]
 SP
 Request-URI
 SP
 HTTP-Version
 CRLF

Request-Line does not have a limit of size specified and any number of ASCII
characters could by encoded into it in this manner. Still analyzing statistical data
collected on request messages proves that this technique is possibly very easy to
detect as the set of currently used methods is practically limited to GET and POST
(they are the most common ones in use).

Another interesting fact about a start-line of a request message is the fact that host
part of the URI specified in this line must be ignored if “Host” header is contained
within this request. This is jet another redundancy in the RFC 2616 specification,
which can cause security holes in a system allowing HTTP transfers. We can imagine
following scenario. A client sends a message with URI in the request-line set to
“http://COVERTCHANNEL/some_existing_document” and “Host” header with
value set to “some_host”. Any Proxy or the receiving server would treat this request
as valid, but a recipient of the covert payload could also easily extract ASCII encoded
payload.

Request-message with a covert channel =
GET SP [“http://” ASCII payload] Resource_locator SP HTTP-Version CRLF
Host: SP remote_host_DNS_name CRLF
CRLF

Yet again the amount of the payload here would be virtually unlimited as the request-
line has no size constrains.

Response message
According to the specification HTTP response-message should consist of a status-
line, followed by message header, compulsory empty line and optional message body.
A status-line is made up from HTTP version, numeric status code of the response and
its associated textual phrase, where each element separated by SP characters.

Status-line = HTTP_Version SP Status-Code SP Reason-Phrase CRLF

Since every element of the HTTP code have been designed in a way that both
machines and people can understand its syntax without greater difficulty, the status-
line consists of status code intended for machine interpretation and a human readable
Reason-Phase. The status codes are defined as 3-digit integers and there are five
general groups of status codes, otherwise called classes of response, categorized by
the first digit of the code (Fielding, et al, 1999, pp. 40)

- 1xx: Informational – Request received, continuing process

Z. Kwecka, BSc (Hons) Network Computing, 2006 73

- 2xx: Success – The action was successfully received, understood, and accepted
- 3xx: Redirection – Further action must be taken in order to complete the request
- 4xx: Client Error – The request contains bad syntax or cannot be fulfilled
- 5xx: Server Error – The server failed to fulfill an apparently valid request

List of the values is extensible, there is around 40 defined and servers can introduce
their own implementation specific codes. In this case client should treat any
unrecognized value as being equivalent to x00status code class (i.e. not defined code
244 would be interpret as code 200). When server responses with an error code user
will be notified and it is possible that a browser will display error code and response
phrase, however if the operation is successful (i.e. 2xx code is returned) the content of
the status-line will stay secret to the user. A person who wants to send a message in a
covert style can use the second and the third digit of the response code to hide some
information. Thus 102 values could be hidden in a single message from client to
server.

Status_Code with payload = (status code class digit) (payload digit) (payload digit)

Furthermore reason phrases listed in HTTP specification are only recommendations
and they may be replaced, consequently allowing for hiding unlimited size
alphanumeric string in the status-line.

Status-line with payload = HTTP_Version SP
 Status-Code SP
 Payload-As-Alphanumeric-String CRLF

Z. Kwecka, BSc (Hons) Network Computing, 2006 74

Appendix 3 – Project Presentation
This presentation was given during BCS SGAI Symposium on Intelligence in Security and Forensic
Computing, hosted at Napier University, in April 2006.

Z. Kwecka, BSc (Hons) Network Computing, 2006 75

Z. Kwecka, BSc (Hons) Network Computing, 2006 76

Z. Kwecka, BSc (Hons) Network Computing, 2006 77

Z. Kwecka, BSc (Hons) Network Computing, 2006 78

Z. Kwecka, BSc (Hons) Network Computing, 2006 79

Appendix 4 - Inline Filtering Agent - Code Listing

Classes used by IFA:

- Form1
- ConsoleBuffer
- Listener
- HttpListener
- Client
- HttpClinet

The Listener, HttpListener and Client classes were taken form a Mentalis.org Proxy13
and were not modified in this project. Whilst Form1 and ConsoleBuffer were
developed specifically for the prototype, HttpClient class was rewritten from
Mentalis.org Proxy, leaving only the basic request-response handling semantic from
the original and introducing prototype’s logic.

Form1 and ConsoleBuffer classes are specified within Proxy.cs file as follows:

/*
 * Autor: Zbigniew Kwecka
 * Matric: 03008457
 * Contact: z.kwecka@gmial.com
 * Napier University, Edinburgh
*/

using System;
using System.Drawing;
using System.Collections;
using System.Collections.Specialized;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;
using System.Net;
using System.Text;

namespace FilterProxy_GUI
{
 /// <summary>
 /// GUI
 /// </summary>
 public class Form1 : System.Windows.Forms.Form
 {
 private System.Windows.Forms.Button bRun;
 private System.Windows.Forms.ListBox lbConsole;
 private System.Windows.Forms.Button bExit;
 private System.Windows.Forms.Button bShow;
 private System.Windows.Forms.Button bStop;
 private System.Windows.Forms.Timer consoleTimer;
 private System.Windows.Forms.TextBox tbFilter;
 private System.Windows.Forms.Button bSetFilter;
 private System.Windows.Forms.TextBox tbListenerPort;
 private System.Windows.Forms.ComboBox cbListenerAddress;
 private System.Windows.Forms.CheckBox checkBox1;
 private System.Windows.Forms.CheckBox checkBox2;
 private System.Windows.Forms.CheckBox checkBox3;
 private System.Windows.Forms.CheckBox checkBox4;
 private System.Windows.Forms.CheckBox checkBox5;
 private System.Windows.Forms.CheckBox checkBox6;
 private System.Windows.Forms.CheckBox checkBox7;
 private System.Windows.Forms.GroupBox groupBox1;
 private System.Windows.Forms.Button button1;
 private System.Windows.Forms.TextBox tbHeader;
 private System.ComponentModel.IContainer components;

13 Autor: KPD-Team; Website: http://www.mentalis.org/soft/projects/Proxy/

Z. Kwecka, BSc (Hons) Network Computing, 2006 80

 public Form1()
 {

 InitializeComponent();

 }

 /// <summary>
 /// Clean up any resources being used.
 /// </summary>
 protected override void Dispose(bool disposing)
 {
 if(disposing)
 {
 if (components != null)
 {
 components.Dispose();
 }
 }
 base.Dispose(disposing);
 }

 /// <summary>
 /// The main entry point for the application.
 /// </summary>
 [STAThread]
 static void Main()
 {
 Application.Run(new Form1());
 }

 private Listener listener;
 private int bufferRead = 0;

 private void bRun_Click(object sender, System.EventArgs e)
 {

 string classtype = "FilterProxy_GUI.Http.HttpListener";
 if (classtype == "")
 return;
 else if(Type.GetType(classtype) == null)
 {
 lbConsole.Items.Add("The specified listener class does not exist!");
 return;
 }
 string construct;
 if(cbListenerAddress.SelectedIndex > -1)
 {
 construct = "host:" + cbListenerAddress.SelectedItem.ToString() + ";int:" +

tbListenerPort.Text.Trim();
 }
 else
 {
 construct = "host:127.0.0.1;int:80";

 }

 object listenObject = CreateListener(classtype, construct);
 if (listenObject == null)
 {
 lbConsole.Items.Add("Invalid construction string.");
 return;
 }

 try
 {
 listener = (Listener)listenObject;
 }
 catch
 {
 lbConsole.Items.Add("The specified object is not a valid Listener object.");
 return;
 }
 try
 {

Z. Kwecka, BSc (Hons) Network Computing, 2006 81

 listener.Start();
 lbConsole.Items.Add("Proxy started");
 lbConsole.Items.Add("Listening on" +

construct.Replace(";int:",":").Replace("host:",": "));
 consoleTimer.Enabled = true;
 }
 catch
 {
 Console.WriteLine("Error while staring the Listener.\r\n(Perhaps the specified

port is already in use?)");
 return;
 }
 }
 /// <summary>
 /// Creates a new Listener obejct from a given listener name and a given listener

parameter string.
 /// </summary>
 /// <param name="type">The type of object to instantiate.</param>
 /// <param name="cpars"></param>
 /// <returns></returns>
 public Listener CreateListener(string type, string cpars)
 {
 try
 {
 string [] parts = cpars.Split(';');
 object [] pars = new object[parts.Length];
 string oval = null, otype = null;
 int ret;
 // Start instantiating the objects to give to the constructor
 for(int i = 0; i < parts.Length; i++)
 {
 ret = parts[i].IndexOf(':');
 if (ret >= 0)
 {
 otype = parts[i].Substring(0, ret);
 oval = parts[i].Substring(ret + 1);
 }
 else
 {
 otype = parts[i];
 }
 switch (otype.ToLower())
 {
 case "int":
 pars[i] = int.Parse(oval);
 break;
 case "host":
 pars[i] = Dns.Resolve(oval).AddressList[0];
 break;
 case "null":
 pars[i] = null;
 break;
 case "string":
 pars[i] = oval;
 break;
 case "ip":
 pars[i] = IPAddress.Parse(oval);
 break;
 default:
 pars[i] = null;
 break;
 }
 }
 return (Listener)Activator.CreateInstance(Type.GetType(type), pars);
 }
 catch
 {
 return null;
 }
 }

 private void bExit_Click(object sender, System.EventArgs e)
 {

 if(listener != null)
 listener.Dispose();
 consoleTimer.Enabled = false;

Z. Kwecka, BSc (Hons) Network Computing, 2006 82

 Application.Exit();
 }

 private void bStop_Click(object sender, System.EventArgs e)
 {
 listener.Dispose();
 consoleTimer.Enabled = false;
 lbConsole.Items.Add("Proxy stoped");
 }

 private void consoleTimer_Tick(object sender, System.EventArgs e)
 {
 int a = bufferRead;
 for(int i = a ;i<ConsoleBuffer.buffer.Count;i++)
 {
 lbConsole.Items.Add(ConsoleBuffer.buffer[i]);
 bufferRead++;
 }

 }

 private void bSetFilter_Click(object sender, System.EventArgs e)
 {
 ConsoleBuffer.filter = tbFilter.Text.Trim();
 ConsoleBuffer.buffer.Add("Filter: " + ConsoleBuffer.filter + " - ADDED");
 }

 private void Form1_Load(object sender, System.EventArgs e)
 {
 ConsoleBuffer.accepted_headers.Add("Accept","1");
 ConsoleBuffer.accepted_headers.Add("Accept-Encoding","1");
 ConsoleBuffer.accepted_headers.Add("Accept-Language","1");
 ConsoleBuffer.accepted_headers.Add("Accept-Charset","1");
 ConsoleBuffer.accepted_headers.Add("Host","1");
 ConsoleBuffer.accepted_headers.Add("User-Agent","1");
 ConsoleBuffer.accepted_headers.Add("Keep-Alive","1");
 ConsoleBuffer.accepted_headers.Add("Connection","1");
 ConsoleBuffer.accepted_headers.Add("Proxy-Connection","1");
 ConsoleBuffer.accepted_headers.Add("If-Modified-Since","1");
 ConsoleBuffer.accepted_headers.Add("If-None-Match","1");
 ConsoleBuffer.accepted_headers.Add("x-flash-version","1");
 ConsoleBuffer.accepted_headers.Add("Cache-Control","1");
 ConsoleBuffer.accepted_headers.Add("Unless-Modified-Since","1");
 ConsoleBuffer.accepted_headers.Add("Range","1");
 ConsoleBuffer.accepted_headers.Add("If-Range","1");
 ConsoleBuffer.accepted_headers.Add("Pragma","1");
 ConsoleBuffer.accepted_headers.Add("Content-Length","1");
 ConsoleBuffer.accepted_headers.Add("Content-Type","1");
 ConsoleBuffer.accepted_headers.Add("Cookie","1");
 ConsoleBuffer.accepted_headers.Add("Referer","1");
 IPHostEntry ipHost = Dns.GetHostByName("");
 IPAddress [] ipHostAddress = ipHost.AddressList;

 for (int i = 0; i < ipHostAddress.Length; i++)
 {
 cbListenerAddress.Items.Add(ipHostAddress[i].ToString ());
 }
 cbListenerAddress.Items.Add("127.0.0.1");
 if(cbListenerAddress.Items.Count > -1)
 {
 cbListenerAddress.SelectedIndex = 0;
 }
 }

 private void checkBox2_CheckedChanged(object sender, System.EventArgs e)
 {
 if(checkBox2.Checked == true && !ConsoleBuffer.filter_out.ContainsKey("User-

Agent"))
 {
 ConsoleBuffer.filter_out.Add("User-Agent","1");
 }
 else if(ConsoleBuffer.filter_out.ContainsKey("User-Agent"))
 {
 ConsoleBuffer.filter_out.Remove("User-Agent");
 }
 }

Z. Kwecka, BSc (Hons) Network Computing, 2006 83

 private void checkBox3_CheckedChanged(object sender, System.EventArgs e)
 {
 if(checkBox3.Checked == true && !ConsoleBuffer.filter_out.ContainsKey("Accept"))
 {
 ConsoleBuffer.filter_out.Add("Accept","1");
 }
 else if(ConsoleBuffer.filter_out.ContainsKey("Accept"))
 {
 ConsoleBuffer.filter_out.Remove("Accept");
 }
 }

 private void checkBox1_CheckedChanged(object sender, System.EventArgs e)
 {
 if(checkBox1.Checked == true && !ConsoleBuffer.filter_out.ContainsKey("Host"))
 {
 ConsoleBuffer.filter_out.Add("Host","1");
 }
 else if(ConsoleBuffer.filter_out.ContainsKey("Host"))
 {
 ConsoleBuffer.filter_out.Remove("Host");
 }
 }

 private void checkBox7_CheckedChanged(object sender, System.EventArgs e)
 {
 if(checkBox7.Checked == true && !ConsoleBuffer.filter_out.ContainsKey("All"))
 {
 ConsoleBuffer.filter_out.Add("All","1");
 }
 else if(ConsoleBuffer.filter_out.ContainsKey("All"))
 {
 ConsoleBuffer.filter_out.Remove("All");
 }
 }

 private void checkBox4_CheckedChanged(object sender, System.EventArgs e)
 {
 if(checkBox4.Checked == true && !ConsoleBuffer.filter_out.ContainsKey("Accept-

Language"))
 {
 ConsoleBuffer.filter_out.Add("Accept-Language","1");
 }
 else if(ConsoleBuffer.filter_out.ContainsKey("Accept-Language"))
 {
 ConsoleBuffer.filter_out.Remove("Accept-Language");
 }
 }

 private void checkBox5_CheckedChanged(object sender, System.EventArgs e)
 {
 if(checkBox5.Checked == true && !ConsoleBuffer.filter_out.ContainsKey("Accept-

Encoding"))
 {
 ConsoleBuffer.filter_out.Add("Accept-Encoding","1");
 }
 else if(ConsoleBuffer.filter_out.ContainsKey("Accept-Encoding"))
 {
 ConsoleBuffer.filter_out.Remove("Accept-Encoding");
 }
 }

 private void checkBox6_CheckedChanged(object sender, System.EventArgs e)
 {
 if(checkBox6.Checked == true &&

!ConsoleBuffer.filter_out.ContainsKey("Connection"))
 {
 ConsoleBuffer.filter_out.Add("Connection","1");
 }
 else if(ConsoleBuffer.filter_out.ContainsKey("Connection"))
 {
 ConsoleBuffer.filter_out.Remove("Connection");
 }
 }

 private void button1_Click(object sender, System.EventArgs e)

Z. Kwecka, BSc (Hons) Network Computing, 2006 84

 {
 ConsoleBuffer.addedHeader = tbHeader.Text.Trim();
 ConsoleBuffer.buffer.Add("Send: " + ConsoleBuffer.addedHeader+ " - ADDED");
 }

 }

 /// <summary>
 /// An interfac between the GUI and asynchronous operations
 /// </summary>
 public class ConsoleBuffer
 {
 public static ArrayList buffer = new ArrayList();
 public static NameValueCollection agents = new NameValueCollection();
 public static string filter = "";
 public static StringDictionary filter_out = new StringDictionary();
 public static string addedHeader = "";
 public static StringDictionary accepted_headers = new StringDictionary();

 }
}

HttpClient class is specified within HttpClient.cs. This class was originally supplied
by the Mentalis.org Proxy implementation, thus the methods, which were not altered
for the purpose of IFA prototype implementation are omitted from the following
listing of HTTClient.cs file:

/*
 * Autor: Zbigniew Kwecka
 * Matric: 03008457
 * Contact: z.kwecka@gmial.com
 * Napier University, Edinburgh
*/

/*
 ORIGINAL ORIGINAL ORIGINAL
 Copyright © 2002, The KPD-Team
 All rights reserved.
 http://www.mentalis.org/

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions
 are met:

 - Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.

 - Neither the name of the KPD-Team, nor the names of its contributors
 may be used to endorse or promote products derived from this
 software without specific prior written permission.

 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
 THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
 INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 OF THE POSSIBILITY OF SUCH DAMAGE.
*/

using System;
using System.Net;
using System.Text;
using System.Net.Sockets;
using System.Collections;
using System.Collections.Specialized;
using System.Threading;
using System.IO;

Z. Kwecka, BSc (Hons) Network Computing, 2006 85

using FilterProxy_GUI;

namespace FilterProxy_GUI.Http {

///<summary>Relays HTTP data between a remote host and a local client.</summary>
///<remarks>This class supports both HTTP and HTTPS.</remarks>
 public sealed class HttpClient : Client
 {
 ///<summary>Initializes a new instance of the HttpClient class.</summary>
 ///<param name="ClientSocket">The <see cref ="Socket">Socket</see> connection

between this proxy server and the local client.</param>
 ///<param name="Destroyer">The callback method to be called when this Client object

disconnects from the local client and the remote server.</param>
 public HttpClient(Socket ClientSocket, DestroyDelegate Destroyer) :

base(ClientSocket, Destroyer) {}

 ///<summary>Gets or sets the HTTP version the client uses.</summary>
 ///<value>A string representing the requested HTTP version.</value>
 private string HttpVersion
 {
 get
 {
 return m_HttpVersion;
 }
 set
 {
 m_HttpVersion = value;
 }
 }

 ///<summary>Starts receiving data from the client connection.</summary>
 public override void StartHandshake()
 {
 try
 {
 ClientSocket.BeginReceive(Buffer, 0, Buffer.Length, SocketFlags.None, new

AsyncCallback(this.OnReceiveQuery), ClientSocket);
 }
 catch
 {
 Dispose();
 }
 }
 ///<summary>Checks whether a specified string is a valid HTTP query

string.</summary>
 ///<param name="Query">The query to check.</param>
 ///<returns>True if the specified string is a valid HTTP query, false

otherwise.</returns>
 private bool IsValidQuery(string Query)
 {
 int index = Query.IndexOf("\r\n\r\n");
 if (index == -1)
 return false;
 HeaderFields = ParseQuery(Query);
 if (HttpRequestType.ToUpper().Equals("POST"))
 {
 try
 {
 int length = int.Parse((string)HeaderFields["Content-Length"]);
 return Query.Length >= index + 6 + length;
 }
 catch
 {
 SendBadRequest();
 return true;
 }
 }
 else
 {
 return true;
 }
 }

 ///<summary>Processes a specified query and connects to the requested HTTP web

server.</summary>
 ///<param name="Query">A string containing the query to process.</param>

Z. Kwecka, BSc (Hons) Network Computing, 2006 86

 ///<remarks>If there's an error while processing the HTTP request or when connecting
to the remote server, the Proxy sends a "400 - Bad Request" error to the
client.</remarks>

 private void ProcessQuery(string Query)
 {
 HeaderFields = ParseQuery(Query);
 HeaderFieldsSignature = ParseQuerySignature(Query);
 if (HeaderFields == null || !HeaderFields.ContainsKey("Host"))
 {
 SendBadRequest();
 return;
 }

 //implement filter
 string filterName;
 string filterValue;
 int Ret;
 if(ConsoleBuffer.filter != "")
 {
 Ret = ConsoleBuffer.filter.IndexOf(":");
 if (Ret > 0 && Ret < ConsoleBuffer.filter.Length - 1)
 {
 try
 {
 filterName = ConsoleBuffer.filter.Substring(0, Ret).ToLower();
 filterValue = ConsoleBuffer.filter.Substring(Ret + 1).ToLower().Trim();
 if((filterName == "requestpath" &&

RequestedPath.ToLower().IndexOf(filterValue)>=0) ||
 (filterName == "requesttype" &&

HttpRequestType.ToLower().IndexOf(filterValue)>=0) ||
 (filterName == "requestversion" &&

HttpVersion.ToLower().IndexOf(filterValue)>=0))
 {
 ConsoleBuffer.buffer.Add(ConsoleBuffer.filter + " DETECTED");
 SendBlockedRequest();
 return;
 }
 else if(HeaderFields.ContainsKey(filterName) &&

HeaderFields[filterName].ToLower().IndexOf(filterValue)>=0)
 {

 ConsoleBuffer.buffer.Add(ConsoleBuffer.filter + " DETECTED");
 SendBlockedRequest();
 return;
 }
 }
 catch {}
 }

 }
 //implement signature checking

 string signature = "";
 if(true)
 {
 Ret = ConsoleBuffer.filter.IndexOf(":");
 if (true)
 {
 try
 {
 //Opera
 if(HeaderFieldsSignature.ContainsKey("User-Agent") &&

Convert.ToInt16(HeaderFieldsSignature["User-Agent"])==0)
 {

 if((HeaderFields.ContainsKey("Connection") &&

HeaderFields["Connection"].IndexOf("Keep-Alive")>=0)
 ||(HeaderFields.ContainsKey("Proxy-Connection") && HeaderFields["Proxy-

Connection"].IndexOf("Keep-Alive")>=0)
 ||HttpVersion == "HTTP/1.0")
 {
 signature = "opera";
 }

 }

Z. Kwecka, BSc (Hons) Network Computing, 2006 87

 //Firefox
 else if(HeaderFieldsSignature.ContainsKey("Host") &&

Convert.ToInt16(HeaderFieldsSignature["Host"])==0)
 {

 if((HeaderFields.ContainsKey("Connection") &&

HeaderFields["Connection"].IndexOf("keep-alive")>=0)
 ||(HeaderFields.ContainsKey("Proxy-Connection") && HeaderFields["Proxy-

Connection"].IndexOf("keep-alive")>=0))
 {
 signature = "firefox";
 }

 }
 //Explorer
 else if(HeaderFieldsSignature.ContainsKey("Accept") &&

Convert.ToInt16(HeaderFieldsSignature["Accept"])==0)
 {
 if((HeaderFields.ContainsKey("Connection") &&

HeaderFields["Connection"].IndexOf("Keep-Alive")>=0)
 ||(HeaderFields.ContainsKey("Proxy-Connection") && HeaderFields["Proxy-

Connection"].IndexOf("Keep-Alive")>=0))
 {
 signature = "explorer";
 }

 }
 if(HeaderFields.ContainsKey("User-Agent"))
 {
 if(HeaderFields["User-Agent"].IndexOf("MSIE")>=0 && HeaderFields["User-

Agent"].IndexOf("Opera")<0)
 {
 if(signature=="explorer")
 ConsoleBuffer.buffer.Add("Explorer Signature Match");
 else if(signature != "")
 {
 ConsoleBuffer.buffer.Add("Signature:"+signature+";User-Agent:

Explorer;MISSMATCH");
 ConsoleBuffer.buffer.Add("Source:" + ClientSocket.RemoteEndPoint.ToString());
 }
 else
 {
 ConsoleBuffer.buffer.Add("Signature:unrecognized;User-Agent:

Explorer;MISSMATCH");
 ConsoleBuffer.buffer.Add("Source:" + ClientSocket.RemoteEndPoint.ToString());
 }
 }
 else if(HeaderFields["User-Agent"].IndexOf("Firefox")>=0)
 {
 if(signature=="firefox")
 ConsoleBuffer.buffer.Add("Firefox Signature Match");
 else if(signature != "")
 {
 ConsoleBuffer.buffer.Add("Signature:"+signature+";User-Agent:

Firefox;MISSMATCH");
 ConsoleBuffer.buffer.Add("Source:" + ClientSocket.RemoteEndPoint.ToString());
 }
 else
 {
 ConsoleBuffer.buffer.Add("Signature:unrecognized;User-Agent:

Firefox;MISSMATCH");
 ConsoleBuffer.buffer.Add("Source:" + ClientSocket.RemoteEndPoint.ToString());
 }
 }
 else if(HeaderFields["User-Agent"].IndexOf("Netscape")>=0)
 {
 if(signature=="firefox")
 ConsoleBuffer.buffer.Add("Netscape Signature Match");
 else if(signature != "")
 {
 ConsoleBuffer.buffer.Add("Signature:"+signature+";User-Agent:

Netscape;MISSMATCH");
 ConsoleBuffer.buffer.Add("Source:" + ClientSocket.RemoteEndPoint.ToString());
 }
 else
 {

Z. Kwecka, BSc (Hons) Network Computing, 2006 88

 ConsoleBuffer.buffer.Add("Signature:unrecognized;User-Agent:
Netscape;MISSMATCH");

 ConsoleBuffer.buffer.Add("Source:" + ClientSocket.RemoteEndPoint.ToString());
 }
 }
 else if(HeaderFields["User-Agent"].IndexOf("Opera")>=0)
 {
 if(signature=="opera")
 ConsoleBuffer.buffer.Add("Opera Signature Match");
 else if(signature != "")
 {
 ConsoleBuffer.buffer.Add("Signature:"+signature+";User-Agent:

Opera;MISSMATCH");
 ConsoleBuffer.buffer.Add("Source:" + ClientSocket.RemoteEndPoint.ToString());
 }
 else
 {
 ConsoleBuffer.buffer.Add("Signature:unrecognized;User-Agent:

Opera;MISSMATCH");
 ConsoleBuffer.buffer.Add("Source:" + ClientSocket.RemoteEndPoint.ToString());
 }
 }
 else
 {
 ConsoleBuffer.buffer.Add("Unrecognized User-Agent");
 ConsoleBuffer.buffer.Add("Source:" + ClientSocket.RemoteEndPoint.ToString());
 }

 }
 else if(signature != "")
 {
 ConsoleBuffer.buffer.Add("Signature:"+signature+";User-Agent:not

specified;MISSMATCH");
 ConsoleBuffer.buffer.Add("Source:" + ClientSocket.RemoteEndPoint.ToString());
 }
 else
 {
 ConsoleBuffer.buffer.Add("Unrecognised signature, User-Agent not

provided;MISSMATCH");
 ConsoleBuffer.buffer.Add("Source:" + ClientSocket.RemoteEndPoint.ToString());
 }

 }
 catch {}
 }

 }
 int Port;
 string Host;
 Ret = -1;
 if (HttpRequestType.ToUpper().Equals("CONNECT"))
 { //HTTPS
 Ret = RequestedPath.IndexOf(":");
 if (Ret >= 0)
 {
 Host = RequestedPath.Substring(0, Ret);
 if (RequestedPath.Length > Ret + 1)
 Port = int.Parse(RequestedPath.Substring(Ret + 1));
 else
 Port = 443;
 }
 else
 {
 Host = RequestedPath;
 Port = 443;
 }
 }
 else
 { //Normal HTTP
 Ret = ((string)HeaderFields["Host"]).IndexOf(":");
 if (Ret > 0)
 {
 Host = ((string)HeaderFields["Host"]).Substring(0, Ret);
 Port = int.Parse(((string)HeaderFields["Host"]).Substring(Ret + 1));
 }
 else

Z. Kwecka, BSc (Hons) Network Computing, 2006 89

 {
 Host = (string)HeaderFields["Host"];
 Port = 80;
 }
 if (HttpRequestType.ToUpper().Equals("POST"))
 {
 int index = Query.IndexOf("\r\n\r\n");
 m_HttpPost = Query.Substring(index + 4);
 }
 }
 try
 {
 IPEndPoint DestinationEndPoint = new IPEndPoint(Dns.Resolve(Host).AddressList[0],

Port);
 DestinationSocket = new Socket(DestinationEndPoint.AddressFamily,

SocketType.Stream, ProtocolType.Tcp);
 if (HeaderFields.ContainsKey("Proxy-Connection") && HeaderFields["Proxy-

Connection"].ToLower().Equals("keep-alive"))
 DestinationSocket.SetSocketOption(SocketOptionLevel.Socket,

SocketOptionName.KeepAlive, 1);
 DestinationSocket.BeginConnect(DestinationEndPoint, new

AsyncCallback(this.OnConnected), DestinationSocket);
 }
 catch
 {
 SendBadRequest();
 return;
 }
 }
 ///<summary>Pars(es a specified HTTP query into its header fields.</summary>
 ///<param name="Query">The HTTP query string to parse.</param>
 ///<returns>A StringDictionary object containing all the header fields with their

data.</returns>
 ///<exception cref="ArgumentNullException">The specified query is null.</exception>
 private StringDictionary ParseQuery(string Query)
 {
 StringDictionary retdict = new StringDictionary();
 string [] Lines = Query.Replace("\r\n", "\n").Split('\n');
 int Cnt, Ret;
 //Extract requested URL
 if (Lines.Length > 0)
 {
 //Parse the Http Request Type
 Ret = Lines[0].IndexOf(' ');
 if (Ret > 0)
 {
 HttpRequestType = Lines[0].Substring(0, Ret);
 Lines[0] = Lines[0].Substring(Ret).Trim();
 }
 //Parse the Http Version and the Requested Path
 Ret = Lines[0].LastIndexOf(' ');
 if (Ret > 0)
 {
 HttpVersion = Lines[0].Substring(Ret).Trim();
 RequestedPath = Lines[0].Substring(0, Ret);
 }
 else
 {
 RequestedPath = Lines[0];
 }
 //Remove http:// if present
 if (RequestedPath.Length >= 7 && RequestedPath.Substring(0,

7).ToLower().Equals("http://"))
 {
 Ret = RequestedPath.IndexOf('/', 7);
 if (Ret == -1)
 RequestedPath = "/";
 else
 RequestedPath = RequestedPath.Substring(Ret);
 }
 }
 //parsing of headers follows
 for(Cnt = 1; Cnt < Lines.Length; Cnt++)
 {
 Ret = Lines[Cnt].IndexOf(":");
 if (Ret > 0 && Ret < Lines[Cnt].Length - 1)
 {

Z. Kwecka, BSc (Hons) Network Computing, 2006 90

 try
 {

 retdict.Add(Lines[Cnt].Substring(0, Ret), Lines[Cnt].Substring(Ret + 1).Trim());

 }
 catch {}
 }
 }
 return retdict;
 }

 ///<summary>Parses a specified HTTP query into its header fields.</summary>
 ///<param name="Query">The HTTP query string to parse.</param>
 ///<returns>A StringDictionary object containing all the header fields with their

data.</returns>
 ///<exception cref="ArgumentNullException">The specified query is null.</exception>
 private StringDictionary ParseQuerySignature(string Query)
 {
 int order = 0;
 StringDictionary retdict = new StringDictionary();
 string [] Lines = Query.Replace("\r\n", "\n").Split('\n');
 int Cnt, Ret;
 //Extract requested URL
 string comparer;
 //parsing of headers follows
 for(Cnt = 1; Cnt < Lines.Length; Cnt++)
 {
 Ret = Lines[Cnt].IndexOf(":");
 if (Ret > 0 && Ret < Lines[Cnt].Length - 1)
 {
 try
 {
 retdict.Add(Lines[Cnt].Substring(0, Ret), order.ToString());
 //comparer =

System.Globalization.CultureInfo.CurrentCulture.TextInfo.ToTitleCase(Lines[Cn
t].Substring(0, Ret));

 comparer = Lines[Cnt].Substring(0, Ret).ToLower();
 comparer =

System.Globalization.CultureInfo.CurrentCulture.TextInfo.ToTitleCase(comparer
);

 if(Lines[Cnt].IndexOf(comparer)<0)
 {

 ConsoleBuffer.buffer.Add("Invalid Header Name Casing. Source:" +

ClientSocket.RemoteEndPoint.ToString());

 }

 if(Lines[Cnt].Substring(Ret + 1)
 != " " + Lines[Cnt].Substring(Ret + 1).Trim())
 {

 ConsoleBuffer.buffer.Add("Invalid Linear Spacing. Source:" +

ClientSocket.RemoteEndPoint.ToString());

 }

 if(!ConsoleBuffer.accepted_headers.ContainsKey(Lines[Cnt].Substring(0, Ret)))
 {

 ConsoleBuffer.buffer.Add("Unrecognised Header Detected:

"+Lines[Cnt].Substring(0, Ret));
 }
 order++;
 }
 catch {}
 }
 }

 return retdict;

Z. Kwecka, BSc (Hons) Network Computing, 2006 91

 }
 ///<summary>Sends a "400 - Bad Request" error to the client.</summary>
 private void SendBadRequest()
 {
 string brs = "HTTP/1.1 400 Bad Request\r\nConnection: close\r\nContent-Type:

text/html\r\n\r\n<html><head><title>400 Bad Request</title></head><body><div
align=\"center\"><table border=\"0\" cellspacing=\"3\" cellpadding=\"3\"
bgcolor=\"#C0C0C0\"><tr><td><table border=\"0\" width=\"500\"
cellspacing=\"3\" cellpadding=\"3\"><tr><td bgcolor=\"#B2B2B2\"><p
align=\"center\">400 Bad
Request</p></td></tr><tr><td bgcolor=\"#D1D1D1\"><font
size=\"2\" face=\"Verdana\"> The proxy server could not understand the HTTP
request!

 Please contact your network administrator about this
problem.</td></tr></table></center></td></tr></table></div></body></ht
ml>";

 try
 {
 ClientSocket.BeginSend(Encoding.ASCII.GetBytes(brs), 0, brs.Length,

SocketFlags.None, new AsyncCallback(this.OnErrorSent), ClientSocket);
 }
 catch
 {
 Dispose();
 }
 }

 ///<summary>Sends a "400 - Filtered result" error to the client.</summary>
 private void SendBlockedRequest()
 {
 string brs = "HTTP/1.1 400 Bad Request\r\nConnection: close\r\nContent-Type:

text/html\r\n\r\n<html><head><title>Your request has been
blocked.</title></head><body><div align=\"center\"><table border=\"0\"
cellspacing=\"3\" cellpadding=\"3\" bgcolor=\"#C0C0C0\"><tr><td><table
border=\"0\" width=\"500\" cellspacing=\"3\" cellpadding=\"3\"><tr><td
bgcolor=\"#B2B2B2\"><p align=\"center\"><font size=\"2\"
face=\"Verdana\">400 Bad Request</p></td></tr><tr><td
bgcolor=\"#D1D1D1\">Your request was
blocked and logged by the proxy
server.

</td></tr></table></center></td></tr></table></div></bo
dy></html>";

 try
 {
 ClientSocket.BeginSend(Encoding.ASCII.GetBytes(brs), 0, brs.Length,

SocketFlags.None, new AsyncCallback(this.OnErrorSent), ClientSocket);
 }
 catch
 {
 Dispose();
 }
 }

///<summary>Rebuilds the HTTP query, starting from the HttpRequestType, RequestedPath,

HttpVersion and HeaderFields properties.</summary>
 ///<returns>A string representing the rebuilt HTTP query string.</returns>
 private string RebuildQuery()
 {
 string ret = HttpRequestType + " " + RequestedPath + " " + HttpVersion + "\r\n";
 string [] keys = new string [HeaderFieldsSignature.Count];

 if (HeaderFields != null)
 {
 foreach (string sc in HeaderFields.Keys)
 {
 if (sc.Length < 6 || !sc.Substring(0, 6).Equals("proxy-"))
 {
 if(ConsoleBuffer.filter_out.ContainsKey("All") && sc.ToLower().IndexOf("host") <

0)
 {
 }
 else if(ConsoleBuffer.filter_out.ContainsKey(sc)){}
 else if(!ConsoleBuffer.accepted_headers.ContainsKey(sc)){}
 else
 {
 keys[Convert.ToInt16(HeaderFieldsSignature[sc])]
 += System.Globalization.CultureInfo.CurrentCulture.TextInfo.ToTitleCase(sc) +

": " + (string)HeaderFields[sc] + "\r\n";
 }

Z. Kwecka, BSc (Hons) Network Computing, 2006 92

 }
 }
 //ret += "Covert-Channel: Covert Data going out\r\n";
 foreach(string str in keys)
 {
 ret += str;
 }
 ret += "\r\n";
 if (m_HttpPost != null)
 ret += m_HttpPost;
 }

 return ret;
 }
 ///<summary>Returns text information about this HttpClient object.</summary>
 ///<returns>A string representing this HttpClient object.</returns>
 public override string ToString()
 {
 return ToString(false);
 }
 ///<summary>Returns text information about this HttpClient object.</summary>
 ///<returns>A string representing this HttpClient object.</returns>
 ///<param name="WithUrl">Specifies whether or not to include information about the

requested URL.</param>
 public string ToString(bool WithUrl)
 {
 string Ret;
 try
 {
 if (DestinationSocket == null || DestinationSocket.RemoteEndPoint == null)
 Ret = "Incoming HTTP connection from " +

((IPEndPoint)ClientSocket.RemoteEndPoint).Address.ToString();
 else
 Ret = "HTTP connection from " +

((IPEndPoint)ClientSocket.RemoteEndPoint).Address.ToString() + " to " +
((IPEndPoint)DestinationSocket.RemoteEndPoint).Address.ToString() + " on port
" + ((IPEndPoint)DestinationSocket.RemoteEndPoint).Port.ToString();

 if (HeaderFields != null && HeaderFields.ContainsKey("Host") && RequestedPath !=
null)

 Ret += "\r\n" + " requested URL: http://" + HeaderFields["Host"] + RequestedPath;
 }
 catch
 {
 Ret = "HTTP Connection";
 }
 return Ret;
 }
 // private variables
 /// <summary>Holds the value of the HttpQuery property.</summary>
 private string m_HttpQuery = "";
 /// <summary>Holds the value of the RequestedPath property.</summary>
 private string m_RequestedPath = null;
 /// <summary>Holds the value of the HeaderFields property.</summary>
 private StringDictionary m_HeaderFields = null;
 /// <summary>Holds the value of the HeaderFieldsSignature property.</summary>
 private StringDictionary m_HeaderFieldsSignature = null;
 /// <summary>Holds the value of the HttpVersion property.</summary>
 private string m_HttpVersion = "";
 /// <summary>Holds the value of the HttpRequestType property.</summary>
 private string m_HttpRequestType = "";
 /// <summary>Holds the POST data</summary>
 private string m_HttpPost = null;
 }

}

Z. Kwecka, BSc (Hons) Network Computing, 2006 93

Appendix 5 - HTTP Analyser Foundation - Code Listing

HTTP Analyser Foundation uses SharpPcap wrapper to control adapter level packet
capture operations of WinPcap.dll. The application is made up of two different class
files, Form1.cs and ConColl.cs, both written for the purpose of this project.

Form1.cs:
/*
 * Autor: Zbigniew Kwecka
 * Matric: 03008457
 * Contact: z.kwecka@gmial.com
 * Napier University, Edinburgh
*/

using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;
using System.Text.RegularExpressions;
using Tamir.IPLib;
using Tamir.IPLib.Packets;
using System.Text;

namespace HTTPAnalyser
{
 /// <summary>
 /// Form1 is tha main window of the HTTPAnalyser.
 /// </summary>
 public class HTTPAnalyser_Form1 : System.Windows.Forms.Form
 {
 private System.Windows.Forms.ListView lvPackets;
 private System.Windows.Forms.MainMenu mainMenu1;
 private System.Windows.Forms.ComboBox cbAdapters;
 private System.Windows.Forms.ListBox lbHeaders;
 private System.Windows.Forms.MenuItem mFile;
 private System.Windows.Forms.MenuItem mCapture;
 private System.Windows.Forms.MenuItem mcStart;
 private System.Windows.Forms.MenuItem mcStop;
 private System.Windows.Forms.MenuItem menuItem1;
 private System.Windows.Forms.MenuItem menuItem3;
 private ArrayList headerArray = new ArrayList(); //stores PacketCollections
 private ArrayList headerSyncArray; //synchronized wraapper
 private ArrayList sigArray = new ArrayList(); //stores Signatures
 private ArrayList sigSyncArray; //synchronized wraapper
 private System.Windows.Forms.ListView lvCon;
 private System.Windows.Forms.Label label1;
 private PcapDevice device;
 private PcapDeviceList getNetConnections;
 private System.Windows.Forms.CheckBox cbChip;
 private System.Windows.Forms.GroupBox gbDirection;
 private System.Windows.Forms.RadioButton rbToBoth;
 private System.Windows.Forms.RadioButton rbToSrv;
 private System.Windows.Forms.RadioButton rbToCnt;
 private System.Windows.Forms.GroupBox gbView;
 private System.Windows.Forms.RadioButton rbViewFull;
 private System.Windows.Forms.RadioButton rbViewPacket;
 private System.Windows.Forms.CheckBox chHeaders;
 private System.Windows.Forms.GroupBox gbPackets;
 private System.Windows.Forms.MenuItem mhAbout;
 private System.Windows.Forms.MenuItem mhDoc;
 private System.Windows.Forms.CheckBox cbDump;
 private string dumpFile = "";
 private System.Windows.Forms.OpenFileDialog ofdDump;
 private System.Windows.Forms.MenuItem mfOpen;
 private System.Windows.Forms.GroupBox gbAdapter;
 private System.Windows.Forms.MenuItem menuItem2;

 /// <summary>
 /// Required designer variable.
 /// </summary>

Z. Kwecka, BSc (Hons) Network Computing, 2006 94

 private System.ComponentModel.Container components = null;

 /// <summary>
 /// Default constructor
 /// </summary>
 public HTTPAnalyser_Form1()
 {
 //
 // Required for Windows Form Designer support
 //
 InitializeComponent();
 }

 /// <summary>
 /// Clean up any resources being used.
 /// </summary>
 protected override void Dispose(bool disposing)
 {
 if(disposing)
 {

 if (components != null)
 {
 components.Dispose();
 }
 }
 base.Dispose(disposing);
 }

 /// <summary>
 /// The main entry point for the application.
 /// </summary>
 [STAThread]
 static void Main()
 {
 Application.Run(new HTTPAnalyser_Form1());
 }

 /// <summary>
 /// Form_Load - Sets up ListViews and checks for working network adapters
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>
 private void HTTPAnalyser_Form1_Load(object sender, System.EventArgs e)
 {
 headerSyncArray = ArrayList.Synchronized(headerArray);
 sigSyncArray = ArrayList.Synchronized(sigArray);

 //lvCon columns
 if(lvCon.Width/5 > 20)
 lvCon.Columns.Add("Connection", lvCon.Width /5-20 ,

HorizontalAlignment.Left);
 else
 lvCon.Columns.Add("Connection", lvCon.Width /5 , HorizontalAlignment.Left);
 lvCon.Columns.Add("ClientIP", lvCon.Width /5 , HorizontalAlignment.Left);
 lvCon.Columns.Add("ServerIP", lvCon.Width /5 , HorizontalAlignment.Left);
 lvCon.Columns.Add("ClientPort", lvCon.Width /5 , HorizontalAlignment.Left);
 lvCon.Columns.Add("ServerPort", lvCon.Width /5 , HorizontalAlignment.Left);

 //lvPackets columns
 lvPackets.Columns.Add("No", 30 , HorizontalAlignment.Left);
 if(lvPackets.Width/6 > 53)
 lvPackets.Columns.Add("Port", lvPackets.Width /6 - 53 , HorizontalAlignment.Left);
 else
 lvPackets.Columns.Add("Port", lvPackets.Width /6 , HorizontalAlignment.Left);
 lvPackets.Columns.Add("Flags", lvPackets.Width /6 , HorizontalAlignment.Left);
 lvPackets.Columns.Add("Size (Data Size)", lvPackets.Width /6 ,

HorizontalAlignment.Left);
 lvPackets.Columns.Add("Date", lvPackets.Width /6 , HorizontalAlignment.Left);
 lvPackets.Columns.Add("SEQ", lvPackets.Width /6 , HorizontalAlignment.Left);
 lvPackets.Columns.Add("ACK", lvPackets.Width /6 , HorizontalAlignment.Left);
 lvPackets.View = View.Details;

 //set menu items
 mcStop.Enabled = false;
 mcStart.Enabled = false;

Z. Kwecka, BSc (Hons) Network Computing, 2006 95

 //Adaptersc collection
 getNetConnections = SharpPcap.GetAllDevices();
 for (int i = 0; i < getNetConnections.Count ; i++)
 {
 cbAdapters.Items.Add("(" + (i) + ") " + getNetConnections[i].PcapDescription);
 }
 cbAdapters.Invalidate();

 }

 /// <summary>
 /// Capture Menu Start Click - starts reading from the selected adapter
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>
 private void mcStart_Click(object sender, System.EventArgs e)
 {
 lvPackets.Items.Clear();
 lbHeaders.Items.Clear();
 //conArray.Clear();
 //sigArray.Clear();
 //vnCounter = 0;
 //axPacketXCtrl1.Start();
 if(cbChip.Checked)
 {
 device.PcapOpen(false,1000);
 }
 else
 {
 device.PcapOpen(true,1000);
 }
 device.PcapSetFilter("port 80");
 device.PcapStartCapture();
 mcStart.Enabled = false;
 mcStop.Enabled = true;
 gbAdapter.Enabled = false;
 if(cbDump.Checked && dumpFile != "")
 {
 device.PcapDumpOpen(dumpFile);
 }
 else if(cbDump.Checked)
 {
 MessageBox.Show("Could not open Dump File");
 }
 }

 /// <summary>
 /// Capture Menu Stop Click - stops reading
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>
 private void mcStop_Click(object sender, System.EventArgs e)
 {

 device.PcapStopCapture();
 device.PcapClose();
 cbAdapters.SelectedIndex = -1;
 mcStart.Enabled = false;
 mcStop.Enabled = false;
 gbAdapter.Enabled = true;
 }

 /// <summary>
 /// OnPacket event handler - builds collection of "conversations" and displays it in

lvCon
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="aPacket"></param>
 private void device_PcapOnPacketArrival(object sender, Packet aPacket)
 {

 if(aPacket is TCPPacket)
 {

 TCPPacket tcp = (TCPPacket)aPacket;
 if(tcp.DestinationPort == 80 || tcp.SourcePort == 80)//herefor the offline dump

handling

Z. Kwecka, BSc (Hons) Network Computing, 2006 96

 {
 int i = 0;
 int key = -1;
 string cntIP;
 string srvIP;
 int cntPort;
 int srvPort;

 if(tcp.DestinationPort == 80)
 {
 cntIP = tcp.SourceAddress;
 srvIP = tcp.DestinationAddress;
 cntPort = tcp.SourcePort;
 srvPort = tcp.DestinationPort;
 }
 else
 {
 cntIP = tcp.DestinationAddress;
 srvIP = tcp.SourceAddress;
 cntPort = tcp.DestinationPort;
 srvPort = tcp.SourcePort;
 }

 lock(sigSyncArray.SyncRoot)
 {
 System.Collections.IEnumerator myEnumerator = sigSyncArray.GetEnumerator();
 while (myEnumerator.MoveNext())
 {
 ConColl connection = (ConColl)myEnumerator.Current;
 if(connection.CheckSignature(cntIP,srvIP,cntPort,srvPort))
 {
 connection.Add(aPacket);
 key = i;
 break;
 }
 i++;
 }//end while
 }//end lock

 if (key == (-1))
 {
 ConColl connection = new ConColl(cntIP,srvIP,cntPort,srvPort);
 connection.Add(aPacket);
 sigSyncArray.Add(connection);
 ListViewItem aItem = new ListViewItem();
 key = sigSyncArray.Count-1;
 aItem.SubItems[0].Text = System.Convert.ToString(key.ToString());
 aItem.SubItems.Add(System.Convert.ToString(cntIP));
 aItem.SubItems.Add(System.Convert.ToString(srvIP));
 aItem.SubItems.Add(System.Convert.ToString(cntPort));
 aItem.SubItems.Add(System.Convert.ToString(srvPort));
 lvCon.Items.Add(aItem);
 }//end if connection array does not exist

 if(device.PcapDumpOpened)
 {
 device.PcapDump(aPacket);
 }
 }//end if source or destination port 80
 }//end of is TCP
 }

 /// <summary>
 /// lvPackets Selection - displays packet HTTP level data in lbHeaders
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>
 private void lvPackets_SelectedIndexChanged(object sender, System.EventArgs e)
 {
 if(lvPackets.SelectedItems.Count > 0 && lvPackets.SelectedItems.Count > 0)
 {
 if(rbViewPacket.Checked == true)
 {
 ConColl connection = (ConColl) sigSyncArray[lvCon.SelectedIndices[0]];
 TCPPacket oPacket = (TCPPacket)

connection.GetPacket(Convert.ToInt16(lvPackets.Items[lvPackets.SelectedIndice
s[0]].Text));

Z. Kwecka, BSc (Hons) Network Computing, 2006 97

 lbHeaders.Items.Clear();

 string headers = "";
 int tcpStart = 14 + 4*(Convert.ToInt16(oPacket.Bytes[14])& 0x0F);//ipstart +

header lenght
 int tcpLenght = (Convert.ToInt16(oPacket.Bytes[tcpStart+12])& 0xF0)/4;
 int ipTotal =

(Convert.ToInt16(oPacket.Bytes[16]))*256+(Convert.ToInt16(oPacket.Bytes[17]))
;

 if(tcpStart+tcpLenght<oPacket.Bytes.Length)
 {

 for(int i=tcpStart+tcpLenght;i<(14+ipTotal); i++)
 {
 if((Convert.ToInt16(oPacket.Bytes[i])>31 &&

Convert.ToInt16(oPacket.Bytes[i])<127)
 || Convert.ToInt16(oPacket.Bytes[i])==13 ||

Convert.ToInt16(oPacket.Bytes[i])==10)
 {
 headers = headers + (char)(Convert.ToInt16(oPacket.Bytes[i]));
 }
 else
 {
 headers = headers + (oPacket.Bytes[i]).ToString() + " ";
 }

 }
 Regex r = new Regex("\r\n");
 //string[] header_array = ;

 //lbHeaders.Items.Add(tcpLenght);
 //lbHeaders.Items.Add(Convert.ToInt16(oPacket.DataArray.GetValue(tcpStart+14)));
 foreach(string singleHeader in r.Split(headers))
 {
 if(singleHeader != "")//finds empty line - the start of the content
 {
 lbHeaders.Items.Add(singleHeader);
 }
 else
 {
 lbHeaders.Items.Add("<empty line>");
 }
 }
 }
 } //end if rbViewPacket == true
 } //end if selected == true
 }

 /// <summary>
 /// Application closing event handler - ensures reading from the adapter is

stoppedprior closure
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>
 private void HTTPAnalyser_Form1_Closing(object sender,

System.ComponentModel.CancelEventArgs e)
 {
 if(mcStop.Enabled == true)
 {
 device.PcapStopCapture();
 device.PcapClose();
 }
 }

 /// <summary>
 /// Shows About messagebox
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>
 private void mhAbout_Click(object sender, System.EventArgs e)
 {
 MessageBox.Show("Author: Zbigniew Kwecka\nSupervisor: Dr William Buchanan");
 }

 /// <summary>
 /// cbAdapters selected handler - Changes active adapter

Z. Kwecka, BSc (Hons) Network Computing, 2006 98

 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>
 private void cbAdapters_SelectedIndexChanged(object sender, System.EventArgs e)
 {
 if(mcStop.Enabled == true)
 {
 //axPacketXCtrl1.Stop();
 device.PcapStopCapture();
 device.PcapClose();

 mcStop.Enabled = false;
 }
 if(cbAdapters.SelectedIndex >-1)
 {
 if(getNetConnections[cbAdapters.SelectedIndex] is NetworkDevice)
 {
 mcStart.Enabled = true;
 NetworkDevice netConn =

(NetworkDevice)getNetConnections[cbAdapters.SelectedIndex];
 device = netConn;
 device.PcapOnPacketArrival +=
 new SharpPcap.PacketArrivalEvent(device_PcapOnPacketArrival);
 }
 else
 {
 MessageBox.Show("Selected adapter \nis not suitable \nfor packet sniffing");
 cbAdapters.SelectedIndex = -1;
 }
 }
 }

 /// <summary>
 /// Menu File Exit - Terminates the application
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>
 private void menuItem3_Click(object sender, System.EventArgs e)
 {
 if(mcStop.Enabled == true)
 {
 //axPacketXCtrl1.Stop();
 device.PcapStopCapture();
 device.PcapClose();
 }
 Application.Exit();
 }

 /// <summary>
 /// lvCon selected handler - displays packets of the selected conversation in

lvPackets
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>
 private void lvCon_SelectedIndexChanged(object sender, System.EventArgs e)
 {
 if(lvCon.SelectedItems.Count > 0)
 {

 ConColl connection = (ConColl) sigSyncArray[lvCon.SelectedIndices[0]];

 int vnCounter = 0;
 int lastDataSize = 0;
 //long lastSeq = 0;
 long requestedAck = 0;
 //ArrayList requestedAcks = new ArrayList();
 lvPackets.Items.Clear();
 lbHeaders.Items.Clear();
 headerSyncArray.Clear();

 for(int i=0;i<connection.Count();i++)
 {
 TCPPacket oPacket = (TCPPacket) connection.GetPacket(i);

 int flags_byte = 27 + 4*(Convert.ToInt16(oPacket.Bytes[14])& 0x0F);//(ipstart+13)

+ IP header lenght
 int tcpStart = 14 + 4*(Convert.ToInt16(oPacket.Bytes[14])& 0x0F);

Z. Kwecka, BSc (Hons) Network Computing, 2006 99

 //total lenght - (ethernet + iplenght + tcp header lenght)
 int dataSize = oPacket.Bytes.Length -

(tcpStart+(Convert.ToInt16(oPacket.Bytes[tcpStart+12])& 0xF0)/4);
 string flags = "";
 long seq, ack = 0;
 seq = oPacket.SequenceNumber;

 ack = oPacket.AcknowledgmentNumber;
 if((Convert.ToInt16(oPacket.Bytes[flags_byte]) & 0x20)!=0)
 {
 flags = flags + "(URG)";
 }
 if((Convert.ToInt16(oPacket.Bytes[flags_byte]) & 0x10)!=0)
 {
 flags = flags + "(ACK)";
 }
 if((Convert.ToInt16(oPacket.Bytes[flags_byte]) & 0x08)!=0)
 {
 flags = flags + "(PSH)";
 }
 if((Convert.ToInt16(oPacket.Bytes[flags_byte]) & 0x04)!=0)
 {
 flags = flags + "(RST)";
 }
 if((Convert.ToInt16(oPacket.Bytes[flags_byte]) & 0x02)!=0)
 {
 flags = flags + "(SYN)";
 }
 if((Convert.ToInt16(oPacket.Bytes[flags_byte]) & 0x01)!=0)
 {
 flags = flags + "(FIN)";
 }
 //(flagls_byte-9) start of the seq number

 ListViewItem aItem = new ListViewItem();
 //
 if(oPacket.DestinationPort == 80)
 {
 if(lastDataSize <= 10 && dataSize > 10)
 {
 if(rbViewFull.Checked == true)
 {
 buildHTTP(oPacket);
 }
 aItem.ForeColor = Color.FromName("Red");
 requestedAck = ack;
 //requestedAcks.Add(ack);
 }
 lastDataSize = dataSize;
 }
 else if(oPacket.SourcePort == 80 && requestedAck == seq && dataSize > 10)
 {
 if(rbViewFull.Checked == true)
 {
 buildHTTP(oPacket);
 }
 aItem.ForeColor = Color.FromName("Red");
 for(int j = 0; j<10; j++)
 {
 if(oPacket.Data[j].ToString() == "32" && oPacket.Data[j+1].ToString() == "51")
 {
 lastDataSize = 0;
 }
 }
 }
 if((rbToBoth.Checked == true || (rbToSrv.Checked == true &&

oPacket.DestinationPort == 80) || (rbToCnt.Checked == true &&
oPacket.SourcePort== 80))

 && ((chHeaders.Checked == true && aItem.ForeColor == Color.FromName("Red")) ||
chHeaders.Checked == false))

 {

 aItem.SubItems[0].Text = System.Convert.ToString(vnCounter);
 //aItem.SubItems.Add(System.Convert.ToString(oPacket.SourceIpAddress));
 //aItem.SubItems.Add(System.Convert.ToString(oPacket.DestIpAddress));

Z. Kwecka, BSc (Hons) Network Computing, 2006 100

 aItem.SubItems.Add(System.Convert.ToString(oPacket.SourcePort)+" =>
"+System.Convert.ToString(oPacket.DestinationPort));

 aItem.SubItems.Add(System.Convert.ToString(flags));
 aItem.SubItems.Add(System.Convert.ToString(oPacket.Bytes.Length + " (" +

dataSize + ")"));
 aItem.SubItems.Add(System.Convert.ToString(oPacket.PcapHeader.Date));
 aItem.SubItems.Add(System.Convert.ToString(seq));
 aItem.SubItems.Add(System.Convert.ToString(ack));
 lvPackets.Items.Add(aItem);
 //oPacketColl.Add(oPacket);

 } //end if radio box

 vnCounter++;
 } //end for each
 if(rbViewFull.Checked == true)
 {
 lock(headerSyncArray.SyncRoot)
 {
 foreach(string header in headerSyncArray)
 {
 lbHeaders.Items.Add(header);
 }
 }
 }
 }
 }

 /// <summary>
 /// Builds HTTP header list for the bottom lbHeaders
 /// </summary>
 /// <param name="oPacket"></param>
 public void buildHTTP(TCPPacket oPacket)
 {
 if(rbToBoth.Checked == true || (rbToSrv.Checked == true && oPacket.DestinationPort

== 80) || (rbToCnt.Checked == true && oPacket.SourcePort== 80))
 {
 Encoding ASCII = Encoding.ASCII;
 string headers = "";
 int tcpStart = 14 + 4*(Convert.ToInt16(oPacket.Bytes[14])& 0x0F);//ipstart +

header lenght
 int tcpLenght = (Convert.ToInt16(oPacket.Bytes[tcpStart+12])& 0xF0)/4;
 int ipTotal =

(Convert.ToInt16(oPacket.Bytes[16]))*256+(Convert.ToInt16(oPacket.Bytes[17]))
;

 if(tcpStart+tcpLenght<oPacket.Bytes.Length)
 {

 for(int j=tcpStart+tcpLenght;j<(14+ipTotal); j++)
 {
 if((Convert.ToInt16(oPacket.Bytes[j])>31 &&

Convert.ToInt16(oPacket.Bytes[j])<127)
 || Convert.ToInt16(oPacket.Bytes[j])==13 ||

Convert.ToInt16(oPacket.Bytes[j])==10)
 {
 headers = headers + (char)(Convert.ToInt16(oPacket.Bytes[j]));
 }
 else
 {
 headers = headers + (oPacket.Bytes[j]).ToString() + " ";
 }

 }

 Regex r = new Regex("\r\n");

 int a = 0;
 foreach(string singleHeader in r.Split(headers))
 {

 if(singleHeader != "")//finds empty line - the start of the content
 {
 headerSyncArray.Add(singleHeader);
 a=0;
 }
 else
 {

Z. Kwecka, BSc (Hons) Network Computing, 2006 101

 a++;
 headerSyncArray.Add(" ");
 if((a>1&&oPacket.DestinationPort==80)||(a>0&&oPacket.SourcePort==80))
 {

 headerSyncArray.Add("--------------------------------------");

 break;
 }
 }
 }
 }
 } //end if mathes the destination settings
 }

 private void cbDump_CheckedChanged(object sender, System.EventArgs e)
 {
 if(cbDump.Checked == true && dumpFile == "")
 {
 ofdDump.ShowDialog();
 if(ofdDump.FileName != "")
 {
 dumpFile = ofdDump.FileName;

 }
 else
 {
 cbDump.Checked = false;
 }
 }
 }

 private void mfOpen_Click(object sender, System.EventArgs e)
 {
 ofdDump.ShowDialog();
 if(ofdDump.FileName != "")
 {
 mcStart.Enabled = false;
 gbAdapter.Enabled = true;
 cbDump.Checked = false;
 cbAdapters.SelectedIndex = -1;
 lvPackets.Items.Clear();
 lbHeaders.Items.Clear();
 try
 {
 device = SharpPcap.GetPcapOfflineDevice(ofdDump.FileName);
 device.PcapOnPacketArrival +=
 new SharpPcap.PacketArrivalEvent(device_PcapOnPacketArrival);

 device.PcapOpen();
 device.PcapStartCapture();
 mcStop.Enabled = true;
 }
 catch(Exception exception)
 {

 MessageBox.Show(exception.Message);
 }

 }
 else
 {
 MessageBox.Show("Wrong input file");
 }
 }

 private void menuItem2_Click(object sender, System.EventArgs e)
 {
 if(mcStop.Enabled == false)
 {
 lvCon.Items.Clear();
 lvPackets.Items.Clear();
 lbHeaders.Items.Clear();
 headerSyncArray.Clear();

Z. Kwecka, BSc (Hons) Network Computing, 2006 102

 sigSyncArray.Clear();

 }

 }
 }
}

ConColl.cs:

/*
 * Autor: Zbigniew Kwecka
 * Matric: 03008457
 * Contact: z.kwecka@gmial.com
 * Napier University, Edinburgh
*/

using System;
using System.Collections;

namespace HTTPAnalyser
{
 /// <summary>
 /// Summary description for ConColl.
 /// </summary>
 public class ConColl
 {
 private string cntIP;
 private string srvIP;
 private int cntPort;
 private int srvPort;
 private ArrayList packets;
 private ArrayList synPackets;

 public ConColl(string aCntIP, string aSrvIP, int aCntPort, int aSrvPort)
 {

 if(aCntIP != "" && aSrvIP != "" && aCntPort != 0 && aSrvPort != 0)
 {
 cntIP = aCntIP;
 srvIP = aSrvIP;
 cntPort = aCntPort;
 srvPort = aSrvPort;
 packets = new ArrayList();
 synPackets = ArrayList.Synchronized(packets);
 }
 }

 public int Count()
 {
 return synPackets.Count;
 }

 public object GetPacket(int aIndex)
 {
 if(aIndex < synPackets.Count)
 {
 return synPackets[aIndex];
 }
 else
 {
 return null;
 }

 }

 public void Add(object aPacket)
 {
 if(aPacket != null)
 synPackets.Add(aPacket);
 }

 public bool CheckSignature(string aCntIP, string aSrvIP, int aCntPort, int aSrvPort)
 {

Z. Kwecka, BSc (Hons) Network Computing, 2006 103

 if(cntIP == aCntIP && srvIP == aSrvIP && cntPort == aCntPort && srvPort ==
aSrvPort)

 {
 return true;
 }
 else
 {
 return false;
 }
 }

 }
}

Z. Kwecka, BSc (Hons) Network Computing, 2006 104

Appendix 6 – Browser Timer - Code Listing

Form1.cs:
/*
 * Autor: Zbigniew Kwecka
 * Matric: 03008457
 * Contact: z.kwecka@gmial.com
 * Napier University, Edinburgh
*/

using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;
using System.Net;
using System.IO;
using System.Threading;

namespace HTTPBrowser
{
 /// <summary>
 /// Summary description for Form1.
 /// </summary>
 public class Form1 : System.Windows.Forms.Form
 {
 private System.Windows.Forms.Button button1;
 private AxSHDocVw.AxWebBrowser axWebBrowser1;
 private System.Windows.Forms.Button button2;
 private System.Windows.Forms.TextBox textBox2;
 private System.Windows.Forms.Label label1;
 private System.Windows.Forms.TextBox textBox1;
 private System.Windows.Forms.CheckBox checkBox1;
 private System.Windows.Forms.Button button3;
 private System.ComponentModel.IContainer components;

 public Form1()
 {
 //
 // Required for Windows Form Designer support
 //
 InitializeComponent();

 //
 // TODO: Add any constructor code after InitializeComponent call
 //
 }

 /// <summary>
 /// Clean up any resources being used.
 /// </summary>
 protected override void Dispose(bool disposing)
 {
 if(disposing)
 {
 if (components != null)
 {
 components.Dispose();
 }
 }
 base.Dispose(disposing);
 }

 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 System.Resources.ResourceManager resources = new

System.Resources.ResourceManager(typeof(Form1));

Z. Kwecka, BSc (Hons) Network Computing, 2006 105

 /// <summary>
 /// The main entry point for the application.
 /// </summary>
 [STAThread]
 static void Main()
 {
 Application.Run(new Form1());
 }
 int read = 0;
 int current = 0;
 int arraySize=200;
 object notUsed = null;
 string [] sites;
 DateTime startTime;
 TimeSpan timeTaken;
 double average = 0;
 long sum = 0;
 StreamWriter sw;

 private void button1_Click(object sender, System.EventArgs e)
 {

 try
 {
 string file = "sites.txt";
 string txt="";

 if (File.Exists(file))
 {
 StreamReader SW = new StreamReader(file);

 while ((txt=SW.ReadLine())!=null && read < arraySize)
 {
 sites[read]=txt;
 //textBox2.Text += txt + Environment.NewLine;
 read++;
 }
 SW.Close();
 }

 if(checkBox1.Checked == true)
 {
 if(textBox1.Text != "")
 {
 sw = new StreamWriter(textBox1.Text,false);

 }
 else
 {
 sw = new StreamWriter("default_output.txt",false);
 }
 }
 button1.Enabled = false;
 checkBox1.Enabled = false;
 textBox1.Enabled = false;
 button2.Enabled = true;
 button3.Enabled = true;
 Thread thdNavigate = new Thread(new ThreadStart(nav));

 thdNavigate.Start();

 }
 catch(Exception ex)
 {

 }
 }

 public void nav()
 {
 if(button1.Enabled)
 return;
 if(current < read)//&& sites[current] != Environment.NewLine)
 {

Z. Kwecka, BSc (Hons) Network Computing, 2006 106

 startTime = DateTime.Now;

 axWebBrowser1.Navigate(sites[current], ref notUsed, ref notUsed, ref notUsed, ref

notUsed);
 current++;
 }
 else
 {
 MessageBox.Show(sum.ToString() + " " + read.ToString());
 average = sum/read;
 MessageBox.Show("Average time taken: " + average.ToString());
 sw.Close();
 button1.Enabled = true;
 checkBox1.Enabled = true;
 textBox1.Enabled = true;
 button2.Enabled = false;
 button3.Enabled = false;
 }
 }

 public string getHTTP(string aURL)
 {
 HttpWebRequest httpRequest;
 HttpWebResponse httpResponse;
 string body = "";
 Stream responseStream;
 string responseHeader;
 Byte[]RecvBytes = new Byte[Byte.MaxValue];
 Int32 bytes;

 httpRequest = (HttpWebRequest) WebRequest.Create(aURL);
 httpResponse = (HttpWebResponse) httpRequest.GetResponse();
 responseStream = httpResponse.GetResponseStream();
 responseHeader = httpResponse.GetResponseHeader("Content-Type");

 while(true)
 {
 bytes = responseStream.Read(RecvBytes,0,RecvBytes.Length);
 if(bytes<=0) break;
 body += System.Text.Encoding.UTF8.GetString(RecvBytes,0,bytes);

 }
 return httpResponse.StatusDescription + responseHeader + body;

 }

 private void Form1_Load(object sender, System.EventArgs e)
 {
 sites = new string[arraySize];
 }

 private void axWebBrowser1_DocumentComplete(object sender,

AxSHDocVw.DWebBrowserEvents2_DocumentCompleteEvent e)
 {
 timeTaken = (DateTime.Now - startTime);
 textBox2.Text += e.uRL.ToString()+ " - Time taken: " + timeTaken.ToString() +

Environment.NewLine;
 if(timeTaken.TotalMilliseconds >0)
 {
 sum += Convert.ToInt64(timeTaken.TotalMilliseconds);
 if(sw != null)
 {

 sw.WriteLine(e.uRL.ToString()+"\t\t"+timeTaken.ToString());
 }
 }
 nav();
 }

 private void button2_Click(object sender, System.EventArgs e)
 {
 button1.Enabled = true;
 checkBox1.Enabled = true;
 textBox1.Enabled = true;
 button2.Enabled = false;
 button3.Enabled = false;
 sw.Close();

Z. Kwecka, BSc (Hons) Network Computing, 2006 107

 }

 private void checkBox1_CheckedChanged(object sender, System.EventArgs e)
 {

 }

 private void button3_Click(object sender, System.EventArgs e)
 {
 nav();
 }

 }
}

Z. Kwecka, BSc (Hons) Network Computing, 2006 108

Appendix 7 – Browser Caller - Code Listing

Form1.cs:

/*
 * Autor: Zbigniew Kwecka
 * Matric: 03008457
 * Contact: z.kwecka@gmial.com
 * Napier University, Edinburgh
*/

using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;
using System.Net;
using System.IO;
using System.Threading;
using System.Diagnostics;
using System.Text;

namespace HTTPBrowser
{
 /// <summary>
 /// Summary description for Form1.
 /// </summary>
 public class Form1 : System.Windows.Forms.Form
 {
 private System.Windows.Forms.Button button1;
 private System.Windows.Forms.Button button2;
 private System.Windows.Forms.CheckBox checkBox1;
 private System.Windows.Forms.Timer trigerProcess;
 private System.Windows.Forms.GroupBox gbBrowser;
 private System.Windows.Forms.RadioButton rbFirefox;
 private System.Windows.Forms.RadioButton rbIExplorer;
 private System.Windows.Forms.RadioButton rbOpera;
 private System.Windows.Forms.RadioButton rbNetscape;
 private System.Windows.Forms.TextBox tbSites;
 private System.Windows.Forms.Timer browserDelay;
 private System.ComponentModel.IContainer components;

 public Form1()
 {
 //
 // Required for Windows Form Designer support
 //
 InitializeComponent();

 //
 // TODO: Add any constructor code after InitializeComponent call
 //
 }

 /// <summary>
 /// Clean up any resources being used.
 /// </summary>
 protected override void Dispose(bool disposing)
 {
 if(disposing)
 {
 if (components != null)
 {
 components.Dispose();
 }
 }
 base.Dispose(disposing);
 }

 /// <summary>
 /// The main entry point for the application.

Z. Kwecka, BSc (Hons) Network Computing, 2006 109

 /// </summary>
 [STAThread]
 static void Main()
 {
 Application.Run(new Form1());
 }
 int read = 0;
 int current = 0;
 int arraySize=1000;
 object notUsed = null;
 string [] sites;
 DateTime startTime;
 TimeSpan timeTaken;
 double average = 0;
 string target= "";
 long sum = 0;

 bool secondExecution = false;

 private void button1_Click(object sender, System.EventArgs e)
 {
 button2.Enabled = true;
 checkBox1.Enabled = false;

 string file = Application.StartupPath+"\\sites.txt";
 string txt="";
 current = 0;

 if (File.Exists(file))
 {
 StreamReader SW = new StreamReader(file);

 while ((txt=SW.ReadLine())!=null && read < arraySize)
 {
 sites[read]=txt;
 //textBox2.Text += txt + Environment.NewLine;
 read++;
 }
 SW.Close();
 }
 else
 {
 tbSites.Text += Environment.NewLine + "ERROR: Error reading sites file";
 }
 trigerProcess.Enabled = true;
 button1.Enabled = false;
 gbBrowser.Enabled = false;
 tbSites.Text = "";

 }

 public void nav()
 {
 if(current < read)//&& sites[current] != Environment.NewLine)
 {
 startTime = DateTime.Now;

 current++;
 }
 else
 {
 MessageBox.Show(sum.ToString() + " " + read.ToString());
 average = sum/read;
 MessageBox.Show("Average time taken: " + average.ToString());
 }
 }

 public string getHTTP(string aURL)
 {
 HttpWebRequest httpRequest;
 HttpWebResponse httpResponse;
 string body = "";
 Stream responseStream;
 string responseHeader;

Z. Kwecka, BSc (Hons) Network Computing, 2006 110

 Byte[]RecvBytes = new Byte[Byte.MaxValue];
 Int32 bytes;

 httpRequest = (HttpWebRequest) WebRequest.Create(aURL);
 httpResponse = (HttpWebResponse) httpRequest.GetResponse();
 responseStream = httpResponse.GetResponseStream();
 responseHeader = httpResponse.GetResponseHeader("Content-Type");

 while(true)
 {
 bytes = responseStream.Read(RecvBytes,0,RecvBytes.Length);
 if(bytes<=0) break;
 body += System.Text.Encoding.UTF8.GetString(RecvBytes,0,bytes);

 }
 return httpResponse.StatusDescription + responseHeader + body;

 }

 private void Form1_Load(object sender, System.EventArgs e)
 {
 sites = new string[arraySize];
 }

 private void axWebBrowser1_DocumentComplete(object sender,

AxSHDocVw.DWebBrowserEvents2_DocumentCompleteEvent e)
 {
 timeTaken = (DateTime.Now - startTime);
 tbSites.Text += e.uRL.ToString()+ " - Time taken: " + timeTaken.ToString() +

Environment.NewLine;
 if(timeTaken.TotalMilliseconds >0)
 {
 sum += Convert.ToInt64(timeTaken.TotalMilliseconds);

 }
 nav();
 }

 private void button2_Click(object sender, System.EventArgs e)
 {
 trigerProcess.Enabled = false;
 browserDelay.Enabled = false;
 button1.Enabled = true;
 gbBrowser.Enabled = true;
 button2.Enabled = false;
 checkBox1.Enabled = true;
 }

 private void checkBox1_CheckedChanged(object sender, System.EventArgs e)
 {

 }

 private void trigerProcess_Tick(object sender, System.EventArgs e)
 {

 trigerProcess.Enabled = false;
 if(button2.Enabled == false)
 return;
 if(tbSites.Text.Length + 30 > tbSites.MaxLength)
 tbSites.Text = "";

 StreamWriter hostFile = null;
 if(checkBox1.Checked == true)
 {

 if(File.Exists("C:\\WINDOWS\\system32\\drivers\\etc\\hosts"))
 {
 hostFile = new StreamWriter("C:\\WINDOWS\\system32\\drivers\\etc\\hosts",false);
 }
 else
 {

 hostFile = new StreamWriter("C:\\WINNT\\system32\\drivers\\etc\\hosts",false);
 }
 }
 if(current < read)//&& sites[current] != Environment.NewLine)

Z. Kwecka, BSc (Hons) Network Computing, 2006 111

 {
 target = sites[current];
 if(secondExecution == false && checkBox1.Checked == true)
 {

 hostFile.WriteLine("127.0.0.1\tlocalhost");
 hostFile.WriteLine("192.168.1.7\twww.filteringproxy.com");
 hostFile.Close();
 secondExecution = true;
 }
 else if(secondExecution == true && checkBox1.Checked == true)
 {

 hostFile.WriteLine("127.0.0.1\tlocalhost");
 hostFile.WriteLine("192.168.1.8\twww.filteringproxy.com");
 hostFile.Close();
 current++;
 secondExecution = false;
 }
 else
 {

 current++;
 }
 ProcessStartInfo startInfo;

 try
 {
 if(rbFirefox.Checked == true)
 {
 System.Diagnostics.Process[] p =System.Diagnostics.Process.GetProcesses();
 for(int i=0 ;i<p.Length;i++)
 {
 if (p[i].ProcessName.ToLower()=="firefox")
 {
 p[i].CloseMainWindow();
 p[i].WaitForExit(60000);
 }
 }

 startInfo = new ProcessStartInfo("C:\\PROGRA~1\\MOZILL~1\\FIREFOX.EXE");
 startInfo.Arguments = "-url \""+target+"\"";
 Process.Start(startInfo);
 tbSites.Text += Environment.NewLine + target;
 trigerProcess.Enabled = true;
 }
 else if(rbIExplorer.Checked == true)
 {
 System.Diagnostics.Process[] p =System.Diagnostics.Process.GetProcesses();
 for(int i=0 ;i<p.Length;i++)
 {
 if (p[i].ProcessName.ToLower()=="iexplore")
 {
 p[i].CloseMainWindow();
 p[i].WaitForExit(60000);
 if(!p[i].HasExited)
 p[i].Kill();
 }

 }
 startInfo = new ProcessStartInfo("IExplore.EXE");
 startInfo.Arguments = target;
 Process.Start(startInfo);
 tbSites.Text += Environment.NewLine + target;
 trigerProcess.Enabled = true;
 }
 else if(rbOpera.Checked == true)
 {
 System.Diagnostics.Process[] p =System.Diagnostics.Process.GetProcesses();
 for(int i=0 ;i<p.Length;i++)
 {
 if (p[i].ProcessName.ToLower()=="opera")
 {
 p[i].CloseMainWindow();
 p[i].WaitForExit(600000);
 MessageBox.Show("Opera kill about to be executed");
 if(!p[i].HasExited)

Z. Kwecka, BSc (Hons) Network Computing, 2006 112

 {

 p[i].Kill();
 }
 }

 }

 startInfo = new ProcessStartInfo("c:\\Progra~1\\Opera\\Opera.exe");

 startInfo.Arguments = target;
 Process.Start(startInfo);
 tbSites.Text += Environment.NewLine + target;
 trigerProcess.Enabled = true;
 }
 else if(rbNetscape.Checked == true)
 {
 System.Diagnostics.Process[] p =System.Diagnostics.Process.GetProcesses();
 for(int i=0 ;i<p.Length;i++)
 {
 if (p[i].ProcessName.ToLower()=="netscape")
 {
 p[i].CloseMainWindow();
 p[i].WaitForExit(600000);
 MessageBox.Show("Netscape kill about to be executed");
 if(!p[i].HasExited)
 {

 p[i].Kill();
 }
 }

 }

 startInfo = new ProcessStartInfo("C:\\Program Files\\Netscape\\Netscape

Browser\\netscape.exe");

 startInfo.Arguments = target;
 Process.Start(startInfo);
 tbSites.Text += Environment.NewLine + target;
 trigerProcess.Enabled = true;
 }
 else
 {
 trigerProcess.Enabled = false;
 button1.Enabled = true;
 gbBrowser.Enabled = true;
 }

 }
 catch
 (
 System.ComponentModel.Win32Exception noBrowser)
 {
 if (noBrowser.ErrorCode==-2147467259)
 MessageBox.Show(noBrowser.Message);
 }
 catch (System.Exception other)
 {
 MessageBox.Show(other.Message);
 }
 }
 else
 {
 trigerProcess.Enabled = false;
 button1.Enabled = true;
 gbBrowser.Enabled = true;
 }
 }

 private void button3_Click(object sender, System.EventArgs e)
 {
 System.Diagnostics.Process[] p =System.Diagnostics.Process.GetProcesses();
 for(int i=0 ;i<p.Length;i++)
 {
 if (p[i].ProcessName=="Opera") p[i].CloseMainWindow();
 }

Z. Kwecka, BSc (Hons) Network Computing, 2006 113

 }

 private void browserDelay_Tick(object sender, System.EventArgs e)
 {
 browserDelay.Enabled = false;
 if(button2.Enabled == false)
 return;
 try
 {
 if(rbOpera.Checked == true)
 {
 System.Diagnostics.Process[] p =System.Diagnostics.Process.GetProcesses();
 for(int i=0 ;i<p.Length;i++)
 {
 if (p[i].ProcessName=="Opera") p[i].CloseMainWindow();
 }

 p = System.Diagnostics.Process.GetProcesses();
 for(int i=0 ;i<p.Length;i++)
 {
 if (p[i].ProcessName=="Opera") p[i].Kill();
 }
 ProcessStartInfo startInfo = new

ProcessStartInfo("c:\\Progra~1\\Opera\\Opera.exe");

 startInfo.Arguments = target;
 Process.Start(startInfo);
 tbSites.Text += Environment.NewLine + target;

 }
 else if(rbNetscape.Checked == true)
 {
 System.Diagnostics.Process[] p =System.Diagnostics.Process.GetProcesses();
 for(int i=0 ;i<p.Length;i++)
 {
 if (p[i].ProcessName=="netscape") p[i].CloseMainWindow();
 }

 p = System.Diagnostics.Process.GetProcesses();
 for(int i=0 ;i<p.Length;i++)
 {
 if (p[i].ProcessName=="netscape") p[i].Kill();
 }
 ProcessStartInfo startInfo = new ProcessStartInfo("C:\\Program

Files\\Netscape\\Netscape Browser\\netscape.exe");

 startInfo.Arguments = target;
 Process.Start(startInfo);
 tbSites.Text += Environment.NewLine + target;
 }
 trigerProcess.Enabled = true;
 }
 catch(System.ComponentModel.Win32Exception noBrowser)
 {
 if (noBrowser.ErrorCode==-2147467259)
 MessageBox.Show(noBrowser.Message);
 }
 catch (System.Exception other)
 {
 MessageBox.Show(other.Message);
 }
 }

 }
}

Z. Kwecka, BSc (Hons) Network Computing, 2006 114

Appendix 8 – Data Hiding Proxy - Code Listing

Proxy.cs:
/*
 * Autor: Zbigniew Kwecka
 * Matric: 03008457
 * Contact: z.kwecka@gmial.com
 * Napier University, Edinburgh
*/

using System;
using System.Drawing;
using System.Collections;
using System.Collections.Specialized;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;
using System.Net;
using System.Text;

namespace FilterProxy_GUI
{
 /// <summary>
 /// Summary description for Form1.
 /// </summary>
 public class Form1 : System.Windows.Forms.Form
 {
 private System.Windows.Forms.Button bRun;
 private System.Windows.Forms.ListBox lbConsole;
 private System.Windows.Forms.Button bExit;
 private System.Windows.Forms.Button bShow;
 private System.Windows.Forms.Button bStop;
 private System.Windows.Forms.Timer consoleTimer;
 private System.Windows.Forms.TextBox tbFilter;
 private System.Windows.Forms.TextBox tbListenerPort;
 private System.Windows.Forms.ComboBox cbListenerAddress;
 private System.Windows.Forms.CheckBox checkBox1;
 private System.Windows.Forms.CheckBox checkBox2;
 private System.Windows.Forms.CheckBox checkBox3;
 private System.Windows.Forms.CheckBox checkBox4;
 private System.Windows.Forms.CheckBox checkBox5;
 private System.Windows.Forms.CheckBox checkBox7;
 private System.Windows.Forms.GroupBox groupBox1;
 private System.Windows.Forms.Label label1;
 private System.Windows.Forms.GroupBox groupBox2;
 private System.Windows.Forms.RadioButton radioButton1;
 private System.Windows.Forms.RadioButton radioButton2;
 private System.Windows.Forms.TextBox textBox1;
 private System.Windows.Forms.Label label2;
 private System.Windows.Forms.Button button1;
 private System.ComponentModel.IContainer components;

 public Form1()
 {
 //
 // Required for Windows Form Designer support
 //
 InitializeComponent();

 //
 // TODO: Add any constructor code after InitializeComponent call
 //
 }

 /// <summary>
 /// Clean up any resources being used.
 /// </summary>
 protected override void Dispose(bool disposing)
 {
 if(disposing)
 {
 if (components != null)
 {
 components.Dispose();

Z. Kwecka, BSc (Hons) Network Computing, 2006 115

 }
 }
 base.Dispose(disposing);
 }

 /// <summary>
 /// The main entry point for the application.
 /// </summary>
 [STAThread]
 static void Main()
 {
 Application.Run(new Form1());
 }

 private Listener listener;
 private int bufferRead = 0;

 private void bRun_Click(object sender, System.EventArgs e)
 {

 string classtype = "FilterProxy_GUI.Http.HttpListener";
 if (classtype == "")
 return;
 else if(Type.GetType(classtype) == null)
 {
 lbConsole.Items.Add("The specified listener class does not exist!");
 return;
 }
 string construct;
 if(cbListenerAddress.SelectedIndex > -1)
 {
 construct = "host:" + cbListenerAddress.SelectedItem.ToString() + ";int:" +

tbListenerPort.Text.Trim();
 }
 else
 {
 construct = "host:127.0.0.1;int:80";

 }

 object listenObject = CreateListener(classtype, construct);
 if (listenObject == null)
 {
 lbConsole.Items.Add("Invalid construction string.");
 return;
 }

 try
 {
 listener = (Listener)listenObject;
 }
 catch
 {
 lbConsole.Items.Add("The specified object is not a valid Listener object.");
 return;
 }
 try
 {
 listener.Start();
 lbConsole.Items.Add("Proxy started");
 lbConsole.Items.Add("Listening on" +

construct.Replace(";int:",":").Replace("host:",": "));
 consoleTimer.Enabled = true;
 }
 catch
 {
 Console.WriteLine("Error while staring the Listener.\r\n(Perhaps the specified

port is already in use?)");
 return;
 }
 }
 /// <summary>
 /// Creates a new Listener obejct from a given listener name and a given listener

parameter string.
 /// </summary>
 /// <param name="type">The type of object to instantiate.</param>
 /// <param name="cpars"></param>

Z. Kwecka, BSc (Hons) Network Computing, 2006 116

 /// <returns></returns>
 public Listener CreateListener(string type, string cpars)
 {
 try
 {
 string [] parts = cpars.Split(';');
 object [] pars = new object[parts.Length];
 string oval = null, otype = null;
 int ret;
 // Start instantiating the objects to give to the constructor
 for(int i = 0; i < parts.Length; i++)
 {
 ret = parts[i].IndexOf(':');
 if (ret >= 0)
 {
 otype = parts[i].Substring(0, ret);
 oval = parts[i].Substring(ret + 1);
 }
 else
 {
 otype = parts[i];
 }
 switch (otype.ToLower())
 {
 case "int":
 pars[i] = int.Parse(oval);
 break;
 case "host":
 pars[i] = Dns.Resolve(oval).AddressList[0];
 break;
 case "null":
 pars[i] = null;
 break;
 case "string":
 pars[i] = oval;
 break;
 case "ip":
 pars[i] = IPAddress.Parse(oval);
 break;
 default:
 pars[i] = null;
 break;
 }
 }
 return (Listener)Activator.CreateInstance(Type.GetType(type), pars);
 }
 catch
 {
 return null;
 }
 }

 private void bExit_Click(object sender, System.EventArgs e)
 {

 if(listener != null)
 listener.Dispose();
 consoleTimer.Enabled = false;
 Application.Exit();
 }

 private void bShow_Click(object sender, System.EventArgs e)
 {
 ConsoleBuffer.covert_text=tbFilter.Text;
 ConsoleBuffer.recipient = textBox1.Text;
 }

 private void bStop_Click(object sender, System.EventArgs e)
 {
 listener.Dispose();
 consoleTimer.Enabled = false;
 lbConsole.Items.Add("Proxy stoped");
 }

 private void consoleTimer_Tick(object sender, System.EventArgs e)
 {
 int a = bufferRead;

Z. Kwecka, BSc (Hons) Network Computing, 2006 117

 for(int i = a ;i<ConsoleBuffer.buffer.Count;i++)
 {
 lbConsole.Items.Add(ConsoleBuffer.buffer[i]);
 bufferRead++;
 }

 }

 private void bSetFilter_Click(object sender, System.EventArgs e)
 {
 ConsoleBuffer.filter = tbFilter.Text.Trim();
 ConsoleBuffer.buffer.Add("Filter: " + ConsoleBuffer.filter + " - ADDED");
 }

 private void Form1_Load(object sender, System.EventArgs e)
 {
 IPHostEntry ipHost = Dns.GetHostByName("");
 IPAddress [] ipHostAddress = ipHost.AddressList;

 for (int i = 0; i < ipHostAddress.Length; i++)
 {
 cbListenerAddress.Items.Add(ipHostAddress[i].ToString ());
 }
 cbListenerAddress.Items.Add("127.0.0.1");
 if(cbListenerAddress.Items.Count > -1)
 {
 cbListenerAddress.SelectedIndex = 0;
 }
 }

 private void checkBox2_CheckedChanged(object sender, System.EventArgs e)
 {
 if(checkBox2.Checked == true && !ConsoleBuffer.filter_out.ContainsKey("Case"))
 {
 ConsoleBuffer.filter_out.Add("Case","1");
 ConsoleBuffer.buffer.Add("Case changing - On");
 }
 else if(ConsoleBuffer.filter_out.ContainsKey("Case"))
 {
 ConsoleBuffer.filter_out.Remove("Case");
 ConsoleBuffer.buffer.Add("Case changing - Off");
 }
 }

 private void checkBox3_CheckedChanged(object sender, System.EventArgs e)
 {
 if(checkBox3.Checked == true && !ConsoleBuffer.filter_out.ContainsKey("Optional"))
 {
 ConsoleBuffer.filter_out.Add("Optional","1");
 ConsoleBuffer.buffer.Add("Optional Header - On");
 }
 else if(ConsoleBuffer.filter_out.ContainsKey("Optional"))
 {
 ConsoleBuffer.filter_out.Remove("Optional");
 ConsoleBuffer.buffer.Add("Optional header - Off");
 }
 }

 private void checkBox1_CheckedChanged(object sender, System.EventArgs e)
 {
 if(checkBox1.Checked == true && !ConsoleBuffer.filter_out.ContainsKey("Reorder"))
 {
 ConsoleBuffer.filter_out.Add("Reorder","1");
 ConsoleBuffer.buffer.Add("Reordering - On");
 }
 else if(ConsoleBuffer.filter_out.ContainsKey("Reorder"))
 {
 ConsoleBuffer.filter_out.Remove("Reorder");
 ConsoleBuffer.buffer.Add("Reordering - Off");
 }
 }

 private void checkBox7_CheckedChanged(object sender, System.EventArgs e)
 {
 if(checkBox7.Checked == true && !ConsoleBuffer.filter_out.ContainsKey("All"))
 {
 ConsoleBuffer.filter_out.Add("All","1");

Z. Kwecka, BSc (Hons) Network Computing, 2006 118

 }
 else if(ConsoleBuffer.filter_out.ContainsKey("All"))
 {
 ConsoleBuffer.filter_out.Remove("All");
 }
 }

 private void checkBox4_CheckedChanged(object sender, System.EventArgs e)
 {
 if(checkBox4.Checked == true && !ConsoleBuffer.filter_out.ContainsKey("Undefined"))
 {
 ConsoleBuffer.filter_out.Add("Undefined","1");
 }
 else if(ConsoleBuffer.filter_out.ContainsKey("Undefined"))
 {
 ConsoleBuffer.filter_out.Remove("Undefined");
 }
 }

 private void checkBox5_CheckedChanged(object sender, System.EventArgs e)
 {
 if(checkBox5.Checked == true && !ConsoleBuffer.filter_out.ContainsKey("Spacing"))
 {
 ConsoleBuffer.filter_out.Add("Spacing","1");
 ConsoleBuffer.buffer.Add("Linerr spacing - On");
 }
 else if(ConsoleBuffer.filter_out.ContainsKey("Spacing"))
 {
 ConsoleBuffer.filter_out.Remove("Spacing");
 ConsoleBuffer.buffer.Add("Linear spacing - Off");
 }
 }

 private void radioButton1_CheckedChanged(object sender, System.EventArgs e)
 {
 if(radioButton1.Checked)
 {
 ConsoleBuffer.reciver = true;
 }
 else
 {
 ConsoleBuffer.reciver = false;
 }
 }

 private void radioButton2_CheckedChanged(object sender, System.EventArgs e)
 {
 if(radioButton2.Checked)
 {
 ConsoleBuffer.sender = true;
 }
 else
 {
 ConsoleBuffer.sender = false;
 }
 }

 private void button1_Click(object sender, System.EventArgs e)
 {
 ConsoleBuffer.recipient = textBox1.Text;
 }

 }

 public class ConsoleBuffer
 {
 public static ArrayList buffer = new ArrayList();
 public static NameValueCollection agents = new NameValueCollection();
 public static string filter = "";
 public static StringDictionary filter_out = new StringDictionary();
 public static string addedHeader = "";
 public static string covert_text= "";
 public static int covert_progres = 0;
 public static bool sender = false;
 public static bool reciver = false;
 public static string recipient = "";

Z. Kwecka, BSc (Hons) Network Computing, 2006 119

 }
}

HTTPClient.cs (classes modified or added to Mentalis.org Proxy):

 ///<summary>Gets or sets a StringDictionary that stores the header fields.</summary>
 ///<value>A StringDictionary that stores the header fields.</value>
 private StringDictionary HeaderFieldsSignature
 {
 get
 {
 return m_HeaderFieldsSignature;
 }
 set
 {
 m_HeaderFieldsSignature = value;
 }
 }

 ///<summary>Parses a specified HTTP query into its header fields.</summary>
 ///<param name="Query">The HTTP query string to parse.</param>
 ///<returns>A StringDictionary object containing all the header fields with their

data.</returns>
 ///<exception cref="ArgumentNullException">The specified query is null.</exception>
 private StringDictionary ParseQuerySignature(string Query)
 {
 int order = 0;
 StringDictionary retdict = new StringDictionary();
 string [] Lines = Query.Replace("\r\n", "\n").Split('\n');
 int Cnt, Ret;
 //Extract requested URL

 //parsing of headers follows
 for(Cnt = 1; Cnt < Lines.Length; Cnt++)
 {
 Ret = Lines[Cnt].IndexOf(":");
 if (Ret > 0 && Ret < Lines[Cnt].Length - 1)
 {
 try
 {
 retdict.Add(Lines[Cnt].Substring(0, Ret), order.ToString());

 order++;
 }
 catch {}
 }
 }

 return retdict;
 }

 ///<summary>Rebuilds the HTTP query, starting from the HttpRequestType,

RequestedPath, HttpVersion and HeaderFields properties.</summary>
 ///<returns>A string representing the rebuilt HTTP query string.</returns>
 private string RebuildQuery() {
 string ret = HttpRequestType + " " + RequestedPath + " " + HttpVersion + "\r\n";

 if (HeaderFields != null) {

 string [] keys = new string [HeaderFieldsSignature.Count];

 foreach (string sc in HeaderFields.Keys) {

 if (sc.Length < 6 || !sc.Substring(0, 6).Equals("proxy-") || ConsoleBuffer.sender

== true && sc.Substring(0, 6).Equals("proxy-"))
 {
 if(ConsoleBuffer.filter_out.ContainsKey("Spacing"))
 {
 if(ConsoleBuffer.filter_out.ContainsKey("Case"))
 {
 keys[Convert.ToInt16(HeaderFieldsSignature[sc])]
 = System.Globalization.CultureInfo.CurrentCulture.TextInfo.ToUpper(sc) + ": "

+ (string)HeaderFields[sc] + " \t\t \t\t \t"+"\r\n";
 }

Z. Kwecka, BSc (Hons) Network Computing, 2006 120

 else
 {
 keys[Convert.ToInt16(HeaderFieldsSignature[sc])]
 = System.Globalization.CultureInfo.CurrentCulture.TextInfo.ToTitleCase(sc) +

": " + (string)HeaderFields[sc] + " \t\t \t\t \t"+"\r\n";
 }

 }
 else
 {
 if(ConsoleBuffer.filter_out.ContainsKey("Case"))
 {
 keys[Convert.ToInt16(HeaderFieldsSignature[sc])]
 = System.Globalization.CultureInfo.CurrentCulture.TextInfo.ToUpper(sc) + ": "

+ (string)HeaderFields[sc] + "\r\n";
 }
 else
 {
 keys[Convert.ToInt16(HeaderFieldsSignature[sc])]
 = System.Globalization.CultureInfo.CurrentCulture.TextInfo.ToTitleCase(sc) +

": " + (string)HeaderFields[sc] + "\r\n";
 }
 }

 }
 else
 {
 keys[Convert.ToInt16(HeaderFieldsSignature[sc])]="";
 }
 }

 //if required reorder the headers
 if(ConsoleBuffer.filter_out.ContainsKey("Reorder") && keys.Length > 2)
 {

 ret += keys[1];
 ret += keys[0];
 for(int i=2;i<keys.Length;i++)
 {
 ret += keys[i];
 }
 }
 else
 {
 foreach(string str in keys)
 {
 ret += str;
 }
 }
 if(ConsoleBuffer.sender == true)
 {

 ret = ret.Replace("Proxy-C","C");
 }
 if(ConsoleBuffer.filter_out.ContainsKey("Optional"))
 {
 ret += "Via: Covert Data going out\r\n";

 }
 if(ConsoleBuffer.filter_out.ContainsKey("Undefined"))
 {
 ret += "Covert-Channel: Covert Data going out\r\n";

 }

 ret += "\r\n";
 if (m_HttpPost != null)
 ret += m_HttpPost;
 }

 return ret;
 }

Z. Kwecka, BSc (Hons) Network Computing, 2006 121

Appendix 10 - HTTP Dumper - Code Listing

Form1.cs:
/*
 * Autor: Zbigniew Kwecka
 * Matric: 03008457
 * Contact: z.kwecka@gmial.com
 * Napier University, Edinburgh
*/

using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;
using System.Text.RegularExpressions;
using Tamir.IPLib;
using Tamir.IPLib.Packets;
using System.Text;

namespace HTTPAnalyser
{
 /// <summary>
 /// Form1 is tha main window of the HTTPAnalyser.
 /// </summary>
 public class HTTPAnalyser_Form1 : System.Windows.Forms.Form
 {
 private System.Windows.Forms.MainMenu mainMenu1;
 private System.Windows.Forms.ComboBox cbAdapters;
 private System.Windows.Forms.ListBox lbHeaders;
 private System.Windows.Forms.MenuItem mFile;
 private System.Windows.Forms.MenuItem mCapture;
 private System.Windows.Forms.MenuItem mcStart;
 private System.Windows.Forms.MenuItem mcStop;
 private System.Windows.Forms.MenuItem menuItem1;
 private System.Windows.Forms.MenuItem menuItem3;
 private ArrayList headerArray = new ArrayList(); //stores PacketCollections
 private ArrayList headerSyncArray; //synchronized wraapper
 private ArrayList sigArray = new ArrayList(); //stores Signatures
 private ArrayList sigSyncArray; //synchronized wraapper
 private System.Windows.Forms.ListView lvCon;
 private System.Windows.Forms.Label label1;
 private PcapDevice device;
 private PcapDeviceList getNetConnections;
 private System.Windows.Forms.CheckBox cbChip;
 private System.Windows.Forms.GroupBox gbDirection;
 private System.Windows.Forms.RadioButton rbToBoth;
 private System.Windows.Forms.RadioButton rbToSrv;
 private System.Windows.Forms.RadioButton rbToCnt;
 private System.Windows.Forms.MenuItem mhAbout;
 private System.Windows.Forms.MenuItem mhDoc;
 private System.Windows.Forms.CheckBox cbDump;
 private string dumpFile = "";
 private System.Windows.Forms.OpenFileDialog ofdDump;
 private System.Windows.Forms.MenuItem mfOpen;
 private System.Windows.Forms.GroupBox gbAdapter;
 private System.Text.ASCIIEncoding format = new System.Text.ASCIIEncoding();
 private System.Windows.Forms.OpenFileDialog ofdReadDump;

 /// <summary>
 /// Required designer variable.
 /// </summary>
 private System.ComponentModel.Container components = null;

 /// <summary>
 /// Default constructor
 /// </summary>
 public HTTPAnalyser_Form1()
 {
 //
 // Required for Windows Form Designer support

Z. Kwecka, BSc (Hons) Network Computing, 2006 122

 //
 InitializeComponent();
 }

 /// <summary>
 /// Clean up any resources being used.
 /// </summary>
 protected override void Dispose(bool disposing)
 {
 if(disposing)
 {
 if (components != null)
 {
 components.Dispose();
 }
 }
 base.Dispose(disposing);
 }

 /// <summary>
 /// The main entry point for the application.
 /// </summary>
 [STAThread]
 static void Main()
 {
 Application.Run(new HTTPAnalyser_Form1());
 }

 /// <summary>
 /// Form_Load - Sets up ListViews and checks for working network adapters
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>
 private void HTTPAnalyser_Form1_Load(object sender, System.EventArgs e)
 {
 headerSyncArray = ArrayList.Synchronized(headerArray);
 sigSyncArray = ArrayList.Synchronized(sigArray);

 //lvCon columns
 if(lvCon.Width/5 > 20)
 lvCon.Columns.Add("Connection", lvCon.Width /5-20 ,

HorizontalAlignment.Left);
 else
 lvCon.Columns.Add("Connection", lvCon.Width /5 , HorizontalAlignment.Left);
 lvCon.Columns.Add("ClientIP", lvCon.Width /5 , HorizontalAlignment.Left);
 lvCon.Columns.Add("ServerIP", lvCon.Width /5 , HorizontalAlignment.Left);
 lvCon.Columns.Add("ClientPort", lvCon.Width /5 , HorizontalAlignment.Left);
 lvCon.Columns.Add("ServerPort", lvCon.Width /5 , HorizontalAlignment.Left);

 //set menu items
 mcStop.Enabled = false;
 mcStart.Enabled = false;

 //Adaptersc collection
 getNetConnections = SharpPcap.GetAllDevices();
 for (int i = 0; i < getNetConnections.Count ; i++)
 {
 cbAdapters.Items.Add("(" + (i) + ") " + getNetConnections[i].PcapDescription);
 }
 cbAdapters.Invalidate();

 }

 /// <summary>
 /// Capture Menu Start Click - starts reading from the selected adapter
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>
 private void mcStart_Click(object sender, System.EventArgs e)
 {

 lbHeaders.Items.Clear();
 if(cbChip.Checked)
 {
 device.PcapOpen(false,1000);
 }

Z. Kwecka, BSc (Hons) Network Computing, 2006 123

 else
 {
 device.PcapOpen(true,1000);
 }
 device.PcapSetFilter("port 80");
 device.PcapStartCapture();
 mcStart.Enabled = false;
 mcStop.Enabled = true;

 gbAdapter.Enabled = false;
 if(cbDump.Checked && dumpFile != "")
 {
 device.PcapDumpOpen(dumpFile);
 }
 else if(cbDump.Checked)
 {
 MessageBox.Show("Could not open Dump File");
 }
 }

 /// <summary>
 /// Capture Menu Stop Click - stops reading
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>
 private void mcStop_Click(object sender, System.EventArgs e)
 {

 cbDump.Checked = false;
 dumpFile = "";
 device.PcapStopCapture();
 device.PcapClose();
 cbAdapters.SelectedIndex = -1;
 mcStart.Enabled = false;
 mcStop.Enabled = false;

 gbAdapter.Enabled = true;
 }

 /// <summary>
 /// OnPacket event handler - builds collection of "conversations" and displays it in

lvCon
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="aPacket"></param>
 private void device_PcapOnPacketArrival(object sender, Packet aPacket)
 {

 if(aPacket is TCPPacket)
 {

 TCPPacket tcp = (TCPPacket)aPacket;
 if(tcp.DestinationPort == 80 || tcp.SourcePort == 80)//herefor the offline dump

handling
 {
 int i = 0;
 int key = -1;
 string cntIP;
 string srvIP;
 int cntPort;
 int srvPort;
 ConTrackingColl connection;

 if(tcp.DestinationPort == 80)
 {
 cntIP = tcp.SourceAddress;
 srvIP = tcp.DestinationAddress;
 cntPort = tcp.SourcePort;
 srvPort = tcp.DestinationPort;
 }
 else
 {
 cntIP = tcp.DestinationAddress;
 srvIP = tcp.SourceAddress;
 cntPort = tcp.DestinationPort;
 srvPort = tcp.SourcePort;
 }

Z. Kwecka, BSc (Hons) Network Computing, 2006 124

 lock(sigSyncArray.SyncRoot)
 {
 System.Collections.IEnumerator myEnumerator = sigSyncArray.GetEnumerator();
 while (myEnumerator.MoveNext())
 {
 connection = (ConTrackingColl)myEnumerator.Current;
 if(connection.CheckSignature(cntIP,srvIP,cntPort,srvPort))
 {

 key = i;
 break;
 }//end if signature matches
 i++;
 }//end while
 }//end lock

 if (key < 0)
 {
 connection = new ConTrackingColl(cntIP,srvIP,cntPort,srvPort);
 connection.Add(aPacket);
 sigSyncArray.Add(connection);
 ListViewItem aItem = new ListViewItem();
 key = sigSyncArray.Count-1;
 aItem.SubItems[0].Text = System.Convert.ToString(key.ToString());
 aItem.SubItems.Add(System.Convert.ToString(cntIP));
 aItem.SubItems.Add(System.Convert.ToString(srvIP));
 aItem.SubItems.Add(System.Convert.ToString(cntPort));
 aItem.SubItems.Add(System.Convert.ToString(srvPort));
 lvCon.Items.Add(aItem);
 }//end if connection does not exist
 else
 {
 connection = (ConTrackingColl) sigSyncArray[key];
 }

 if(tcp.DestinationPort == 80)
 {
 if(connection.getLastDataSize() <= 10 && tcp.Data.Length > 10)
 {
 connection.Add(aPacket);
 if(device.PcapDumpOpened)
 {
 device.PcapDump(aPacket);
 }
 connection.setRequestedAck(tcp.AcknowledgmentNumber);
 }
 connection.setLastDataSize(tcp.Data.Length);
 }
 else if(tcp.SourcePort == 80
 && tcp.SequenceNumber == connection.getRequestedACK()
 && tcp.Data.Length > 10)
 {
 connection.Add(aPacket);
 if(device.PcapDumpOpened)
 {
 device.PcapDump(aPacket);
 }
 //sets lastDataSize to 0 if response is 3xx class
 string response_line = format.GetString(tcp.Data,0,10);
 int index = response_line.IndexOf(' ');
 //MessageBox.Show(response_line.Substring(index+1,1));
 if(response_line.Substring(index+1,1)=="3")
 {
 connection.setLastDataSize(0);

 }
 }

 }//end if source or destination port 80
 }//end of is TCP
 }

 /// <summary>
 /// Application closing event handler - ensures reading from the adapter is

stoppedprior closure

Z. Kwecka, BSc (Hons) Network Computing, 2006 125

 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>
 private void HTTPAnalyser_Form1_Closing(object sender,

System.ComponentModel.CancelEventArgs e)
 {
 if(mcStop.Enabled == true)
 {
 //axPacketXCtrl1.Stop();
 device.PcapStopCapture();
 device.PcapClose();
 }
 }

 /// <summary>
 /// Shows About messagebox
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>
 private void mhAbout_Click(object sender, System.EventArgs e)
 {
 MessageBox.Show("Author: Zbigniew Kwecka\nSupervisor: Dr William Buchanan");
 }

 /// <summary>
 /// cbAdapters selected handler - Changes active adapter
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>
 private void cbAdapters_SelectedIndexChanged(object sender, System.EventArgs e)
 {
 if(mcStop.Enabled == true)
 {
 //axPacketXCtrl1.Stop();
 device.PcapStopCapture();
 device.PcapClose();

 mcStop.Enabled = false;
 }
 if(cbAdapters.SelectedIndex >-1)
 {
 if(getNetConnections[cbAdapters.SelectedIndex] is NetworkDevice)
 {
 mcStart.Enabled = true;
 NetworkDevice netConn =

(NetworkDevice)getNetConnections[cbAdapters.SelectedIndex];
 device = netConn;
 device.PcapOnPacketArrival +=
 new SharpPcap.PacketArrivalEvent(device_PcapOnPacketArrival);
 }
 else
 {
 MessageBox.Show("Selected adapter \nis not suitable \nfor packet sniffing");
 cbAdapters.SelectedIndex = -1;
 }
 }
 }

 /// <summary>
 /// Menu File Exit - Terminates the application
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>
 private void menuItem3_Click(object sender, System.EventArgs e)
 {
 if(mcStop.Enabled == true)
 {
 //axPacketXCtrl1.Stop();
 device.PcapStopCapture();
 device.PcapClose();
 }
 Application.Exit();
 }

 /// <summary>

Z. Kwecka, BSc (Hons) Network Computing, 2006 126

 /// lvCon selected handler - displays packets of the selected conversation in
lvPackets

 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>
 private void lvCon_SelectedIndexChanged(object sender, System.EventArgs e)
 {
 if(lvCon.SelectedItems.Count > 0)
 {

 ConTrackingColl connection = (ConTrackingColl)

sigSyncArray[lvCon.SelectedIndices[0]];

 int vnCounter = 0;

 lbHeaders.Items.Clear();
 headerSyncArray.Clear();

 for(int i=0;i<connection.Count();i++)
 {
 TCPPacket oPacket = (TCPPacket) connection.GetPacket(i);

 buildHTTP(oPacket);
 vnCounter++;
 } //end for each

 lock(headerSyncArray.SyncRoot)
 {
 foreach(string header in headerSyncArray)
 {
 lbHeaders.Items.Add(header);
 }
 }

 }
 }

 /// <summary>
 /// Builds HTTP header list for the bottom lbHeaders
 /// </summary>
 /// <param name="oPacket"></param>
 public void buildHTTP(TCPPacket oPacket)
 {
 if(rbToBoth.Checked == true || (rbToSrv.Checked == true && oPacket.DestinationPort

== 80) || (rbToCnt.Checked == true && oPacket.SourcePort== 80))
 {
 Encoding ASCII = Encoding.ASCII;
 string headers = "";
 int tcpStart = 14 + 4*(Convert.ToInt16(oPacket.Bytes[14])& 0x0F);//ipstart +

header lenght
 int tcpLenght = (Convert.ToInt16(oPacket.Bytes[tcpStart+12])& 0xF0)/4;
 int ipTotal =

(Convert.ToInt16(oPacket.Bytes[16]))*256+(Convert.ToInt16(oPacket.Bytes[17]))
;

 if(tcpStart+tcpLenght<oPacket.Bytes.Length)
 {

 for(int j=tcpStart+tcpLenght;j<(14+ipTotal); j++)
 {
 if((Convert.ToInt16(oPacket.Bytes[j])>31 &&

Convert.ToInt16(oPacket.Bytes[j])<127)
 || Convert.ToInt16(oPacket.Bytes[j])==13 ||

Convert.ToInt16(oPacket.Bytes[j])==10)
 {
 headers = headers + (char)(Convert.ToInt16(oPacket.Bytes[j]));
 }
 else
 {
 headers = headers + (oPacket.Bytes[j]).ToString() + " ";
 }

 }

 Regex r = new Regex("\r\n");
 //string[] header_array = ;

 int a = 0;

Z. Kwecka, BSc (Hons) Network Computing, 2006 127

 foreach(string singleHeader in r.Split(headers))
 {

 if(singleHeader != "")//finds empty line - the start of the content
 {
 headerSyncArray.Add(singleHeader);
 a=0;
 }
 else
 {
 a++;
 headerSyncArray.Add(" ");
 if((a>1&&oPacket.DestinationPort==80)||(a>0&&oPacket.SourcePort==80))
 {

 headerSyncArray.Add("--------------------------------------");

 break;
 }
 }
 }
 }
 } //end if mathes the destination settings
 }

 private void mhDoc_Click(object sender, System.EventArgs e)
 {
 //insert code here
 }

 private void cbDump_CheckedChanged(object sender, System.EventArgs e)
 {
 if(cbDump.Checked == true)
 {
 if(ofdDump.ShowDialog() ==DialogResult.Cancel){
 cbDump.Checked = false;
 return;

 }
 }

 }

 private void mfOpen_Click(object sender, System.EventArgs e)
 {
 if(ofdReadDump.ShowDialog() == DialogResult.Cancel)
 return;

 }

 private void ofdDump_FileOk(object sender, System.ComponentModel.CancelEventArgs e)
 {
 OpenFileDialog ofd = (OpenFileDialog) sender;
 if(ofdDump.FileName != "")
 {
 dumpFile = ofdDump.FileName;

 }
 else
 {
 cbDump.Checked = false;
 }

 }

 private void ofdReadDump_FileOk(object sender, System.ComponentModel.CancelEventArgs

e)
 {
 OpenFileDialog ofd = (OpenFileDialog) sender;
 if(ofd.FileName != "")
 {
 mcStart.Enabled = false;
 gbAdapter.Enabled = true;
 //cbDump.Checked = false;
 cbAdapters.SelectedIndex = -1;
 // lvPackets.Items.Clear();
 lbHeaders.Items.Clear();

Z. Kwecka, BSc (Hons) Network Computing, 2006 128

 try
 {
 device = SharpPcap.GetPcapOfflineDevice(ofd.FileName);
 device.PcapOnPacketArrival +=
 new SharpPcap.PacketArrivalEvent(device_PcapOnPacketArrival);

 device.PcapOpen();
 device.PcapStartCapture();
 mcStop.Enabled = true;
 if(cbDump.Checked && dumpFile != "")
 {
 device.PcapDumpOpen(dumpFile);
 }
 else if(cbDump.Checked)
 {
 MessageBox.Show("Could not open Dump File");
 }
 }
 catch(Exception exception)
 {

 MessageBox.Show(exception.Message);
 }
 }
 else
 {
 MessageBox.Show("Wrong input file");
 }
 }
 }
}

ConTrackingColl.cs:
/*
 * Autor: Zbigniew Kwecka
 * Matric: 03008457
 * Contact: z.kwecka@gmial.com
 * Napier University, Edinburgh
*/

using System;
using System.Collections;

namespace HTTPAnalyser
{
 /// <summary>
 /// Summary description for ConColl.
 /// </summary>
 public class ConTrackingColl
 {
 private string cntIP;
 private string srvIP;
 private int cntPort;
 private int srvPort;
 private ArrayList packets;
 private ArrayList synPackets;
 private int lastDataSize;
 private long requestedACK;

 public ConTrackingColl(string aCntIP, string aSrvIP, int aCntPort, int aSrvPort)
 {
 //
 // TODO: Add constructor logic here
 //
 if(aCntIP != "" && aSrvIP != "" && aCntPort != 0 && aSrvPort != 0)
 {
 cntIP = aCntIP;
 srvIP = aSrvIP;
 cntPort = aCntPort;
 srvPort = aSrvPort;
 packets = new ArrayList();
 synPackets = ArrayList.Synchronized(packets);
 lastDataSize = 0;

Z. Kwecka, BSc (Hons) Network Computing, 2006 129

 requestedACK = 0;
 }

 }

 public int Count()
 {
 return synPackets.Count;
 }

 public object GetPacket(int aIndex)
 {
 if(aIndex < synPackets.Count)
 {
 return synPackets[aIndex];
 }
 else
 {
 return null;
 }

 }

 public void Add(object aPacket)
 {
 if(aPacket != null)
 synPackets.Add(aPacket);
 }

 public bool CheckSignature(string aCntIP, string aSrvIP, int aCntPort, int aSrvPort)
 {
 if(cntIP == aCntIP && srvIP == aSrvIP && cntPort == aCntPort && srvPort ==

aSrvPort)
 {
 return true;
 }
 else
 {
 return false;
 }
 }

 public int getLastDataSize()
 {
 return lastDataSize;
 }

 public void setLastDataSize(int aSize)
 {
 lastDataSize = aSize;
 }

 public long getRequestedACK()
 {
 return requestedACK;
 }

 public void setRequestedAck(long aACK)
 {
 requestedACK = aACK;
 }
 }
}

Z. Kwecka, BSc (Hons) Network Computing, 2006 130

Appendix 11 – Experimant 1 - Code Listing

Form1.cs:
/*
 * Autor: Zbigniew Kwecka
 * Matric: 03008457
 * Contact: z.kwecka@gmial.com
 * Napier University, Edinburgh
*/

using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;
using System.Text.RegularExpressions;
using Tamir.IPLib;
using Tamir.IPLib.Packets;
using System.Text;
using System.IO;

namespace HTTPAnalyser
{
 /// <summary>
 /// Form1 is tha main window of the HTTPAnalyser.
 /// </summary>
 public class HTTPAnalyser_Form1 : System.Windows.Forms.Form
 {
 private System.Windows.Forms.MainMenu mainMenu1;
 private System.Windows.Forms.ComboBox cbAdapters;
 private System.Windows.Forms.ListBox lbHeaders;
 private System.Windows.Forms.MenuItem mFile;
 private System.Windows.Forms.MenuItem mCapture;
 private System.Windows.Forms.MenuItem mcStart;
 private System.Windows.Forms.MenuItem mcStop;
 private System.Windows.Forms.MenuItem menuItem1;
 private System.Windows.Forms.MenuItem menuItem3;
 private ArrayList headerArray = new ArrayList(); //stores PacketCollections
 private ArrayList headerSyncArray; //synchronized wraapper
 private ArrayList sigArray = new ArrayList(); //stores Signatures
 private ArrayList sigSyncArray; //synchronized wraapper
 private System.Windows.Forms.ListView lvCon;
 private System.Windows.Forms.Label label1;
 private PcapDevice device;
 private PcapDeviceList getNetConnections;
 private System.Windows.Forms.CheckBox cbChip;
 private System.Windows.Forms.GroupBox gbDirection;
 private System.Windows.Forms.RadioButton rbToBoth;
 private System.Windows.Forms.RadioButton rbToSrv;
 private System.Windows.Forms.RadioButton rbToCnt;
 private System.Windows.Forms.MenuItem mhAbout;
 private System.Windows.Forms.MenuItem mhDoc;
 private System.Windows.Forms.CheckBox cbDump;
 private string dumpFile = "";
 private System.Windows.Forms.OpenFileDialog ofdDump;
 private System.Windows.Forms.MenuItem mfOpen;
 private System.Windows.Forms.GroupBox gbAdapter;
 private System.Text.ASCIIEncoding format = new System.Text.ASCIIEncoding();
 private System.Windows.Forms.OpenFileDialog ofdReadDump;
 private StreamWriter sw;
 private int limit = 0;
 private System.Windows.Forms.TextBox textBox1;

 /// <summary>
 /// Required designer variable.
 /// </summary>
 private System.ComponentModel.Container components = null;

 /// <summary>
 /// Default constructor
 /// </summary>
 public HTTPAnalyser_Form1()
 {

Z. Kwecka, BSc (Hons) Network Computing, 2006 131

 //
 // Required for Windows Form Designer support
 //
 InitializeComponent();
 }

 /// <summary>
 /// Clean up any resources being used.
 /// </summary>
 protected override void Dispose(bool disposing)
 {
 if(disposing)
 {
 if(mcStop.Enabled == true)
 sw.Close();
 if (components != null)
 {
 components.Dispose();
 }
 }
 base.Dispose(disposing);
 }

 /// <summary>
 /// The main entry point for the application.
 /// </summary>
 [STAThread]
 static void Main()
 {
 Application.Run(new HTTPAnalyser_Form1());
 }

 /// <summary>
 /// Form_Load - Sets up ListViews and checks for working network adapters
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>
 private void HTTPAnalyser_Form1_Load(object sender, System.EventArgs e)
 {
 headerSyncArray = ArrayList.Synchronized(headerArray);
 sigSyncArray = ArrayList.Synchronized(sigArray);

 //lvCon columns
 if(lvCon.Width/5 > 20)
 lvCon.Columns.Add("Connection", lvCon.Width /5-20 , HorizontalAlignment.Left);
 else
 lvCon.Columns.Add("Connection", lvCon.Width /5 , HorizontalAlignment.Left);
 lvCon.Columns.Add("ClientIP", lvCon.Width /5 , HorizontalAlignment.Left);
 lvCon.Columns.Add("ServerIP", lvCon.Width /5 , HorizontalAlignment.Left);
 lvCon.Columns.Add("ClientPort", lvCon.Width /5 , HorizontalAlignment.Left);
 lvCon.Columns.Add("ServerPort", lvCon.Width /5 , HorizontalAlignment.Left);

 //set menu items
 mcStop.Enabled = false;
 mcStart.Enabled = false;

 //Adaptersc collection
 getNetConnections = SharpPcap.GetAllDevices();
 for (int i = 0; i < getNetConnections.Count ; i++)
 {
 cbAdapters.Items.Add("(" + (i) + ") " + getNetConnections[i].PcapDescription);
 }
 cbAdapters.Invalidate();

 }

 /// <summary>
 /// Capture Menu Start Click - starts reading from the selected adapter
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>
 private void mcStart_Click(object sender, System.EventArgs e)
 {
 lbHeaders.Items.Clear();
 if(cbChip.Checked)
 {
 device.PcapOpen(false,1000);

Z. Kwecka, BSc (Hons) Network Computing, 2006 132

 }
 else
 {
 device.PcapOpen(true,1000);
 }
 device.PcapSetFilter("port 80");
 device.PcapStartCapture();
 mcStart.Enabled = false;
 mcStop.Enabled = true;
 gbAdapter.Enabled = false;
 if(cbDump.Checked && dumpFile != "")
 {
 device.PcapDumpOpen(dumpFile);
 }
 else if(cbDump.Checked)
 {
 MessageBox.Show("Could not open Dump File");
 }
 }

 /// <summary>
 /// Capture Menu Stop Click - stops reading
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>
 private void mcStop_Click(object sender, System.EventArgs e)
 {

 device.PcapStopCapture();
 device.PcapClose();
 cbAdapters.SelectedIndex = -1;
 mcStart.Enabled = false;
 mcStop.Enabled = false;
 gbAdapter.Enabled = true;
 }

 /// <summary>
 /// OnPacket event handler - builds collection of "conversations" and displays it in

lvCon
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="aPacket"></param>
 private void device_PcapOnPacketArrival(object sender, Packet aPacket)
 {

 if(aPacket is TCPPacket)
 {

 TCPPacket tcp = (TCPPacket)aPacket;
 if(tcp.DestinationPort == 80)//|| tcp.SourcePort == 80)//herefor the offline dump

handling
 {
 limit++;
 if(limit > 100)
 {
 sw.Close();
 device.PcapClose();
 //Application.Exit();
 }
 //int i = 0;
 //int key = -1;
 string cntIP;
 string srvIP;
 int cntPort;
 int srvPort;
 //ConTrackingColl connection;

 if(tcp.DestinationPort == 80)
 {
 cntIP = tcp.SourceAddress;
 srvIP = tcp.DestinationAddress;
 cntPort = tcp.SourcePort;
 srvPort = tcp.DestinationPort;
 buildHTTP(tcp);
 }
 else
 {

Z. Kwecka, BSc (Hons) Network Computing, 2006 133

 cntIP = tcp.DestinationAddress;
 srvIP = tcp.SourceAddress;
 cntPort = tcp.DestinationPort;
 srvPort = tcp.SourcePort;
 buildHTTP(tcp);
 }

 }//end if source or destination port 80
 }//end of is TCP
 }

 /// <summary>
 /// Application closing event handler - ensures reading from the adapter is

stoppedprior closure
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>
 private void HTTPAnalyser_Form1_Closing(object sender,

System.ComponentModel.CancelEventArgs e)
 {
 if(mcStop.Enabled == true)
 {
 //axPacketXCtrl1.Stop();
 device.PcapStopCapture();
 device.PcapClose();
 sw.Close();
 }
 }

 /// <summary>
 /// Shows About messagebox
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>
 private void mhAbout_Click(object sender, System.EventArgs e)
 {
 MessageBox.Show("Author: Zbigniew Kwecka\nSupervisor: Dr William Buchanan");
 }

 /// <summary>
 /// cbAdapters selected handler - Changes active adapter
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>
 private void cbAdapters_SelectedIndexChanged(object sender, System.EventArgs e)
 {
 if(mcStop.Enabled == true)
 {
 //axPacketXCtrl1.Stop();
 device.PcapStopCapture();
 device.PcapClose();

 mcStop.Enabled = false;
 }
 if(cbAdapters.SelectedIndex >-1)
 {
 if(getNetConnections[cbAdapters.SelectedIndex] is NetworkDevice)
 {
 mcStart.Enabled = true;
 NetworkDevice netConn =

(NetworkDevice)getNetConnections[cbAdapters.SelectedIndex];
 device = netConn;
 device.PcapOnPacketArrival +=
 new SharpPcap.PacketArrivalEvent(device_PcapOnPacketArrival);
 }
 else
 {
 MessageBox.Show("Selected adapter \nis not suitable \nfor packet sniffing");
 cbAdapters.SelectedIndex = -1;
 }
 }
 }

Z. Kwecka, BSc (Hons) Network Computing, 2006 134

 /// <summary>
 /// Menu File Exit - Terminates the application
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>
 private void menuItem3_Click(object sender, System.EventArgs e)
 {
 if(mcStop.Enabled == true)
 {
 device.PcapStopCapture();
 device.PcapClose();
 }
 Application.Exit();
 }

 /// <summary>
 /// lvCon selected handler - displays packets of the selected conversation in

lvPackets
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>
 private void lvCon_SelectedIndexChanged(object sender, System.EventArgs e)
 {
 if(lvCon.SelectedItems.Count > 0)
 {

 ConTrackingColl connection = (ConTrackingColl)

sigSyncArray[lvCon.SelectedIndices[0]];

 int vnCounter = 0;
 lbHeaders.Items.Clear();
 headerSyncArray.Clear();

 for(int i=0;i<connection.Count();i++)
 {
 TCPPacket oPacket = (TCPPacket) connection.GetPacket(i);

 buildHTTP(oPacket);
 vnCounter++;
 } //end for each

 lock(headerSyncArray.SyncRoot)
 {
 foreach(string header in headerSyncArray)
 {
 lbHeaders.Items.Add(header);
 }
 }

 }
 }

 /// <summary>
 /// Builds HTTP header list for the bottom lbHeaders
 /// </summary>
 /// <param name="oPacket"></param>
 public void buildHTTP(TCPPacket oPacket)
 {
 if(rbToBoth.Checked == true || (rbToSrv.Checked == true && oPacket.DestinationPort

== 80) || (rbToCnt.Checked == true && oPacket.SourcePort== 80))
 {

 Encoding ASCII = Encoding.ASCII;
 string headers = "";
 if(oPacket.Data.Length > 0)
 {
 byte [] b = oPacket.Data;
 headers = format.GetString(b);

 if((textBox1.Text != "" && headers.IndexOf(textBox1.Text)>-1)||textBox1.Text ==

"")
 {

 Regex r = new Regex("\r\n");
 int a = 0;
 int iteratorIndex = 0;

Z. Kwecka, BSc (Hons) Network Computing, 2006 135

 int index1;
 string separator = ":";
 string [] originalHeaders = r.Split(headers);
 string host = "Unknown";
 string agent = "Unknown";
 if(originalHeaders.Length>1)
 {
 string [] modifiedHeaders = new string[originalHeaders.Length-1];
 foreach(string singleHeader in originalHeaders)
 {

 if(singleHeader != "" && iteratorIndex > 0)//finds empty line - the start of

the content
 {
 if(singleHeader.IndexOf(':')>0)
 {

 string [] lineSplit = singleHeader.Split(separator.ToCharArray(),2);
 modifiedHeaders[iteratorIndex-1] = lineSplit[0]+"\t\t" +

lineSplit[1];
 }
 else
 {
 modifiedHeaders[iteratorIndex-1] = singleHeader+"\t\t";
 }
 //modifiedHeaders[iteratorIndex-1] = singleHeader;

 a=0;
 }
 else if(singleHeader == "")
 {

 a++;
 break;
 }
 iteratorIndex++;
 } //end for each single header
 int iter2 = 0;
 foreach(string modifiedHeader in modifiedHeaders)
 {
 if(modifiedHeader != "" && modifiedHeader != null)
 {

 headerSyncArray.Add(modifiedHeader);
 lbHeaders.Items.Add(modifiedHeader);
 if(device.PcapOpened)
 sw.WriteLine(modifiedHeader);
 }
 else
 {
 break;
 }
 iter2++;

 }//end foreach modified header
 }//end if more than one line in headers
 }//end if textBox1 matches
 } //end if lenght > 0
 } //end if mathes the destination settings
 }

 private void mhDoc_Click(object sender, System.EventArgs e)
 {
 //insert code here
 }

 private void cbDump_CheckedChanged(object sender, System.EventArgs e)
 {
 if(cbDump.Checked == true)
 {
 if(ofdDump.ShowDialog() ==DialogResult.Cancel){
 cbDump.Checked = false;
 return;

 }

Z. Kwecka, BSc (Hons) Network Computing, 2006 136

 }

 }

 private void mfOpen_Click(object sender, System.EventArgs e)
 {
 if(ofdReadDump.ShowDialog() == DialogResult.Cancel)
 return;

 }

 private void ofdDump_FileOk(object sender, System.ComponentModel.CancelEventArgs e)
 {
 OpenFileDialog ofd = (OpenFileDialog) sender;
 if(ofdDump.FileName != "")
 {
 dumpFile = ofdDump.FileName;

 }
 else
 {
 cbDump.Checked = false;
 }

 }

 private void ofdReadDump_FileOk(object sender, System.ComponentModel.CancelEventArgs

e)
 {
 OpenFileDialog ofd = (OpenFileDialog) sender;
 if(ofd.FileName != "")
 {
 mcStart.Enabled = false;
 gbAdapter.Enabled = true;
 cbAdapters.SelectedIndex = -1;
 lbHeaders.Items.Clear();
 try
 {
 device = SharpPcap.GetPcapOfflineDevice(ofd.FileName);
 device.PcapOnPacketArrival +=
 new SharpPcap.PacketArrivalEvent(device_PcapOnPacketArrival);
 sw = new StreamWriter(ofd.FileName + "_Exp1.txt", true, Encoding.ASCII);
 sw.WriteLine("HeaderName\t\tHeaderValue");
 sw.WriteLine("----------\t\t-----------");
 device.PcapOpen();
 device.PcapStartCapture();
 mcStop.Enabled = true;
 if(cbDump.Checked && dumpFile != "")
 {
 device.PcapDumpOpen(dumpFile);
 }
 else if(cbDump.Checked)
 {
 MessageBox.Show("Could not open Dump File");
 }
 }
 catch(Exception exception)
 {

 MessageBox.Show(exception.Message);
 }
 }
 else
 {
 MessageBox.Show("Wrong input file");
 }
 }
 }
}

Z. Kwecka, BSc (Hons) Network Computing, 2006 137

Appendix 12 – Experiment 2 & 3 - Code Listing

Methods of Form1.cs of HTTP Experiment 2 & 3, which differ from Experiment 1:

 /// <summary>
 /// Builds HTTP header list for the bottom lbHeaders
 /// </summary>
 /// <param name="oPacket"></param>
 public void buildHTTP(TCPPacket oPacket)
 {
 if(rbToBoth.Checked == true || (rbToSrv.Checked == true && oPacket.DestinationPort

== 80) || (rbToCnt.Checked == true && oPacket.SourcePort== 80))
 {

 Encoding ASCII = Encoding.ASCII;
 string headers = "";
 if(oPacket.Data.Length > 0)
 {
 byte [] b = oPacket.Data;
 headers = format.GetString(b);
 if(true)//(textBox1.Text != "" && headers.IndexOf(textBox1.Text)>-

1)||textBox1.Text == "")
 {
 Regex r = new Regex("\r\n");
 int a = 0;
 int iteratorIndex = 0;
 string separator = ":";
 string [] originalHeaders = r.Split(headers);
 string code = "";
 string desc = "";
 string filtering = "";
 if(originalHeaders.Length>0)
 {
 int index1 = originalHeaders[0].IndexOf(' ');
 int index2 = originalHeaders[0].IndexOf(' ',index1+1);
 code = originalHeaders[0].Substring(index1,index2-index1).Trim();
 desc = originalHeaders[0].Substring(index2,originalHeaders[0].Length-

index2).Trim();
 if(textBox1.Text == oPacket.SourceAddress.ToString())
 {
 filtering = "1";
 }
 else
 {
 filtering = "0";
 }
 lbHeaders.Items.Add(filtering+"\t"+code+"\t"+desc);
 if(device.PcapOpened)
 sw.WriteLine(filtering+"\t"+code+"\t"+desc);
 }//end if more than one line in headers
 }//end if textBox1 matches
 } //end if lenght > 0
 } //end if mathes the destination settings
 }

 private void ofdReadDump_FileOk(object sender, System.ComponentModel.CancelEventArgs

e)
 {
 OpenFileDialog ofd = (OpenFileDialog) sender;
 if(ofd.FileName != "")
 {
 mcStart.Enabled = false;
 gbAdapter.Enabled = true;
 cbAdapters.SelectedIndex = -1;
 lbHeaders.Items.Clear();
 try
 {
 device = SharpPcap.GetPcapOfflineDevice(ofd.FileName);
 device.PcapOnPacketArrival +=
 new SharpPcap.PacketArrivalEvent(device_PcapOnPacketArrival);
 sw = new StreamWriter(ofd.FileName + "_Exp2.txt", true, Encoding.ASCII);
 sw.WriteLine("B\tCode\tDescription");
 sw.WriteLine("-\t----\t-----------");
 device.PcapOpen();

Z. Kwecka, BSc (Hons) Network Computing, 2006 138

 device.PcapStartCapture();
 mcStop.Enabled = true;
 if(cbDump.Checked && dumpFile != "")
 {
 device.PcapDumpOpen(dumpFile);
 }
 else if(cbDump.Checked)
 {
 MessageBox.Show("Could not open Dump File");
 }
 }
 catch(Exception exception)
 {
 MessageBox.Show(exception.Message);
 }
 }
 else
 {
 MessageBox.Show("Wrong input file");
 }
 }

