
Covert channels detection in protocols using scenarios

Loïc Hélouët1, Claude Jard2, Marc Zeitoun3

1 Irisa/INRIA, Campus de Beaulieu, F-35042 Rennes, France
2 Irisa/ENS Cachan-Bretagne, Campus de Ker-Lann,F-35170 Bruz, France

3 LIAFA, Université Paris 7, 2 place Jussieu, F-75251 Paris, France
{ loic.helouet@irisa.fr, claude.jard@irisa.fr, marc.zeitoun@liafa.jussieu.fr }

Abstract: This paper presents an approach to de-
tect illegal information flows from requirements ex-
pressed as high-level scenarios.

1 Introduction

The term covert channel has been first introduced
in [9] to designate an information flow that violates
the security policy of a system. Covert channels are
considered as a threat to information systems, as they
can be used to provide information leaks, synchronize
attacks of a system, or divert a system from its initial
use. Their detection is considered as an important
task [6, 13] that should be automated as much as
possible, in order to be reproducible.

The literature distinguishes several kinds of covert
channels: storage channels use a resource of a system
(variable, file, ...) to store data that can be read by an
unauthorized third party. Timing channels modulate
the response time of a system in a noticeable way to
transmit information.

It is generally admitted that covert channels can-
not be completely eliminated [12, 11]. In fact, closing
all covert channels in an information system would
require to remove semaphores, shared resources, dy-
namic adaptation of resource allocation, and even
suppress all internal clocks! However, detecting
covert information flows and computing their band-
width remains an essential task. Depending on the
bandwidth of a channel, several solutions can be pro-
posed: suppress the resources used (which is not al-
ways possible), try to add noise to the covert channel
in order to limit its bandwidth, or add monitors to
detect illegal uses of a system. Even if a covert chan-
nel has a low bandwidth or cannot be closed, [13]
recommends to document it with scenarios of use.

Several automatic techniques have been proposed
to detect covert channels in information systems

[2, 8]. They are based on an abstract representa-
tion of a system by a model. However, the difference
between a model and an implementation as well as
the assumptions made during the analysis may cause
some potential channels to be irrealistic in a running
environment. This points out the need for testing a
covert channel on an implementation when it is dis-
covered. Again, it is important to provide scenar-
ios of use for a potential covert channel. Conversely,
model-based approaches can miss some implementa-
tion details that can be used to transfer information.

For distributed protocols, the studies performed so
far are more empirical, and mainly consist in detect-
ing how information can be hidden in protocol frames
[1, 14]. However, the study of protocol frames is not
sufficient, as functionalities of the protocol involving
several frames can be used to encode and transmit
information. The approach proposed in this paper
is to perform covert channels analysis for distributed
systems at the requirement level, when design deci-
sion can still be taken to reduce the bandwidth of a
channel at reasonable cost. The research is based on
a representation of requirements by scenarios. Covert
channels detected during the requirement phase are
likely to be present in any implementation of these
requirements. They are not due to security holes of
an implementation: they represent structural infor-
mation flows. Another advantage in using scenarios
is that the model used immediately provides (in an
intuitive manner) the scenarios needed to document
and test a potential covert channel.

The paper is organized as follows: section 2 de-
scribes our scenario model, section 3 shows how
covert channels can be detected on a scenario model,
and section 4 gives perspectives and concludes this
work.

1

2 Scenarios

Scenario languages have known a growing interest
the last decade. They are mainly used to repre-
sent behaviors of distributed systems at an abstract
level, or to capture requirements in early development
stages. Even if scenarios are rather incomplete, they
already contain enough information to perform auto-
matic analysis of properties that may already appear
at the requirement level. The main idea developed
hereafter is that scenarios can be used to detect il-
legal information flows that are consequences of the
design choices at the requirement stage. As scenarios
are supposed to represent typical uses of a system,
if an illegal information flow is detected at this level,
the same flow is likely to appear in an implementation
exhibiting the same behavior. Several scenario lan-
guages exist (Live sequence Charts, UML sequence
diagrams, ...). We shall focus in this paper on Mes-
sage Sequence Charts [7].

Roughly speaking, a basic Message Sequence Chart
(bMSC for short) is a graphical representation of in-
teractions in a system, where instances participating
are represented by vertical lines, and (asynchronous)
message exchanges are represented by arrows from
the emitting instances to receiving ones. Formally, a
bMSC is a tuple M = 〈E,≤, A, I, α, φ, m〉, where E

is a set of events, ≤ is a causal partial order (events
are sequentially ordered along instances axes and a
message emission precedes the corresponding message
reception), A is a set of action labels, I is a set of in-
stances, α is a function associating an action name to
each event , φ is a function associating an instance to
each event, and m is a mapping that pairs message
emissions and receptions.

The predecessors of a set of events X in M is ↓X =
{e ∈ E | ∃x ∈ X, e ≤ x}. The set of minimal events

Min(M) for a bMSC M is the set of events having
a single predecessor: Min(M) =

{

e ∈ E | ↓e =

{e}
}

. A projection of a bMSC on an instance i ∈ I

is a sequence of events πi = e1.e2 . . . ep such that
{e1, e2, . . . , ep} = φ−1(i) and e1 < e2 < · · · < ep.
Figure 1 represents a bMSC with seven events. Its
unique minimal event is e1 (emission of the message
Data). Its projection on instance Sender is the event
sequence πsender = e1.e2.e3.

Of course, bMSC alone are not powerful enough
to represent interesting behaviors. Hence, there is
a need for composition operators such as sequence,
choice, loop... The sequential composition of two
message sequence charts M1 and M2 is the bMSC

Data

Info

Ack

e3

e7

MediumSender Receiver

Actione2

e6

e4

e5

e1

bmsc example

Figure 1: An example of bMSC

M1◦M2 = 〈E1]E2,≤1◦2, A1∪A2, I1∪I2, α1∪α2, φ1∪
φ2, m1 ∪ m2〉, where ≤1◦2 =

(

{≤1] ≤2 ∪{(e1, e2) ∈

E1 × E2 | φ(e1) = φ(e2)}
)

∗

. Thus, the sequential
composition roughly consists in merging diagrams
along common instances and does not impose any
synchronization between participating instances. 1

Data

Data
Req

Ack

Ack Data

Req

Ack

Ack

Data

Medium ReceiverSender ReceiverSender MediumSender ReceiverMedium

bMSC bMSC bMSCM1 M2 M1 o M2

Figure 2: Sequential composition

A high level message sequence chart (HMSC for
short) is a graph H = 〈N,−→, n0,M〉, where N is a
set of nodes, M is a set of bMSCs, n0 is an initial
node, and −→⊆ N × M × N is a transition rela-
tion. A path of a HMSC is a sequence of transitions
p = (n1, M1, n2).(n2, M2, n3) . . . (nk−1, Mk−1, nk)
such that the goal of the ith transition is also the ori-
gin of the i+1th one, for all i ∈ 1..k−1. A circuit in a
HMSC is a path p = t1 . . . tk such that the origin of t1
and the goal of tk are the same node. The order asso-
ciated to a path p = (n1, M1, n2) . . . (nk−1, Mk−1, nk)
is the bMSC Op = M1 ◦ · · · ◦ Mk. Figure 3 shows an
example of HMSC, depicting a simple communication
protocol.

A choice node of a HMSC H is a node with more
than one successor. A choice node c in a HMSC
is local iff all paths leaving c have a single min-
imal event, always located on the same instance:

1Figure 2 utile ? (c’est petit !)

2

∃!i ∈ I, ∀p = c.n1 . . . nk, φ(min(Op)) = {i}. We say
that the local choice node c is controlled by instance i.

Abort

Short

HMSC H

Long

Wait Cont

n1

n0

n3

n2

Figure 3: An example of HMSC

3 Covert channels detection

We want to detect illegal information flows in a dis-
tributed system. This first supposes that we know
authorized information flows. In a first step, this
can be given by a Bell & LaPadulla model [3, 4],
but we think that scenarios can provide more accu-
rate means for indicating how legal information can
be transferred from one instance to another (however
this is still ongoing research).

We have to make several assertions to check if ille-
gal information can flow from a sender S to a receiver
R. The first assumption is that S and R agree on a
protocol for sending and receiving covert information.
Covert messages can be of arbitrary length, and we
suppose that the same functionality of the diverted
protocol is used an arbitrary number of times. This
leads to the immediate conclusion that structural in-
formation flows are tightly linked to loops in HMSCs.

We say that there is a potential information flow

from S to R using a choice node c if

• there is a set Qc of simple circuits from c to c

such that for all p ∈ Qc, πR(Op) 6= ε (where ε is
the empty word);

• c is controlled by S;

• all choice nodes that can enforce a path to leave
Qc are either controlled by S or by R. For-
mally, for all q = (n1, M1, n2) . . . (nk, Mk, n1) ∈
Qc, if there is a node ni, i ∈ 1..n, which
is not controlled by S nor by R, then
for any −→-transition (ni, M, n′

i), the path
(n1, M1, n2) . . . (ni−1, Mi−1, ni).(ni, M, n′

i) is a
prefix of some path of Qc.

Notice that Qc does not need to include all simple
circuits from c to itself. Note also that a choice node
n can be controlled by another instance than S or R

as long as the decision taken does not prevent from
eventually getting back to node c.

M

M

bmsc Wait

Wait

S M

bmsc Abort

Abort

S M

bmsc Cont

Continue

S

S

bmsc Long

Long

S

bmsc Short

Short

Data

R

Data_part

M R

Data

Figure 4: Basic MSCs

Transmitting information through paths that are
not controlled by S and R is not always reliable as the
covert message can be delayed an arbitrary amount
of time, or even interrupted. Consider the HMSC of
Figure 3 and the bMSCs of Figure 4. These two fig-
ures represent a simple data transmission protocol.
A sender can send short data packets to a medium
that forwards them to a receiver, or long data pack-
ets that are split before being sent. After data trans-
mission, the medium can allow another transmission,
become unavailable for a period or even abort the
transmission. Obviously, a sender can modulate its
use of long and short packets to encode 0 and 1. Node
n1 is controlled by S, but any circuit from n1 to n1

passes through node n2 where instance M can de-
cide to abort the data transmission, or to delay the
transmission for an unbounded duration. Therefore,
a continuous information flow is not always guaran-
teed. If we replace all bMSCs by those of Figure 5
(where all nodes are controlled by S), then instances
S and R can force the protocol to stay in the scenar-
ios defined by the paths (n1, Short, n2).(n2, Cont, n1)
and (n1, Long, n2).(n2, Cont, n1). However, the rest
of the paper shows that this condition is not sufficient
to ensure that information can be transmitted in this
way.

Transferring information through system’s behav-
ior is one thing, but the information sent must be
decodable. Information encoding is done by selecting

3

different decisions performed by S at a choice node.
The message received by instance R is the sequence
of events on R. Decoding can be performed if and
only if one can find a function mapping the message
received by R to a sequence of integers (the choices of
S). A first sufficient condition is to require the words
read by instance R to form a code. However, this
condition is not always necessary: decoding can be
performed, in more cases, by a transducer producing
an integer sequence from received messages.

A transducer is a tuple T = 〈S, Σ1, Σ2, T, S+, s0〉
where S is a set of states, Σ1 is an input alphabet, Σ2

is an output alphabet, S+ is a set of accepting states,
s0 is an initial state, and T ⊆ S × Σ∗

1 × Σ∗

2 × S is a
transition function. Intuitively, a transducer “reads”
words in Σ∗

1 and produces words in Σ∗

2. Formally, for
w ∈ Σ∗

1, the output T (w) of T on w is the set of words
v ∈ Σ∗

2, such that (w, v) is accepted by T (viewed as
an automaton over Σ∗

1×Σ∗

2). Let F be a finite relation
on words. We call Dom(F) = {x | ∃(x, y) ∈ F} the
domain of F and Img(f) = {y | ∃(x, y) ∈ F} the
image of F . The transducer TF associated to F is a
transducer with a single state s0 such that S = S+ =
{s0} and T =

{

(s0, σ1, σ2, s0) | (σ1, σ2) ∈ F
}

. A
transducer is functional iff for any word w ∈ Σ∗

2, the
output T (w) is unique. This property of transducers
is decidable [5], with polynomial2 complexity.

If a lexicographic ordering on Σ2 is given, then
it is possible to associate a rank to a word of Σ∗

2,
and to build a transducer TiF

producing integer se-
quences instead of words on Σ∗

2, by letting TiF
=

{(s0, σ1, Rank(σ2), s0) | (σ1, σ2) ∈ F}.

Let c be a choice node controlled by S. The simple
algorithm below can help finding a covert information
flow from S to R associated to c.
Algorithm3 Covert(c, S, R)

Q = { simple circuits from c to c forming a potential
information flow from S to R}
F =

˘

(πS(Oq) ∩ ↓πR(Oq), πR(Oq)) | q ∈ Q
¯

while ∃y ∈ Img(F) s.t. |F−1(y)}| > 1 do

choose x ∈ F−1(y)
F = F − {(z1, z2) | z1 ∈ F−1(y) − x}

end while

/* Hence, now, we know that ∀x1, x2 ∈ Dom(F)2, x1 6=
x2 ⇒ F (x1) 6= F (x2) */
Build Ti

F−1

if |Dom(F)| ≥ 2 and Ti
F−1

functional then

there is an information flow from S to R with k =
|Dom(F)| different values

2Il me semble que c’est exponentiel puisqu’a priori,
on doit visiter tous les chemins de longueur n

2.
3La définition de F pose un problème, cf. mail.

end if

So, if a set of circuits in a HMSC H can be used to
transmit information, and if this information can be
decoded by a functional transducer Ti

F−1
, then there

is a structural covert channel in the protocol depicted
by H that allows the transmission of k values. Note
that the domain of the relation F is πS(Oq)∩↓πR(Oq)
and not πS(Oq), as there must be a causal depen-
dency between what is executed by instance S and
the events observed on R.

Let us consider again the description pro-
vided by the HMSC of Figure 3 and bMSCs of
Figure 5. Choose the choice node n1, so that

M RS

bmsc Short

Short

Data

S

Long

M R
bmsc Long

Data

Data

M

Wait

bmsc Wait

S M

bmsc Abort

S M

Resume

bmsc Cont

S

Abort

Figure 5: Other examples of bMSCs

Qn1
= {(n1, Short, n2).(n2, Cont, n1) ;

(n1, Long, n2).(n2, Cont, n1)}.
The actions performed on S are the emis-
sion of messages Short and Long, Abort,
Wait and Continue, which will be respec-
tively denoted by !short, !long, !Abort, !Wait,
!Continue. The relation built from the HMSC
is F = {(!short, ?Data), (!long, ?Data.?Data)}.
When the word ?Data.?Data.?Data is observed on
R, then it is impossible to know how it has been
produced. Let us replace the bMSC Long by the
bMSC of Figure 6. For the same node n1 and the
same set of circuits Qn1

, we find a relation F =
{(!short, ?Data), (!long, ?IncompleteData.?Data)}.
This relation can be used to transmit two observable
values. Note that a similar covert channel can be
detected from node n2, taking into account the
emission on message Continue, but with the same
outputs on R.

4

S

bmsc Long

Long

IncompleteData

M

Data

R

Figure 6: A small variation

4 Conclusion

This article has shown how structural information
flows can be detected on a simple scenario language.
The main advantages of this technique is that it pro-
vides immediately an user with scenarios for using
a potential covert channel, and a decoder for covert
messages, given as a transducer. With this material,
it should be easy to test for the effecticve presence
of a given covert channel. Message sequence charts
also contain more elaborated constructs such as data,
guard, and so on, that are often used to describe re-
quirements. Taking such constructs into account is
possible if one can translate them to simpler ones.
For instance, a bMSC where a parameter can be set
to 1,2 or 3 can be translated into a HMSC with three
choices. Of course, dealing explicitly with all possible
values would be quite inefficient, and we are investi-
gating how covert channel analysis can be performed
with symbolic values.

This paper has only considered a coding and trans-
mission strategy using a single choice node. Finding
more elaborated strategies allowing data transmition
is also an ongoing work. Finally, we have not con-
sidered timing issues in this paper. However, they
are central to covert channel analysis, as a low band-
width channel can be ignored and a channel with high
bandwidth must be treated. By providing informa-
tion on message transmission time and duration of
events, it could be very simple to adapt the work of
[10] to approximate the bandwidth of a channel.

References

[1] K. Ahsan and D. Kundur. Practical data hiding in
TCP/IP. In Workshop on Multimedia Security at
ACM Multimedia ’02, Dec. 2002.

[2] G.R. Andrews and R.P. Reitmans. An axiomatic
approach to information flows in programs. ACM

transactions on Programming languages and Sys-
tems, 2(1):56–76, January 1980.

[3] D.E. Bell and J.J. LaPadulla. Secure computer sys-
tems: a mathematical model. MITRE Technical Re-
port 2547, MITRE, May 1973. Vol II.

[4] D.E. Bell and J.J. LaPadulla. Secure computer sys-
tems: mathematical foundations. MITRE Technical
report 2547, MITRE, March 1973. Vol I.

[5] J. Berstel. Transductions and Context-Free-
Languages. B.G. Teubner, Stuttgart, 1979.

[6] Common Criteria. Common criteria for information
technology security evaluation part 3: Security as-
surance requirements. Technical Report CCIMB-99-
033, CCIMB, 1999.

[7] ITU-TS. ITU-TS Recommendation Z.120: Message
Sequence Chart (MSC). ITU-TS, Geneva, September
1993.

[8] R.A. Kemmerer. Shared ressources matrix methodol-
ogy: an approach to indentifying storage and timing
channels. ACM transactions on Computer systems,
1(3):256–277, 1983.

[9] B. Lampson. A note on the confinement problem.
Communication of the ACM, 16(10):613–615, Oct.
1973.

[10] P. Le Maigat. A (max,+) approach for time in
message sequence charts. 5th Workshop on Discrete
Event Systems (WODES 2000), 2000.

[11] S.B. Lipner. A comment on the confinement prob-
lem. In Proceedings of the fifth symposium on Oper-
ating systems principles, 1975.

[12] I. Moskowitz and M. Kang. Covert channels - here to
stay? In Proceedings of COMPASS’94, pages 235–
243. IEE Press, 1994.

[13] NCSC. A guide to Understanding Covert Channel
Analysis of Trusted Systems. Number NCSC-TG-030
[Light Pink Book] in Rainbow Series. NSA/NCSC,
Nov. 1993.

[14] C.H. Rowland. Covert channels in the TCP/IP pro-
tocol suite. Technical Report Tech. Rep. 5, First
Monday, Peer Reviewed Journal on the Internet,
July 1997.

5

	Introduction
	Scenarios
	Covert channels detection
	Conclusion

