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Abstract. This paper presents a systematic solution to the problem of
using ICMP tunneling for covert channel. ICMP is not multiplexed via
port numbers and the data part of the ICMP packet provides consider-
able bandwidth for malicious covert channels. These factors make it an
integral part of many malicious software like remote access and denial of
service attack tools. These tools use ICMP to establish covert commu-
nication channels. In this paper a stateless model is proposed to prevent
ICMP tunneling. A Linux kernel module was implemented to demon-
strate the proposed stateless solution. The module enforces a fixed pay-
load policy for ICMP packets and virtually eliminates ICMP tunneling
which arises due to the data carrying capability of ICMP. The perfor-
mance impact on end hosts and routers due to the stateless monitoring
model is described.

1 Introduction

The Internet and the World Wide Web (WWW) have had a phenomenal growth
during the past few years, interconnecting average users and average user to
expert users who are not always good neighbors. Many Internet attacks, both
simulated and real, have been described by the security community and have
appeared in mainstream media. Two factors that have contributed to widespread
Internet attacks are the lack of security as an initial design consideration for the
Internet and the average user’s inadequate knowledge of threats faced every time
their computer is connected to the Internet. Although the attacks vary on their
form, most of them have a common goal of leaving a back door open for a future
communication with a victim machine.

Internet communication is based, in addition to the Internet Protocol (IP),
on three basic protocols: Transmission Control Protocol (TCP), User Datagram
Protocol (UDP), and Internet Control Message Protocol (ICMP). Firewalls, de-
pending on the services required by their internal networks, totally block or
partially filter Internet packets using one or more of these protocols. An at-
tacker has to decide which protocol or protocols they will use to communicate



with a backdoor installed on a host that has been compromised. The attacker’s
objective is to make the traffic generated by the backdoor appear as much as
possible to be normal traffic so it is not blocked by the firewall. TCP and UDP,
the most widely used protocols by application servers, are the ones that can be
abused with the greatest chance of allowing the traffic to pass through. TCP
and UDP packets can carry information either manipulating unused parts of the
packet or making the payload look legitimate. For example, various header fields
like ACK flags and port number can be used to establish covert communication
using TCP or UDP [10]. Knowing about the possibility of this kind of attacks,
firewalls like IP Filter can prevent covert channels that make use of TCP/UDP
header fields for its communication. IP Filter [9] uses stateful packet filtering.
The state engine not only inspects the presence of ACK flags in TCP packets
but also includes sequence numbers and window sizes in its decision to block or
to allow packets. However, IP Filter does not check the content of ICMP packets
and hence fails to prevent covert channels that can arise due to misuse of the
payload of ICMP packets. Therefore, although TCP and UDP continue to be
a subject for studies in vulnerabilities, ICMP also provides several means for
stealth traffic.

ICMP tunneling was first reported in the 1997 [8] [7]. Initial versions of ICMP
tunneling enabled an attacker to execute remote commands and steal informa-
tion from a compromised machine. Although ICMP tunneling has been used for
user-user and user - machine communication, its most damaging usage has been
for coordination of distributed denial of service attacks. In early February 2000,
a distributed denial of service attack was launched against Yahoo, Amazon, eBay
and other popular Internet sites. The attacks on Yahoo, eBay, Amazon.com and
E*Trade resulted in a loss of approximately $1.2 billion, according to The Yan-
kee Group, a Boston consulting firm. It is reported in [11] that almost all of
the tools used on the distributed denial of service (DDOS) attacks on Yahoo,
Amazon, eBay, and E*Trade internet sites, have used ICMP for covert communi-
cations between the DDOS clients and the attacker’s handler program. Some of
the most widely known distributed denial of service attack tools like Tribe Flood
Net2K [1] and Stacheldraht rely on ICMP tunneling to establish communication
channels between the compromised machines and the hacker’s machine. Since
ICMP tunneling is very simple to deploy and can cause a significant amount of
damage it has been classified as a high risk security threat by Internet Security
Services [4] and SANS [12].

The rest of the paper is organized as follows. Section 2 presents the solutions
that are currently being used to prevent ICMP tunneling. Section 3 presents
experimental result of a modified application using ICMP tunneling. Section 4
discusses the proposed solution and its performance impact on routers and on
end hosts. Finally, in section 5 conclusion and future work are presented.



2 ICMP Tunneling Vulnerability

Most types of ICMP packets like echo_request/echo_reply (commonly used for
ping) have the capability of carrying data in its payload. This data carrying
capability of ICMP can be used to establish covert channels. Various malicious
applications like ”Loki” [8] [7] use the data carrying capability of ICMP to es-
tablish covert channels. The use of ICMP for covert communication presents one
big advantage over the use of TCP or UDP. ICMP packets use fewer parameters
than TCP or UDP. For example, ICMP does not use port numbers. Port number
gives an additional parameter for firewalls to filter suspicious traffic. The first
64 bits of the original IP datagram’s data are used by the host to match ICMP
error messages to the appropriate application level process. The simplicity and
lack of parameters used in ICMP have made it popular for hackers designing
tools that require covert communication.

Many solutions have been proposed to prevent ICMP tunneling. Some of the
proposed solutions currently being used to prevent ICMP tunneling are discussed
in the following paragraphs.

Disable all ICMP traffic. Disabling all ICMP traffic prevents covert commu-
nication using ICMP packets. However, ICMP messages are required to check
the status of a network and communicate IP packet errors. Therefore, disabling
all ICMP messages prevents covert communication, but also prevents users on
one side of the network protected by the firewall to check the status of machines
on the other side or receive valid ICMP packets related to transient network
problems. This limitation is not acceptable in some environments and is not a
general solution.

Disable part of the ICMP traffic allowed by a firewall. For example, disable
incoming echo_request, while allowing outgoing echo_request. If naively imple-
mented, policies like this will still allow covert communication, limiting only
which host needs to start a communication. In addition, outgoing ICMP pack-
ets could be used to establish a unidirectional channel to send compromised
information. A modified server can periodically send ICMP packets containing
sensitive information. For example, an e- commerce web server could switch to
ICMP mode of communication for 10 second after every 30 minutes. During
these 10 seconds it could send to a receiving machine, credit card information
that has been captured during the previous 30 minutes.

Limit the size of ICMP packets. Large ICMP packet can be seen as suspi-
cious by an IDS system that could inspect the ICMP packet and raise an alarm.
However, since there are legitimate uses for large ICMP packets it is difficult to
determine if a large ICMP packet is malicious. For example, large echo_request
packets are used to check if a network is able to carry large packets. Differentiat-
ing legal from illegal large packets is even more difficult if covert communication
is encrypted. An IDS needs to be able to determine if a packet is encrypted or
not. Distinguishing encrypted from non-encrypted packet still remains an open
interesting research problem.

Preserve the state of ICMP packet to check for covert channel. Some firewalls
like Raptor use state preservation technique to prevent ICMP tunneling. A dae-



mon called pingd runs as an application process on the firewall. If the firewall is
the target of ping then pingd responds to the client normally. If the firewall is
not the target of ping then pingd will construct a new echo request with a new
sequence number, new time to live, and a new payload (with new checksum).
When the reply is received it is ensured that the data is the same as what had
been sent, and the sequence number and responders IP address are valid and as
expected. After a successful check the firewall transmits the echo_reply to the
original client. Although state preserving technique can easily prevent ICMP
tunneling, it is a computing intensive process. Therefore, currently application
level personal firewalls do not use state preserving techniques. Application level
personal firewalls [8] running on personal computers only monitor inbound and
outbound Internet traffic and alerts the user when an application is attempting
access their personal computer or their machine is trying to access something on
the Internet. As per the configuration rule, personal firewalls can either block
ICMP or allow it irrespective of the fact that the ICMP is being used for tunnel-
ing. Protecting personal machines from ICMP tunneling is very important since
there are a large number of personal machines connected to high speed links
which in turn can be used to launch DDOS attacks.

Although some of the solutions presented above can be acceptable, ideally
the prevention of ICMP misuse due to their data carrying capabilities should be
able to provide the following.

— It should enable users to use ICMP messages for administrative purposes
freely.

— It should allow large size of ICMP so users can find out if the network can
carry large size of data packets.

— It should be able to prevent personal machines that are not behind powerful
state preserving firewalls from being used as DDOS slaves.

3 ICMP Tunneling: Case Study

An application that uses ICMP tunneling was implemented and studied to better
understand the ICMP tunneling efficiency and capabilities. The application, a
remote access tool, is described in this section.

Remote Access Tools allows a user to access data and control a remote com-
puter. Back Orifice (BO2K) [2] was used to test ICMP tunneling due to the
easy availability of its source code. The communication infrastructure of BO2K
was moved to ICMP. An ICMP echo_request contained the remote command
issued by a client of BO2K and an echo_reply contained the information from
the machine that was running BO2K server. Strong authentication and encryp-
tion was also implemented to evaluate the impact of these features. The Bellovin
and Merritt [2] key exchange known for its strong authentication and establish-
ment of session keys was implemented in the BO2K communication protocol.
The session key generated by the Bellovin and Merritt protocol was then used
to encrypt the data using 3DES. The server and the client of the modified BO2K



were installed on a pair of personal computers. The machines were connected
via the Internet and were using the personal firewall as their application level
firewall.

3.1 Results

Since ICMP uses raw sockets for its communication, root (administrator) priv-
ileges are required. For the experimentation purposes it was assumed that the
root privileges could be obtained. More details about getting the root permission
can be found in [3]. However, in most of the commonly used operating systems
like Windows ME/98 root permission is not required. In addition, it was also
assumed that the firewall is customized to allow ICMP packets.

The personal firewall used in the machines was set up such that it raise an
alarm in the form of a pop up window each and every time it sees an incoming
or an outgoing data packet. For an incoming connection, the pop up window
displays the IP address of the machine initiating the connection and the pro-
tocol, which is being used for the connection. For an outgoing connection, the
pop up window shows the IP address of the destination machine along with the
protocol used for the communication. A server and a client BO2K were installed
on machines running the Windows ME operating system. Snapshots of the con-
nection initiation steps and the real time interaction steps are omitted due to
limited space. However as per our observation the ICMP mode of communica-
tion provides false information to the firewall. Even though ICMP packets are
being sent by the application, the firewall infers them to be sent by the op-
erating system. The real time interactions enabled by the modified application
shows that ICMP tunneling is highly efficient and can be used in many malicious
applications. Even though ICMP packets are being used by the application, the
personal firewall infers these ICMP packets as the control messages issued by
the operating system.

4 Proposed Solution

The solution to prevent ICMP tunneling should:

— Enable administrators to use ICMP messages freely.
— Enable large size of ICMP to be used.
— Work for every machine connected to the Internet.

Instead of the expensive and centralized state preserving model used by indus-
trial firewalls, a simple stateless model is proposed to prevent tunneling. The
stateless model caters to the above mentioned requirements. The proposed solu-
tion, which requires a common agreement upon the allowable payload of ICMP
messages, should be implemented in the ICMP protocol implementation of the
kernel. It should be enforced either when an ICMP packet is going up the net-
work stack or when it is going down the stack. The solution uses the algorithm
shown in Figure 6. This algorithm first scans the content of the payload of the



ICMP packet against a predefined set. If any malicious content is found in the
payload an alarm is raised. The algorithm then zeros out the entire data carrying
field irrespective of the ICMP type.

Linux was chosen for the implementation of the proposed solution because
of its freely available source code. The Netfilter framework was used to extend
existing functionality within the kernel. Netfilter [15] is a set of hooks inside
the Linux 2.4.x kernel’s network stack which allows kernel modules to register
callback functions, called when a network packet traverses one of the predefined
hooks. The handlers will execute as if they were part of the packet processing
pipeline directly. Netfilter allows a module to register the IP_ POST_ROUTING
hook that is called after a packet has been through the routing table and right
before it is delivered to the outgoing interface (typically an Ethernet device).
The ICMP monitor (icmp-mon) is registered with the IP_.POST_ROUTING
handler, and thus allowing icmp_mon to process all locally outbound packets
as well as forward packets since all packets go through the post routing hooks.
The icmp_mon module at runtime calls icmp_mon_erase and icmp_mon_scan to
perform a combination of actions.

— icmp_mon_erase; Zeros out unused portions of ICMP messages.
— icmp _mon _scan; Scans packets for predefined strings

The icmp_mon_scan module raises an alarm when it detects some suspicious
content in the data portion of the packet. The packet is then forwarded to the
icmp_mon_erase module. Irrespective of the fact that it is carrying some malicious
strings the data field of ICMP is filled with zeros. Thus the proposed solution can
stop even encrypted traffic. Since the packet is analyzed when it is outbound,
the proposed solution will work in the case of packets that are locally generated
or are forwarded on behalf of another machine. Hence this patch can work in
machines that are acting as a gateway, router, sensor or as a host.

ICMP_MON (ICMP packet)
Begin
input : ICMP Packet
for every ICMP packet
Begin
icmp_mon_scan (data portion of ICMP packet)
If the data field matches with the signature
Raise an alarm.

End
icmp_mon_erase{data portion of the ICMP packet}
Begin
Fill in the data portion with zeros.
End
End

The module can be compiled directly into a monolithic kernel. The filter hooks
are registered when the modules init routines are called at the boot time if it



is compiled into the kernel. The proposed module cannot be bypassed by user
space applications since it does not interact with any. Iptables is the user space
command that is used to modify Linux firewalling rules. Iptables is typically
used to add and remove filtering rules pertaining to regular TCP/IP packets.
Because icmp_mon is not part of iptables, the only way to disable the scanning
is to remove the module (using rmmod), which is not possible in this scenario
since the module is statically compiled into a monolithic kernel. When using a
monolithic kernel the machine would have to be rebooted into a different kernel to
disable the icmp_mon from operating. This is not trivial to do on a compromised
host machine. In addition, if the proposed patch is running on a gateway or at
a sensor that is monitoring network traffic then stronger restrictions and event
logs can make this option even more difficult to attain.

The proposed solution will make it impossible for an adversary to setup an
ICMP covert communication channel on a compromised machine since packets
are scanned and erased by the kernel. The stateless model implemented in the
kernel benefits from the fact that there is no way to turn off this functionality by
simply terminating or modifying an application, which could easily be done on a
compromised machine if packets were queued to a user-space intrusion detection
application. The proposed stateless model of scanning and erasing the data fields
can be implemented in the kernel used by hosts, sensors, gateways and routers
so as to completely eliminate ICMP tunneling.

4.1 Results of the Proposed Solution

The icmp_mon scanning and erasing times were tested on ICMP ECHO request
packets. The testing machine was a Dual Pentium IIT 450 MHz machine with
512 MB of RAM. Internally all network packets are time stamped upon arrival
in the Linux kernel. The time from arrival up to when the icmp_mon routines
are referred as the ”Kernel Time”, or specifically the time the packet has been
traversing inside the kernels packet processing. The total time spent inside the
icmp_mon routine, ignoring the overhead caused by the netfilter hooks will be
referred to as the ”erase/scan time” depending on the operation performed.

The first test was implemented in the kernel of a host machine. In the second
test the proposed module was implemented in the kernel of a machine acting as
a router. For each of these tests the time to process packets of fixed size in the
kernel was compared with the scan and erase time. The tests on host machine
and router were again repeated with the packets of variable sizes. All the tests
were performed using the standard Unix ”ping” command; it was typically run
as follows ”ping -¢ Count -s Size -f host”, were the Count and Size were either
fixed or varied depending on the test. The ”-f” option was used to flood ping,
the icmp_mon module would sum the processing times for a given number of
packets (corresponding to the Count given to the ping command) then the mean
time was calculated after the given number of packets had passed through. The
gettimeofday() call was used to get the time, on the Intel platform the granularity
available is microseconds.
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Fig. 1. Scanning vs. Kernel Time for Variable Size Packets

The graph shown in figure 1 presents the performance cost associated with
the string scanning routines of the icmp_mon. The size of the packet was in-
creased from 100 bytes to 1200 bytes and time to process 1000 packets of each
size was measured and plotted in the graph shown in figure 1. This test was per-
formed both for the router and for the end host. The simple words searched for
were “passwd”, "root”, "tmp” ,”etc”, "Is” , and ”dir”. They were never present
in the ping packets thus the scans never raised any alarms. As per the graph for
the router the scan time is more than the time to process packet. The machine
is simply receiving the packets in one interface and sending them out another,
which makes the kernel time incredibly small. In the case of the end host the
time to process a packet increases with the packet size, however the processing
time is small as compared to the kernel time. The scan time shows a marginal
increase, however it remains constant when the size of packet is increases from
700 bytes to 1200 bytes.
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Fig. 2. Scanning vs. Kernel Time for Fixed Size Packets



The graph shown in figure 2 shows the time taken for scanning the ICMP
payloads of fixed size of 84 bytes. For this test the number of packets was in-
creased from 10 to 10000 and the scan time was plotted. A 2 microsecond increase
was observered when the number of packets increased from 1000 to 10000. As
the number of back to back packets increased (due to the ping flood) the ker-
nel time per packet decrease. The kernel time goes down because the flood of
packets allows the kernel routines to grab multiple packets back to back without
returning to a different routine (thus loosing time due to context switching).
When the machine is acting as a router the scan time is again more than the
time to process a packet by the kernel. The scan time shows a marginal increase
as the number of packet increases.
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Fig. 3. Erase Time vs. Kernel Time for Variable Size Packets

The result showing in figure 3 gives the average time spent inside the kernel
and the icmp_mon _erase routines when the patch is running on a router and on
and end host. This test was performed by keeping the number of ICMP packet
to 1000 packets for each size and increasing the size of packets from 84 bytes
to 1200 bytes. As the packet size increases, the time to process packet inside
the kernel for the end host increases. This increase is almost linear. Size has no
effect on the processing time for the end routers. The time is contrasted against
and increasing packet size, starting with 84 byte IP packets (54 unused/padded
bytes inside the PING), the default ”ping” packet size. The time spent increases
marginally up to about 700 byte packets. As the size of the packet increases erase
time increases. Erase time increases by around 5 microsecond in routers and
around 3 microseconds for end host kernel when the size of packet is increased
from 84 bytes to 1200 bytes.

The result shown in figure 4 shows the performance result of the erase time
contrasted with the fixed packet size. As the number of back to back packets
increased (due to the ping flood) the kernel time per packet shows a slight
decrease but the erase time shows a very low variance. The decrease in the



45

T T T T
Endhost Erase Time —+—
40 Endhost Kernel Time ---x--- |

Router Erase Time ---3---
Router Kernel Time &

35 k-

30

25

20

Time (usec)

15

10

S

0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of Packets

Fig. 4. Erasing Time vs. Kernel Time for Fixed Size Packets

kernel time is due to the loss in context switching. The increase in the time
to erase 10000 packets as compared to 1000 packets is very small and can be
considered constant. From these tests following conclusions can be made.

— In the case of routers the packets get the initial timestamp after it has been
fully received by the driver. Then the kernel simply looks at the ip dst field
and adds the packet buffer to the output queue, which is a simple pointer
assignment. Thus the total kernel processing time is marginal, extremely
small, a few micro seconds as compared to the scan and erase time. This
means that the overhead for scanning/erasing is much higher in comparison.

— In the case of end hosts the scan and erase time is very small as compared
to the total time to process the packet.

— For fixed size packets the scan and erase time remains constant or shows a
very low variance as the number of packets increases.

— As the packet size increases from 84 bytes to 1200 bytes the scan and erase
time increases. The worst case increase was observed to be 5 microseconds.

5 Conclusion and Future Work

ICMP tunneling can be used in an efficient way by malicious software. To prevent
ICMP tunneling kernel modifications were proposed to enforce a fixed predefined
payload policy for ICMP packets. If the proposed solution becomes an integral
part of kernels that runs as host, gateways, and DMZ routers then it will be
impossible to establish ICMP tunnels. Another way to remove ICMP tunneling
could be to simply truncate the data field of ICMP. However truncation of the
data field will require amendments in the RFC [6] [5] that supports data field
for ICMP. Scanning and erasing of the ICMP data field is compliant with RFC
and prevents ICMP tunneling irrespective of the type of firewall used.

The results show that simply marking out unused and potentially dangerous
portions of ICMP packets is a straightforward task and requires little overhead



on a modest system. Simple string scans are also not costly and can be done
to test for unencrypted covert communication. This is highly recommended for
the end hosts where it offers minimal overhead on the system. For routers it
can be expensive. However, weighted against the potential security risks the
marginal overhead can be worth the security benefits in some cases. Moreover
if the proposed solution became an integral part of kernels in operating systems
like Solaris, Windows, and Linux, which runs on host machines; then the routers
will not have to examine all the ICMP packets that it comes across. The router
could in this case adopt some sort of probabilistic scheme to check some ICMP
packets and allow the other packets to pass through. This would reduce the load
on the routers.

This work presents some of our initial steps to prevent ICMP tunneling. In
this work covert channel due to the data carrying capability of echo_request/echo_reply
was considered. Various others fields in TCP, UDP, IPv4, IPv6 and ICMP can
be the potential candidate for the establishment of covert channel. Ongoing work
explores the fields in every protocol and proposes the use of either stateless or
stateful model for the removal of covert channel.
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