
20 Years of Covert Channel Modeling and Analysis

Jonathan Millen
SRI International

Computer Science Laboratory
Menlo Park, CA 94025

Abstract

Covert channels emerged in mystery and departed in
confusion.

1. The Paradox

My own initiation into the existence of covert channels
came in a meeting at MITRE with the development team
of the PDP-11/45 Brassboard Kernel, an experiment in the
design of a multilevel security kernel. This was during the
era when secure UNIX projects were going on, as well as
secure Multics. Lee Schiller, the kernel designer, was ex-
plaining how a high-level process could signal information
by using up the disk quota, which was detectable by a lower-
level process. I had just finished proving with mathematical
exactitude that the kernel satisfied the Bell-LaPadula model.
How could this happen? It was profoundly disturbing to an
impressionable youngster.

2. Storage and Timing Channels

Covert channels became known to the community
largely due to Lampson’s “Note on the Confinement Prob-
lem,” which introduced the term “covert channels” but re-
stricted its use to a subclass of leakage channels that ex-
cluded storage channels and “legitimate” channels. Nowa-
days, we call storage channels and timing channels covert
channels, and call legitimate channels examples of informa-
tion hiding. This usage reflects our advanced modern under-
standing of the problem, or it would if we could figure out
the difference between storage and timing channels. That
would have been easier if Schaefer hadn’t come up with the
disk-arm channel, which Wray described as a timing chan-
nel with a storage exploitation. Or maybe it was a storage
channel with a timing exploitation.

Incidentally, I won’t attempt to give references for the
work I’m misrepresenting, since there is not enough space

here. But you can find most of them in Virgil Gligor’s
Covert Channel Analysis guideline.1

3. Information Hiding

Covert channels are a means of communication between
two processes that are not permitted to communicate, but
do so anyway, a few bits at a time, by affecting shared re-
sources. Information hiding is slightly different: the two
communicating parties are allowed to talk, but the content
is censored and restricted to certain subjects. The trick is
to “piggyback” some contraband data invisibly on the legit-
imate content. The canonical example of this is to use the
low-order two bits of each pixel in a picture for your secret
message, since no one would notice if they were changed.
When a similar idea was applied to smuggle information
in network headers, we called it a network covert channel,
mostly because the term “information hiding” hadn’t been
invented yet.

Then the crypto crowd came along with subliminal chan-
nels. For example, signalling a bit by choosing one of two
keys to sign a permitted message. These channels share all
the worst features of covert channels and information hid-
ing: you get only a few bits at a time, and if the censors find
out you’re doing it, they cancel your service.

4. Modeling

Research in covert channels split up into four disciplines:
explaining them, finding them, measuring them, and mit-
igating them. Explaining them meant coming up with a
model that, unlike access control models, recognized their
existence. Information flow models, like Dorothy Den-
ning’s lattice model, were among the first, but because
they operated at the high-level language level, they over-
estimated flows. They found covert channels that weren’t
there. These were informally called “formal flows.”

1National Computer Security Center, “A Guide to Understanding
Covert Channel Analysis of Trusted Systems,” NCSC-TG-030, November
1993, available at http://www.radium.ncsc.mil/tpep/library/rainbow/



Noninterference models conveyed a better approxima-
tion to the actual set of covert channels. Their main draw-
back was that they were defined only on abstract automata.
In order to apply them to real systems, we needed “unwind-
ing theorems,” which were characterized by conditions on
state transitions. The similarity of a state transition diagram
to a game of “cat’s cradle” must have suggested this ter-
minology. The problem with using unwinding theorems is
that you had to identify a suitable “view” function, and if
you couldn’t find the best one, you ended up with formal
flows again. Despite this practical problem, the theory of
noninterference was very popular, and spawned versions for
all kinds of computational models in countries all over the
world, leading to international cooperation and workshops
in scenic places, where we had all the views we needed.

5. Searching

Information flow analysis was fairly successful, overes-
timates notwithstanding, as a way to search for covert chan-
nels in secure operating systems. Tools like the MITRE
flow analyzer, The Gypsy flow analyzer, Ina Flo/MLS, and
the SRI HDM flow analyzer were developed. Unfortu-
nately, they analyzed formal specifications rather than code,
and no real programmer liked to write formal specifications,
so they were used only a few times. The Shared Resource
Matrix method was better liked, because it was possible
(though not recommended) to exercise it with nothing more
than a command summary.

6. Measuring

Once some covert channels were identified, their seri-
ousness could be determined, in part, by estimating their
bandwidth in bits per second. The fact that bandwidth is a
property of analog communication, measured in hertz, gives
some indication of the rigor of this process. One reason for
estimating covert channel rates was that the National Com-
puter Security Center had evaluation requirements on them.
Actually, there were never any requirements, just guide-
lines, and they were constantly being expanded and revised.
The Orange Book suggested that a leakage rate of 100 bits
per second should be considered high, since “many termi-
nals” ran at that rate. They were thinking of ASR-33 tele-
types, of which there aren’t many nowadays. It is also hard
to think of 100 bits per second as high, now that we know
that there are hardware-based channels (for example, bus-
contention channels) of thousands of bits per second, which
are nearly unavoidable. On the other hand, your most valu-
able information is probably your 512-bit encryption key;
how long is that going to be kept secret even at one bit per
second?

7. Mitigating

There have been efforts to design or redesign computer
systems to reduce or eliminate covert channels. One tech-
nique is called “fuzzy time.” The idea is to make the sys-
tem lie a little, randomly, about what time it is, so that the
real-time clock (which should now perhaps be called the
unreal-time clock) would be less useful for implementing
timing channels. It also has the advantage that with 50%
probability it delays the Y2K problem by several microsec-
onds. Another technique is the NRL Data Pump, which sup-
ports reliable communication from low-level to high-level
processes. The covert channel implicit in high-to-low ac-
knowledgements is reduced by inserting random delays. I
would have called this “fuzzy delivery,” but no one asked
me. One of the simplest solutions I’ve seen implemented is
an adjustable system parameter that increases the execution
time of every system call by a given number of millisec-
onds. Crank it up high enough, and you can bring your
covert channel rate down as low as you like. There was an
idea by Proctor and Neumann to build a system for efficient
multilevel data sharing from a disk server, with zero covert
channels. It was never built, probably because no poten-
tial sponsor wanted to give up the comforting cliche that it
couldn’t be done.

8. Ontology

The one question that everyone asks about covert chan-
nels is whether they are a real threat. They are difficult to
implement and exploit. It is necessary to implant a Trojan
horse program which then has to locate sensitive data, en-
code it, and leak it out over a long period of time. And to
do so, it must run concurrently with a lower-level cooperat-
ing receiver program. All this without triggering alarms on
audit data. They can be demonstrated “in captivity,” but do
they occur “in the wild?” Has any malicious party actually
tried to exploit them? Because of the sensitivity of this sub-
ject, it went unanswered for many years. But at a workshop
not too long ago, Bob Morris gave this question its final and
complete answer: “Yes.”


