
Covert Messaging Through TCP Timestamps

John Gi�n�� Rachel Greenstadt�� Peter Litwack�� Richard Tibbetts�

�fgif�greenie�plitwack�tibbettsg�mit�edu�

Massachusetts Institute of Technology

Abstract� We present a protocol for sending data over a common class
of low�bandwidth covert channels� Covert channels exist in most com�
munications systems and allow individuals to communicate truly unde�
tectably� However� covert channels are seldom used due to their complex�
ity� Our protocol is both practical and secure against attack by powerful
adversaries� We implement our protocol on a standard platform �Linux�
exploiting a channel in a common communications system �TCP times�
tamps��

� Introduction

A covert channel is a communications channel which allows information to be
transferred in a way that violates a security policy� As a result� covert channels
are important methods of censorship resistance� An e�ective covert channel is
undetectable by the adversary and can provide a strong degree of privacy� Often
the fact that secret communication is taking place between parties is extremely
revealing�
Consider the prisoners� problem� �rst formulated by Simmons�	
�� Alice and

Bob are in prison attempting to plan an escape� They are allowed to communi�
cate� but a Warden watches all of their communications� If the Warden notices
that they are planning to escape or even suspects them of trying to communicate
secretly� they will be placed in solitary con�nement�
The prisoners� problem is theoretically interesting and provides a good ex�

planation of the problem that covert channels solve� this problem is increasingly
relevant in real world situations� Many governments provide restrictions on the
use of cryptography on their systems� The situation is particularly extreme in
China� where all ISPs are subject to government control� although electronic
systems are increasingly subject to surveillance in all parts of the world as at�
tempts to integrate Carnivore monitoring systems�
� in U�S� ISPs has shown�
Private companies increasingly monitor and censor communications with �re�
walls�
An e�ective covert channel requires several apparently contradictory proper�

ties�

� Plausibility � the adversary must believe that it is not only possible� but
likely� that the user of the covert channel is using the medium in which the
covert channel is found without sending covert data�

� Undetectability � In order for the channel to be undetectable� the distribution
of bits sent must conform to the distribution of the channel itself� otherwise
the channel with be able to be automatically detectable via statistical tests�

� Indispensability � The channel must be something which an adversary cannot
or will not close o�� usually due to the fact that it serves some useful function
to the users which are not sending covert data�

TCP timestamps are useful for this purpose because they satisfy these prop�
erties to a high degree�

� TCP is ubiquitous protocol used all over the world for the majority of all
Internet tra�c� It is almost always employed using the timestamp option�
As a result� it is extremely plausible that the majority of users using TCP
will not be sending covert data and have a good reason for using it�

� On a slow connection� the low order bits of timestamps appear random� As
a result� statistical analysis of the headers of the packet will be ine�ective in
detecting the channel�

� Since TCP is so widely employed� it is likely that users who are not sending
covert data would react unfavorably to attempts to modify their TCP packets
on a large scale or to limit the timestamp option which is used to ensure high
performance�

The channel is broken if it is detected by the adversary� This situation can
be modeled as follows For any two TCP connections t� and t� on the same
network� an adversary cannot distinguish which of the connections is using with
probability greater than �

�
� The channel is also broken if the adversary can deny

service to the users of the covert channel while still allowing service to the users
of unmodi�ed TCP connections�
The adversary has the power to monitor all the tra�c on the network and

to modify some tra�c� The adversary only views network tra�c and cannot
see the processing of packets on sender and receiver machines� We consider an
eavesdropper who has the power to modify any number of packets� but cannot
constantly modify packets sent by a single host�
In the prisoners� analogy� the warden would not be constantly changing every

message which passes between prisoners� but might occasionally modify some
messages in the hopes of detecting covert communication� The warden lacks the
resources to modify every message sent between every prisoner all of the time�
If the warden was su�ciently suspicious of one prisoner to modify all of their
messages� he would just put that prisoner in solitary and be done with it�
It is notable to realize that if a more powerful adversary than this is willing

and capable of either preventing users from using the timestamp option with
TCP or overwriting the low order bits of TCP timestamps of every packet� then
the adversary will have closed the channel� We assume that the adversary is
either unwilling to do this� unable to do this� or will be annoyed by being forced to
do this� In addition� we believe that even if this channel is closed� the techniques
presented in this paper will be useful in providing reliable communication over
other low bandwidth covert channels� It is also useful to realize that even if the

adversary denies service to the channel� he still cannot detect whether covert
data was being sent regardless of how much data he modi�es or snipes�
Most of the interesting work which we have done deals with the problem of

sending a message at a rate of one bit per packet over an unreliable channel� and
we believe that even if this particular channel is closed the work we have done
will be relevant to other similar channels that may be identi�ed�

� Related Work

Many other channels have been identi�ed in TCP� These include initial sequence
numbers� acknowledged sequence numbers� windowing bits and protocol identi�
�cation��	���	�� These papers focus on �nding places where covert data could
potentially be sent but do not work out the details of how to send it� Those
implementations which exist�	�� generally place into header �elds values that
are incorrect� unreasonable or even outside the speci�cation� As long as the ad�
versary is not looking� this may be e�ective� but it will stand up to concerted
attack� being e�ectively security through obscurity� These systems do cannot
withstand statistical analysis�
The TCP protocol is described in RFC
����	�� A security analysis TCP�IP

can be found in ��� We are certainly not the �rst group of people to identify the
possibility of using the TCP�IP Protocol Suite for the purposes of transmitting
covert data� In �Covert Channels in the TCP�IP Protocol Suite���	�� Craig
Rowland describes the possibility of passing covert data in the IP identi�cation
�eld� the initial sequence number �eld� and the TCP acknowledge Sequence
Number Field� He wrote a simple proof�of�concept� raw�socket implementation
covert tcp�c� The possibility of hiding data in timestamps is not discussed� We
feel that embedding data in the channels identi�ed here would not be su�cient
to hide data from an adversary who suspected that data might be hidden in the
TCP stream�
In �IP Checksum Covert Channels and Selected Hash Collision���	� the idea

of using internet protocol checksums for covert communication is discussed� Tech�
niques for detecting covert channels� as well as possible places to hide data in
the TCP stream� are discussed �the sequence numbers� duplicate packets� TCP
window size and the urgent pointer� in the meeting notes of the UC Davis Denial
of Service�DOS�Project�	��
The idea of using timing information for covert channels �in hardware� is de�

scribed in �Countermeasures and Tradeo�s for a Class of Covert Timing Chan�
nels����� More generalized use of timing channels for sending covert information
is described in �Simple Timing Channels���	��
Covert channels are discussed more generally in a variety of papers� A gener�

alized survey of information�hiding techniques is described in �Information Hid�
ing � A Survey����� Theoretical issues in information hiding are considered in ���
and ���� John McHugh provides a wealth of information on analyzing a system
for covert channels in �Covert Channel Analysis������ The subject is addressed
mainly in terms of classi�ed systems� These sorts of channels are also analyzed

in �Covert Channels � Here to Stay���		�� These papers focus on the preven�
tion of covert channels in system design and detecting those that already exist�
rather than exploiting them� G�J� Simmons has done a great deal of research
into subliminal channels�	
��	���	���	��� He was the �rst to formulate the prob�
lem of covert communication in terms of the prisoners� problem� did substantial
work on the history of subliminal communication � in particular in relation to
compliance with the SALT treaty and identi�ed a covert channel in the DSA�

� Design

��� Goals

The goal of this system is to covertly send data from one host to another host�
There are two important parts to this goal� First� we must send data� Second�
we must be covert �i�e� only do things that our adversary could not detect��
It is important to note that these two goals are at odds with each other�

In order to send data� we must do things that the receiving host can detect�
However� in order to be covert� we must not do anything that an eavesdropper
can detect�
We approach this problem by presuming the existence of a covert channel

that meets as few requirements as possible� We then describe a protocol to use
such a channel to send data� Finally� we identify a covert channel that meets the
requirements that we have proposed�

��� Characteristics of the Channel

In designing our covert channel protocol� we seek to identify the minimum re�
quirements for a channel which would allow us to send useful data�
In the worst case scenario� the channel would be bitwise lossy� unacknowl�

edged� and the bits sent would be required to pass certain statistical tests� By
bitwise lossy� we mean the channel can drop and reorder individual bits� By un�
acknowledged� we mean that the sender does not know what bits� if any� were
dropped and does not know what order the bits arrived in�
Using this channel to send data is extremely di�cult� However� if we relax

these restrictions in reasonable ways� the problem becomes clearly tractable�
For simplicity� we will assume that the only statistical test that the bits must

pass is one of randomness� since this will be convenient for embedding encrypted
data� This is reasonable since it is not prohibitively di�cult to identify covert
channels that normally �i�e� when they are not being used to send covert data�
contain an equal distribution of ones and zeros�
We will also assume that each bit has a nonce attached to it and that if the

bit is delivered� it arrives with its nonce intact� This condition is both su�cient
to make the channel usable to send data and likely to be met by many covert
channels in network protocols� The reason why it is an easy condition to meet is
that most covert channels in network protocols involve embedding one or more
bits of covert data in a packet of innocuous data� Thus� the innocuous data �or
some portion thereof� can serve as the nonce�

��� Assumptions

We presume that we have a channel with the above characteristics� We further
presume that the adversary cannot detect our use of that channel� Lastly� we
presume a shared secret exists between the sender and receiver�
The �rst two presumptions will be justi�ed in sections ��� and ��	 respec�

tively� The third presumption is justi�ed on the grounds that it is impossible to
solve the problem without it� This is the case because if the sender and receiver
did not have a shared secret� there would be nothing to distinguish the receiver
from the adversary� Any message that the sender could produce that was de�
tectable by the receiver could be detected by the adversary in the same manner�
Note that public key cryptography is no help here� because any key negotiation
protocol would still require sending a message to the receiver that anyone could
detect�
We also� assume that it is su�cient to implement a best e�ort datagram

service� such as that provided �non�covertly� by the Internet Protocol� In such
a service� packets of data are delivered with high probability� The packets may
still be dropped or reordered but� if a packet reaches its destination� all the
bits in the packet reach the destination and the order of the bits within the
packet is preserved� This level of service is su�cient because the techniques to
implement reliability over unreliable datagrams are well understood� and in some
applications reliability may not be required�
We now present a method to implement best e�ort datagrams over a channel

with the above characteristics�

��� Protocol

In order to send messages over this channel� we send one bit of our message block
M per bit of the channel� rather than sending some function of multiple bits�
This way� each bit of the data is independent and if one bit is lost or reordered
it will not a�ect the sending of any of the other bits� We choose which bit of
the message block to send based on a keyed hash of the nonce� That is� for a
message block of size l and a key K� on the packet with nonce t we send bit
number n where

n � H ht�Ki �mod l� �	�

The hash function H should be a cryptographic hash function which is
collision�free and one�way� Because the nonce T will vary with time� which bit
we send will be a random distribution over the l bits in the block� We can keep
track of which bits have been sent in the past� in order to know when we have
sent all the bits� The expected number of channel bits x it takes to send the l
bits of the block will be

x �

l��X
i��

l

l � i
� ���

Of course� because our channel loses bits� this is not su�cient� We thus
send each bit more than once� calling the number of times we send each bit

the occupation number of that bit� o� The probability of our message getting
through� p� will be based on the probability that a bit is dropped d and the
occupation number o� The probability will be bounded below by �	� do�l� Thus
for any drop rate� we can choose a su�ciently high occupation number to assure
that our messages will get through� And for small drop rates the occupation
number does not need to be large to for the probability of successful transmit
to be high�
When sending each bit� it must have the same statistical properties as the

covert channel has when not being used or else an adversary could use statistical
analysis to detect the use of the channel� As we mentioned above� we assume
that the channel is normally random� Thus� our bits must appear random� Since
much research has been done in �nding cryptographic means to make ciphertexts
indistinguishable from random distributions� this will be easy� We accomplish
this as follows� We derive a key bit k from the same keyed hash of the nonce t
in Equation 	� making sure to not correlate n and k�

k �

�
	
j
Hht�Ki

l

k
� � �mod ���

� otherwise
���

The transmitted bit b is the exclusive or of the key bit k and the plaintext
message bit Mn� Because k seems random� Mn will seem random� and thus the
random characteristic of our channel is preserved�
There are several techniques that the sender can use to determine when a bit

has been transmitted�
The sender assumes that a block has been transmitted after it has achieved

the occupation number o for every bit in the message� In order for the receiver
to know when they have received a block� the last lc bits of the message are a
checksum C of the �rst l� lc bits�

��� Finding a Covert Channel

In attempting to locate a covert channel we restrict our considerations to covert
channels over the network� This is because most of the time the network is the
only mechanism through which a pair of hosts can reasonably communicate�
There are two ways that we could transmit information� We could send new

packets and try to make them look innocuous� or we could modify existing
packets� Obviously� it will be easier to maintain covertness if we modify exist�
ing packets� If we were to send new packets� we would need to come up with
a mechanism to generate innocuous looking data� If an adversary knew what
this mechanism was� they could likely detect our fake innocuous data and our
communication would no longer be covert� In contrast� if we modify packets�
all packets that get sent are legitimate packets and an adversary will have a
more di�cult time detecting that anything is amiss� Thus� we choose to modify
existing packets�
We can modify existing packets in two ways� We can modify the application

data or we can modify the protocol headers� Modifying the application data

requires a detailed understanding of the type of data sent by a wide variety of
applications� Care must be taken to ensure that the modi�ed data could have
been generated by a legitimate application� and we must guess what sort of
applications the adversary considers innocuous� It is easier and more general
to modify the protocol headers because there are fewer network protocols in
existence than application protocols� Most applications use one of a handful of
network protocols� Furthermore� the interpretation of protocol header �elds is
well de�ned� so we can determine if a change to a �eld will disrupt the protocol�
The problem remains� however� that we must only produce modi�ed protocol

headers that would normally have been produced by the operating system� For
example� we could attempt to modify the least signi�cant bit of the window
size �eld of TCP packets� However� most �� bit operating systems tend to have
window sizes that are a multiple of four� Since our modi�cation would produce
many window sizes that were not multiples of four� an adversary could detect
that we were modifying the window size �elds� Similarly� we could attempt to
hide data in the identi�cation �eld of IP packets� However� many operating
systems normally generate sequential identi�cation �eld values� so an adversary
could detect the presence of covert data based upon this discrepancy�
For these reasons� we wish to avoid directly modifying packet headers� Instead

we observe that more subtle modi�cations to the operating system�s handling
of packets can result in a legitimate �and� thus� presumably harder to detect�
change in headers� In particular� if we delay the processing of a packet in a
protocol with timestamps� we can cause the timestamp to change�
Detecting these delays will likely be very di�cult because operating system

timing is very complex and depends on many factors that an adversary may not
be able to measure � other processes running on the machine� when keys are
pressed on the keyboard� etc� Thus� this technique for sending information is
very di�cult to detect�
We now look at applying this technique to TCP to create a channel with the

properties described above�

��� TCP Timestamps as a Covert Channel

By imposing slight delays on the processing of selected TCP packets� we can
modify the low order bits of their timestamps�
The low bit of the TCP timestamp� when modi�ed in this way� provides a

covert channel as described above� The low bit is e�ectively random on most
connections� The rest of the packet� or some subset� can be our nonce� When
examined individually� packets �and thus bits� are not delivered reliably�
Because TCP timestamps are based purely on internal timings of the host�

on a slow connection their low bits are randomly distributed� By rewriting the
timestamp and varying the timing within the kernel� we can choose the value of
the low bit� As long as we choose values with a statistically random distribution�
they will be indistinguishable from the unaltered values�
The rest of the TCP headers provides a nonce that is nearly free from rep�

etition� The sequence number sent with a TCP packet is chosen more or less

randomly from a ��� number space� Thus� it is unlikely to repeat except on re�
transmission of a packet� Even if it does repeat� the acknowledgment number
and window size �elds will likely have changed� Even if those �elds are the same�
the high order bits of the timestamp will likely have changed� It is extremely
unlikely that all of the headers� including the high order bits of the timestamp�
will ever be the same on two packets�
While TCP is a reliable stream protocol� it provides a stream of bytes that

are reliably delivered� rather than guaranteeing reliable delivery of individual
packets� For example� if two small packets go unacknowledged they may be
coalesced into a single larger packet for the purpose of retransmission� As a
result� bits associated with the packets can be dropped� when their packets are
not resent� Also� because bytes are acknowledged rather than packets� it is often
not clear whether a given packet got through� further complicating the question
of whether a bit was delivered�

��	 TCP Speci
c Challenges

Rewriting TCP timestamps presents some additional challenges over and above
a standard implementation of the protocol from Section ���� Timestamps must
be monotonically increasing� Timestamps must re�ect a reasonable progression
of time� And when timestamps are rewritten� it can cause the nonce in the rest
of the packet to change�
Timestamps must be monotonically increasing� Because timestamps are to

re�ect the actual passing of time� no legitimate system would produce earlier
timestamps for later packets� Were this done� it could be observed by checking
the invariant that a packet with a larger sequence number in a stream also
has a timestamp greater than or equal to other packets in that stream� When
rewriting timestamps� we must honor this invariant� As a result� if presented
with the timestamp 	� and needing to send the bit �� we must rewrite to 	�
rather than 	�� Additionally� we must make sure than any following packet has
a timestamp of not less than 	�� even if the correct timestamp might still be 	��
Timestamps must re�ect a reasonable progression of time� Though times�

tamps are implementation dependent and their low order bits random� the pro�
gression of the higher order bits must re�ect wall clock time in most implemen�
tations� Because an adversary can be presumed to know the implementation of
the unmodi�ed TCP stack� they are aware of what the correct values of times�
tamps are� In order to send out packets with modi�ed timestamps� and keep
timestamps monotonically increasing� streams must be slowed so that the times�
tamps on packets are valid when they are sent� Thus� we can be thought of as
not rewriting timestamps but as delaying packets�
As an additional challenge� because we must only increase timestamps� we

will sometimes cause the high order bits of the timestamp to change� To decrease
the chance of nonce repetition� we include the higher�order bits of the timestamp
in the nonce� When incrementing timestamps� these bits may change� and the
nonce will change� When the nonce changes� we will have to recompute n and k�
and thus may have to further increment the timestamp� However� at this point

the low bit of the timestamp will be �� and so incrementing will not change the
nonce� This algorithm can be seen in Figure 	�

��� Choosing Parameters for TCP

For a checksum of size n bits� a collision can be expected one time in �n� As�
suming a sustained packet rate of ten packets per second �an upper bound�� we
will see a collision every �

n

�� seconds� We selected our checksum to be a multiple
of eight and a power of two to keep the checksum byte aligned and to make it
consistent with standard hash functions� A checksum size of 	� bits is clearly
too small� as it results in collisions every two hours� A �� bit checksum raises
this time to 	��� years� which we deem to be an acceptable without making the
amount of data per block too small�

� Implementation

��� Sending Messages

Our sender is implemented on top of the Linux kernel� The current implemen�
tation of a sender is a minor source modi�cation to provide a hook to rewrite
timestamps� and a kernel module to implement the rewrite process� to track the
current transmission� and to provide access to the covert channel messaging to
applications� The current system only provides one channel to one host at a
time� but generalizing to multiple channels should not be di�cult�
We selected SHA	 as the hash� It is a standard hash function� believed to

be collision resistant and one�way� Source is freely available���� which made it
even more attractive� We needed to put our own interface on SHA	 and modify
the code so that it could be used in both the kernel code and in the receiving
application�
The basic algorithm is for each packet compute the cipher text bit to be

included in that packet according to Figure �� Then the timestamp is rewrit�
ten according to the method described in Figure 	� This is a simple function
implementing the rewriting algorithm described in Section ��
� This algorithm
can be seen in the pseudocode of Figure �� particularly in the recursive call to
EncodePacket�
To encode a packet� the timestamp is incremented until it has the proper

value to be sent� When a packet is ready to be sent� the occupation number for
the bit in the packet is increased� Occupation numbers are tracked in the array
TransmitCount� If the minimum occupation number of every bit in the block is
ever higher than the required occupation number� the block is presumed received
and the next block begins transmission�

��� Receiving Messages

The receiving process is designed to be portable and entirely located in user�
space� It is much simpler than the sender side and the primary interesting part is

Start

LSB of timestamp
=

cipher text bit?

Increment
timestamp

Recompute
cipher text bit

Done

Did the high order
bits change?

NO

YES

YES

NO

Fig� �� Rewriting Timestamps

SHA1

Index KeyBit

Plain Text Bit

Cipher Text Bit

Secret KeyPacket Header

Hash of Headers and Key

bit 8bits 0−7

Current Message Block

Fig� �� Sender

EncodePacket�Packet P� TimeStamp T�

GetHeaders�P� � PacketHeader
SHA��PacketHeaders��	�
� � Index
CurrentBlock�Index� � PlainTextBit
SHA��PacketHeaders���� � KeyBit
PlainTextBit � KeyBit � CipherTextBit
if T�	� � CipherTextBit then
T � � � T
if T�	� 	 then

return EncodePacket�P�T�
end if

TransmitCount�Index���
if Minimum�TransmitCount� � MinimumTransmitCount then
NextBlock � CurrentBlock

end if

end if

SendPacket�P�T�

Fig� �� Pseudocode for EncodePacket

Secret KeyPacket Header

SHA1

Hash of Headers and Key

Index

Plain Text Bit

Current Message Block

KeyBit Cipher Text Bit

Timestamp

bits 0−7 bit 8

Fig� �� Receiver

ReceivePacket�Packet P� TimeStamp T�

GetHeaders�P� � PacketHeader
SHA��PacketHeaders��	�
� � Index
T�	� � CipherTextBit
SHA��PacketHeaders���� � KeyBit
CipherTextBit � KeyBit � PlainTextBit
PlainTextBit � CurrentBlock�Index�
if ValidateChecksum�CurrentBlock� then
OutputBlock

end if

Fig� �� Pseudocode for ReceivePacket

determining when we are done with a block and the boundaries between di�erent
data blocks�
Packets are collected by the receiver using the libpcap interface to the Berke�

ley Packet Filter�	��� This library is part of the standard utility tcpdump and has
been ported to a wide variety of platforms� Our receiver is simple C� using only
libpcap and our SHA	 library� Unlike the sender� it is not tied to the Linux
platform� and will probably run anywhere that libpcap will run�
The receiver maintains a bu�er initialized to all zeroes which represents the

current data block to be decoded� As packets are received� the receiver computes
the hash of the packet headers concatenated with the shared secret� He then
XORs bit � of the hash with the low order bit of the timestamp of the packet�
he places the result in the bu�er at the place indicated by the index�
In actuality� the data block contains less than BLOCKSIZE bits of data�

Appended to it is a checksum of the data� The purpose is the checksum is
to inform the receiver when he has received the entire valid block and should
output plaintext and allocate a new block bu�er� The receiver calculates this
hash every time he receives a bit and adds it to the bu�er� This checksum needs
to be collision resistant such that the probability that the receiver will believe
he has prematurely found a valid output without actually having done so �either
by chance or design by the adversary� is su�ciently low�

� Evaluation

��� Security

The security of this protocol is violated when an adversary can determine what
data we are sending or that we are sending data at all�
The system is designed to send out packets in intervals such that the times�

tamps monotonically increase over time and such that they do not increase
quicker than the 	� ms granularity of linux timestamps� We use our ability to
delay packets to make certain that the mean time between packets is relatively
constant� In a normal link of this speed� it would be expected that the low order
bits of the timestamp would be unpredictable� If this is the case� we will have
achieved our goal of undetectability�
Two things contribute to the low order bit of the timestamp the plain text

bit and the key bit� Our goal is to xor these two bits together and obtain an
unpredictable bit that we can use in our timestamp� Recall that the key bit is
the �th bit of the hash of the packet headers and the secret key� Given a random
oracle model for the hash function used by the sender� the key bit will be a
random number provided that packet headers do not collide�
Packet headers collide only when all TCP header �elds are the same� includ�

ing sequence number� window� �ags� options� source port� destination port� and
the high�order �	 bits of the timestamp� the odds of such a collision happening
are remarkably small� As long as no such collisions occur� the XOR of the plain
text bit with the key bit is essentially a one�time pad� The low order � bits of the

hash will collide approximately once every �	� packets� but the adversary has
no way to detect these collisions without the key� he is left with a Pr� �

�
� chance

that there is a collision on the �th bit� in which case he can determine if the
two timestamp bits are the same or di�erent� However� he has a Pr� �

�
� chance

of guessing this anyway�

Should headers collide� one bit of information is revealed about the two bits
of plain text encoded in those two packets� Even so� no information is gained
about the sender�s secret key�� Of course if the headers collide often enough the
timestamps will display the entropy of the message� which is lower than expected
and the process with be detectable� It is meaningful to note that if the headers
collide often enough it will take a great deal of packets and a large amount
of time to get the message through at all� This might tip o� the sender that
something odd is up� Of course� too many collisions will make the low order bits
of the timestamp have low entropy and the system will be detectable�

We believe the probability of collisions� using a good hash function with
the properties speci�ed in our design section� is su�ciently low to avoid the
problem of a two time pad� However� if the users were in a situation where the
adversary could somehow cause the packet headers to collide� or simply in a
system where the packet headers had little entropy� the security of the system
could be increased by encrypting blocks of data before sending them �using an
encryption mode that does not cause interdependency between blocks�� In this
way� the entropy of the data being sent would be high� This bit would then
be sent as the low order bit of the timestamp and the system would otherwise
proceed as before� It is notable to realize that this contributes to the ine�ciency
of the system because the hash also must still be computed in order to generate
the � bit index�

��� Robustness

The system is also broken if the adversary can deny service to the users of the
channel� A powerful adversary could defeat this system by overwriting the tcp
timestamps of all packets in some unpredictable way� This is a feasible attack
for some powerful adversaries� However� it is not currently being done in any
situations of which we are aware� If this paper caused this system to be used
so widely that corporations and governments who wished to censor those us�
ing networks they controlled were forced to modify all packets� that would be
a favorable outcome� The techniques applied in this paper could be used to de�
sign another covert channel which would have to be closed� raising the cost of
censorship�

Apart from this attack our system is fairly robust� Since all bits are sent
independently multiple times� modi�cations and packet sniping are unlikely to
prevent the message from getting through unless performed in large numbers�

� This assumes that the hash function used is one�way�

��� Performance

After sending ���� packets� there is a ���� chance that we have sent every bit
at least once� After sending ���� packets the probability that we have not sent
every bit has dropped to around 	 in a million�

���� packets may seem like a lot but a single hit on an elaborate website
can generate 	�� packets or more� especially if the site has many images which
must be fetched with individual HTTP GET requests� Furthermore� transfer
of a � megabyte �le will likely generate that many packets� Thus� it is fairly
easy to generate enough packets to assure a fairly high probability of successful
transmission of a data block�

To send a total of n bits� the message will take approximately n � ��
�ms if
the sender is not limited by network constraints� ��
�ms is the expected time to
wait to send a packet�

� Conclusion and Future Directions

��� Conclusions

We have designed a protocol which is applicable to a variety of low bandwidth�
lossy covert channels� The protocol provides for the probabilistic transmission
of data blocks�

Identifying potential covert channels is easier than working through the de�
tails of sending data covertly and practically through them� The protocol gives
a method for sending data over newly identi�ed cover channels with minimal
design investment� The implementation of this protocol with TCP timestamps
is not yet complete� but we are con�dent that there are no major obstacles
remaining�

��� Future Directions

Future directions of our research involve improvements to our implementation
and work on channel design that deals with more powerful adversaries and more
diverse situations�

It would be useful if the sender in the implementation were able to track�
possible via ackmessages� which data had actually been received by the receiver�
If this were the case� the sender would not have to rely on probability to decide
when a message had gotten through and when he should begin sending more
data�

It would also be useful to develop a bidirectional protocol that provided
reliable data transfer� Although it would theoretically be possible to implement
something like TCP on top of our covert channel� this would likely be ine�cient�
Thus� it would be useful to develop a reliability protocol speci�cally for this type
of channel�

We would also like to identify channels which a resource rich active adversary
would not be able to close� It would also be useful to deal with key exchange� as
our sender and receiver may not have the opportunity to obtain a shared secret�
Our system is currently only practical for short messages� it would be de�

sirable to be able to send more data� Lastly� our protocol is designed to work
between two parties� It would be interesting to design a broadcast channel such
that messages could be published covertly�

References

�� Christopher Abad� Ip checksum covert channels and selected hash collision�
�http���www�gravitino�net��aempirei�papers�pccc�pdf�� �		��

�� Ross Anderson and Fabien A�P� Petitcolas� On the limits of steganography� IEEE
Journal on Selected Areas in Communications� ����
������ May �����

�� S�M� Bellovin� Security problems in the tcp�ip protocol suite� Computer Commu�
nication Review� ������������ April �����

�� Christian Cachin� An information�theoretic model for steganography� In David
Aucsmith� editor� Information Hiding� �nd International Workshop� volume ����
of Lecture Notes in Computer Science� pages �	������ Springer� ����� Revised
version� March �		�� available as Cryptology ePrint Archive� Report �			�	��� url
http���eprint�iacr�org��

�� �rd D�Eastlake and P� Jones� Us secure hash algorithm � �sha��� Rfc� Network
Working Group� �		�� �http���www�ietf�org�rfc�rfc��
��txt��

�� Markus G� Kuhn Fabian A�P� Petitcolas� Ross J� Anderson� Information hiding �
a survey� In Proceedings of the IEEE� �����

� Federal bureau of investigation � programs and initiatives � carnivore�
�http���www�fbi�gov�hq�lab�carnivore�carnlrgrmap�htm��

�� James W� Gray III� Countermeasures and tradeo�s for a class of covert timing
channels�

�� John McHugh� Covert Channel Analysis� Portland State University� �����
�	� Ira S� Moskowitz and Allen R� Miller� Simple timing channels� In IEEE Computer

Society Symposium on Research in Security and Privacy� pages ������ IEEE Press�
May ����� �����

��� I�S� Moskowitz and M�H� Kang� Covert channels � here to stay� In COMPASS
��	� pages �������� �����

��� Jon Postel� Transmission control protocol� RFC
��� Information Sciences In�
stitute� University of Southern California� ��
� Admiralty Way� Marina del Rey�
California �	���� Sep ����� �http���www�ietf�org�rfc�rfc	
���txt��

��� Craig H� Rowland� Covert channels in the tcp�ip protocol suite� First Monday�
�http
��www�rstmonday�dk�issues�issue� ��rowland��� �����

��� G� J� Simmons� The subliminal channels in the u�s� digital signature algorithm
�dsa�� In W� Wolfowicz� editor� �rd Symposium on
 State and Progress of Research
in Cryptography� pages ������ Rome� Italy� February ����� �����

��� G� J� Simmons� Subliminal channels � Past and present� In European Trans� on
Telecommunications� 	�	�� pages �����
�� Jul�Aug �����

��� G� J� Simmons� Results concerning the bandwidth of subliminal channels� IEEE
J� on Selected Areas in Communications� ���	�� pages �����
�� May �����

�
� G�J� Simmons� The prisoners� problem and the subliminal channel� In CRYPTO
���� pages ����
� Plenum Press� �����

��� et al Steve McCanne� libpcap� the packet capture library�
�http���www�tcpdump�org��

��� Uc davis denial of service �dos� project� meeting notes�
�http���seclab�cs�ucdavis�edu�projects�denial�service�meetings�	���
�
��m�html�� January �
 �����

